Properties

Label 1134.2.f.d.757.1
Level $1134$
Weight $2$
Character 1134.757
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(379,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.379");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 757.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.757
Dual form 1134.2.f.d.379.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +1.00000 q^{10} +(-1.00000 - 1.73205i) q^{11} +(-1.50000 + 2.59808i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} -1.00000 q^{17} +2.00000 q^{19} +(-0.500000 - 0.866025i) q^{20} +(-1.00000 + 1.73205i) q^{22} +(-1.00000 + 1.73205i) q^{23} +(2.00000 + 3.46410i) q^{25} +3.00000 q^{26} -1.00000 q^{28} +(-3.50000 - 6.06218i) q^{29} +(-3.00000 + 5.19615i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(0.500000 + 0.866025i) q^{34} -1.00000 q^{35} -7.00000 q^{37} +(-1.00000 - 1.73205i) q^{38} +(-0.500000 + 0.866025i) q^{40} +(-3.00000 + 5.19615i) q^{41} +(2.00000 + 3.46410i) q^{43} +2.00000 q^{44} +2.00000 q^{46} +(-3.00000 - 5.19615i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(2.00000 - 3.46410i) q^{50} +(-1.50000 - 2.59808i) q^{52} -6.00000 q^{53} +2.00000 q^{55} +(0.500000 + 0.866025i) q^{56} +(-3.50000 + 6.06218i) q^{58} +(-5.00000 + 8.66025i) q^{59} +(4.50000 + 7.79423i) q^{61} +6.00000 q^{62} +1.00000 q^{64} +(-1.50000 - 2.59808i) q^{65} +(-5.00000 + 8.66025i) q^{67} +(0.500000 - 0.866025i) q^{68} +(0.500000 + 0.866025i) q^{70} -4.00000 q^{71} -11.0000 q^{73} +(3.50000 + 6.06218i) q^{74} +(-1.00000 + 1.73205i) q^{76} +(1.00000 - 1.73205i) q^{77} +(3.00000 + 5.19615i) q^{79} +1.00000 q^{80} +6.00000 q^{82} +(5.00000 + 8.66025i) q^{83} +(0.500000 - 0.866025i) q^{85} +(2.00000 - 3.46410i) q^{86} +(-1.00000 - 1.73205i) q^{88} +15.0000 q^{89} -3.00000 q^{91} +(-1.00000 - 1.73205i) q^{92} +(-3.00000 + 5.19615i) q^{94} +(-1.00000 + 1.73205i) q^{95} +(1.00000 + 1.73205i) q^{97} +1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - q^{5} + q^{7} + 2 q^{8} + 2 q^{10} - 2 q^{11} - 3 q^{13} + q^{14} - q^{16} - 2 q^{17} + 4 q^{19} - q^{20} - 2 q^{22} - 2 q^{23} + 4 q^{25} + 6 q^{26} - 2 q^{28} - 7 q^{29} - 6 q^{31}+ \cdots + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 1.00000 0.316228
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −1.50000 + 2.59808i −0.416025 + 0.720577i −0.995535 0.0943882i \(-0.969911\pi\)
0.579510 + 0.814965i \(0.303244\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.00000 −0.242536 −0.121268 0.992620i \(-0.538696\pi\)
−0.121268 + 0.992620i \(0.538696\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 0 0
\(22\) −1.00000 + 1.73205i −0.213201 + 0.369274i
\(23\) −1.00000 + 1.73205i −0.208514 + 0.361158i −0.951247 0.308431i \(-0.900196\pi\)
0.742732 + 0.669588i \(0.233529\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 3.00000 0.588348
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −3.50000 6.06218i −0.649934 1.12572i −0.983138 0.182864i \(-0.941463\pi\)
0.333205 0.942855i \(-0.391870\pi\)
\(30\) 0 0
\(31\) −3.00000 + 5.19615i −0.538816 + 0.933257i 0.460152 + 0.887840i \(0.347795\pi\)
−0.998968 + 0.0454165i \(0.985539\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0.500000 + 0.866025i 0.0857493 + 0.148522i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) −1.00000 1.73205i −0.162221 0.280976i
\(39\) 0 0
\(40\) −0.500000 + 0.866025i −0.0790569 + 0.136931i
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) 0 0
\(52\) −1.50000 2.59808i −0.208013 0.360288i
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0.500000 + 0.866025i 0.0668153 + 0.115728i
\(57\) 0 0
\(58\) −3.50000 + 6.06218i −0.459573 + 0.796003i
\(59\) −5.00000 + 8.66025i −0.650945 + 1.12747i 0.331949 + 0.943297i \(0.392294\pi\)
−0.982894 + 0.184172i \(0.941040\pi\)
\(60\) 0 0
\(61\) 4.50000 + 7.79423i 0.576166 + 0.997949i 0.995914 + 0.0903080i \(0.0287851\pi\)
−0.419748 + 0.907641i \(0.637882\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −1.50000 2.59808i −0.186052 0.322252i
\(66\) 0 0
\(67\) −5.00000 + 8.66025i −0.610847 + 1.05802i 0.380251 + 0.924883i \(0.375838\pi\)
−0.991098 + 0.133135i \(0.957496\pi\)
\(68\) 0.500000 0.866025i 0.0606339 0.105021i
\(69\) 0 0
\(70\) 0.500000 + 0.866025i 0.0597614 + 0.103510i
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) 3.50000 + 6.06218i 0.406867 + 0.704714i
\(75\) 0 0
\(76\) −1.00000 + 1.73205i −0.114708 + 0.198680i
\(77\) 1.00000 1.73205i 0.113961 0.197386i
\(78\) 0 0
\(79\) 3.00000 + 5.19615i 0.337526 + 0.584613i 0.983967 0.178352i \(-0.0570765\pi\)
−0.646440 + 0.762964i \(0.723743\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 5.00000 + 8.66025i 0.548821 + 0.950586i 0.998356 + 0.0573233i \(0.0182566\pi\)
−0.449534 + 0.893263i \(0.648410\pi\)
\(84\) 0 0
\(85\) 0.500000 0.866025i 0.0542326 0.0939336i
\(86\) 2.00000 3.46410i 0.215666 0.373544i
\(87\) 0 0
\(88\) −1.00000 1.73205i −0.106600 0.184637i
\(89\) 15.0000 1.59000 0.794998 0.606612i \(-0.207472\pi\)
0.794998 + 0.606612i \(0.207472\pi\)
\(90\) 0 0
\(91\) −3.00000 −0.314485
\(92\) −1.00000 1.73205i −0.104257 0.180579i
\(93\) 0 0
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 1.00000 + 1.73205i 0.101535 + 0.175863i 0.912317 0.409484i \(-0.134291\pi\)
−0.810782 + 0.585348i \(0.800958\pi\)
\(98\) 1.00000 0.101015
\(99\) 0 0
\(100\) −4.00000 −0.400000
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 8.00000 13.8564i 0.788263 1.36531i −0.138767 0.990325i \(-0.544314\pi\)
0.927030 0.374987i \(-0.122353\pi\)
\(104\) −1.50000 + 2.59808i −0.147087 + 0.254762i
\(105\) 0 0
\(106\) 3.00000 + 5.19615i 0.291386 + 0.504695i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) −1.00000 1.73205i −0.0953463 0.165145i
\(111\) 0 0
\(112\) 0.500000 0.866025i 0.0472456 0.0818317i
\(113\) −0.500000 + 0.866025i −0.0470360 + 0.0814688i −0.888585 0.458712i \(-0.848311\pi\)
0.841549 + 0.540181i \(0.181644\pi\)
\(114\) 0 0
\(115\) −1.00000 1.73205i −0.0932505 0.161515i
\(116\) 7.00000 0.649934
\(117\) 0 0
\(118\) 10.0000 0.920575
\(119\) −0.500000 0.866025i −0.0458349 0.0793884i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 4.50000 7.79423i 0.407411 0.705656i
\(123\) 0 0
\(124\) −3.00000 5.19615i −0.269408 0.466628i
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.50000 + 2.59808i −0.131559 + 0.227866i
\(131\) −8.00000 + 13.8564i −0.698963 + 1.21064i 0.269863 + 0.962899i \(0.413022\pi\)
−0.968826 + 0.247741i \(0.920312\pi\)
\(132\) 0 0
\(133\) 1.00000 + 1.73205i 0.0867110 + 0.150188i
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) 5.50000 + 9.52628i 0.469897 + 0.813885i 0.999408 0.0344182i \(-0.0109578\pi\)
−0.529511 + 0.848303i \(0.677624\pi\)
\(138\) 0 0
\(139\) 1.00000 1.73205i 0.0848189 0.146911i −0.820495 0.571654i \(-0.806302\pi\)
0.905314 + 0.424743i \(0.139635\pi\)
\(140\) 0.500000 0.866025i 0.0422577 0.0731925i
\(141\) 0 0
\(142\) 2.00000 + 3.46410i 0.167836 + 0.290701i
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 7.00000 0.581318
\(146\) 5.50000 + 9.52628i 0.455183 + 0.788400i
\(147\) 0 0
\(148\) 3.50000 6.06218i 0.287698 0.498308i
\(149\) 10.5000 18.1865i 0.860194 1.48990i −0.0115483 0.999933i \(-0.503676\pi\)
0.871742 0.489966i \(-0.162991\pi\)
\(150\) 0 0
\(151\) −5.00000 8.66025i −0.406894 0.704761i 0.587646 0.809118i \(-0.300055\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) 2.00000 0.162221
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) −3.00000 5.19615i −0.240966 0.417365i
\(156\) 0 0
\(157\) 6.50000 11.2583i 0.518756 0.898513i −0.481006 0.876717i \(-0.659728\pi\)
0.999762 0.0217953i \(-0.00693820\pi\)
\(158\) 3.00000 5.19615i 0.238667 0.413384i
\(159\) 0 0
\(160\) −0.500000 0.866025i −0.0395285 0.0684653i
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) −3.00000 5.19615i −0.234261 0.405751i
\(165\) 0 0
\(166\) 5.00000 8.66025i 0.388075 0.672166i
\(167\) −11.0000 + 19.0526i −0.851206 + 1.47433i 0.0289155 + 0.999582i \(0.490795\pi\)
−0.880121 + 0.474749i \(0.842539\pi\)
\(168\) 0 0
\(169\) 2.00000 + 3.46410i 0.153846 + 0.266469i
\(170\) −1.00000 −0.0766965
\(171\) 0 0
\(172\) −4.00000 −0.304997
\(173\) −6.50000 11.2583i −0.494186 0.855955i 0.505792 0.862656i \(-0.331200\pi\)
−0.999978 + 0.00670064i \(0.997867\pi\)
\(174\) 0 0
\(175\) −2.00000 + 3.46410i −0.151186 + 0.261861i
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) 0 0
\(178\) −7.50000 12.9904i −0.562149 0.973670i
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 18.0000 1.33793 0.668965 0.743294i \(-0.266738\pi\)
0.668965 + 0.743294i \(0.266738\pi\)
\(182\) 1.50000 + 2.59808i 0.111187 + 0.192582i
\(183\) 0 0
\(184\) −1.00000 + 1.73205i −0.0737210 + 0.127688i
\(185\) 3.50000 6.06218i 0.257325 0.445700i
\(186\) 0 0
\(187\) 1.00000 + 1.73205i 0.0731272 + 0.126660i
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 2.00000 0.145095
\(191\) 9.00000 + 15.5885i 0.651217 + 1.12794i 0.982828 + 0.184525i \(0.0590746\pi\)
−0.331611 + 0.943416i \(0.607592\pi\)
\(192\) 0 0
\(193\) −5.50000 + 9.52628i −0.395899 + 0.685717i −0.993215 0.116289i \(-0.962900\pi\)
0.597317 + 0.802005i \(0.296234\pi\)
\(194\) 1.00000 1.73205i 0.0717958 0.124354i
\(195\) 0 0
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) −1.00000 −0.0712470 −0.0356235 0.999365i \(-0.511342\pi\)
−0.0356235 + 0.999365i \(0.511342\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) 0 0
\(202\) 1.00000 1.73205i 0.0703598 0.121867i
\(203\) 3.50000 6.06218i 0.245652 0.425481i
\(204\) 0 0
\(205\) −3.00000 5.19615i −0.209529 0.362915i
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) 3.00000 0.208013
\(209\) −2.00000 3.46410i −0.138343 0.239617i
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) 3.00000 5.19615i 0.206041 0.356873i
\(213\) 0 0
\(214\) 0 0
\(215\) −4.00000 −0.272798
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 5.50000 + 9.52628i 0.372507 + 0.645201i
\(219\) 0 0
\(220\) −1.00000 + 1.73205i −0.0674200 + 0.116775i
\(221\) 1.50000 2.59808i 0.100901 0.174766i
\(222\) 0 0
\(223\) −10.0000 17.3205i −0.669650 1.15987i −0.978002 0.208595i \(-0.933111\pi\)
0.308353 0.951272i \(-0.400222\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 1.00000 0.0665190
\(227\) 12.0000 + 20.7846i 0.796468 + 1.37952i 0.921903 + 0.387421i \(0.126634\pi\)
−0.125435 + 0.992102i \(0.540033\pi\)
\(228\) 0 0
\(229\) 14.5000 25.1147i 0.958187 1.65963i 0.231287 0.972886i \(-0.425707\pi\)
0.726900 0.686743i \(-0.240960\pi\)
\(230\) −1.00000 + 1.73205i −0.0659380 + 0.114208i
\(231\) 0 0
\(232\) −3.50000 6.06218i −0.229786 0.398001i
\(233\) −19.0000 −1.24473 −0.622366 0.782727i \(-0.713828\pi\)
−0.622366 + 0.782727i \(0.713828\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) −5.00000 8.66025i −0.325472 0.563735i
\(237\) 0 0
\(238\) −0.500000 + 0.866025i −0.0324102 + 0.0561361i
\(239\) 3.00000 5.19615i 0.194054 0.336111i −0.752536 0.658551i \(-0.771170\pi\)
0.946590 + 0.322440i \(0.104503\pi\)
\(240\) 0 0
\(241\) 3.50000 + 6.06218i 0.225455 + 0.390499i 0.956456 0.291877i \(-0.0942799\pi\)
−0.731001 + 0.682376i \(0.760947\pi\)
\(242\) −7.00000 −0.449977
\(243\) 0 0
\(244\) −9.00000 −0.576166
\(245\) −0.500000 0.866025i −0.0319438 0.0553283i
\(246\) 0 0
\(247\) −3.00000 + 5.19615i −0.190885 + 0.330623i
\(248\) −3.00000 + 5.19615i −0.190500 + 0.329956i
\(249\) 0 0
\(250\) 4.50000 + 7.79423i 0.284605 + 0.492950i
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) 4.00000 0.251478
\(254\) −6.00000 10.3923i −0.376473 0.652071i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.50000 7.79423i 0.280702 0.486191i −0.690856 0.722993i \(-0.742766\pi\)
0.971558 + 0.236802i \(0.0760993\pi\)
\(258\) 0 0
\(259\) −3.50000 6.06218i −0.217479 0.376685i
\(260\) 3.00000 0.186052
\(261\) 0 0
\(262\) 16.0000 0.988483
\(263\) 9.00000 + 15.5885i 0.554964 + 0.961225i 0.997906 + 0.0646755i \(0.0206012\pi\)
−0.442943 + 0.896550i \(0.646065\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) 1.00000 1.73205i 0.0613139 0.106199i
\(267\) 0 0
\(268\) −5.00000 8.66025i −0.305424 0.529009i
\(269\) 1.00000 0.0609711 0.0304855 0.999535i \(-0.490295\pi\)
0.0304855 + 0.999535i \(0.490295\pi\)
\(270\) 0 0
\(271\) 30.0000 1.82237 0.911185 0.411997i \(-0.135169\pi\)
0.911185 + 0.411997i \(0.135169\pi\)
\(272\) 0.500000 + 0.866025i 0.0303170 + 0.0525105i
\(273\) 0 0
\(274\) 5.50000 9.52628i 0.332267 0.575504i
\(275\) 4.00000 6.92820i 0.241209 0.417786i
\(276\) 0 0
\(277\) −7.00000 12.1244i −0.420589 0.728482i 0.575408 0.817867i \(-0.304843\pi\)
−0.995997 + 0.0893846i \(0.971510\pi\)
\(278\) −2.00000 −0.119952
\(279\) 0 0
\(280\) −1.00000 −0.0597614
\(281\) −14.5000 25.1147i −0.864997 1.49822i −0.867050 0.498222i \(-0.833987\pi\)
0.00205220 0.999998i \(-0.499347\pi\)
\(282\) 0 0
\(283\) −8.00000 + 13.8564i −0.475551 + 0.823678i −0.999608 0.0280052i \(-0.991084\pi\)
0.524057 + 0.851683i \(0.324418\pi\)
\(284\) 2.00000 3.46410i 0.118678 0.205557i
\(285\) 0 0
\(286\) −3.00000 5.19615i −0.177394 0.307255i
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) −16.0000 −0.941176
\(290\) −3.50000 6.06218i −0.205527 0.355983i
\(291\) 0 0
\(292\) 5.50000 9.52628i 0.321863 0.557483i
\(293\) 7.50000 12.9904i 0.438155 0.758906i −0.559393 0.828903i \(-0.688966\pi\)
0.997547 + 0.0699967i \(0.0222989\pi\)
\(294\) 0 0
\(295\) −5.00000 8.66025i −0.291111 0.504219i
\(296\) −7.00000 −0.406867
\(297\) 0 0
\(298\) −21.0000 −1.21650
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) −5.00000 + 8.66025i −0.287718 + 0.498342i
\(303\) 0 0
\(304\) −1.00000 1.73205i −0.0573539 0.0993399i
\(305\) −9.00000 −0.515339
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 1.00000 + 1.73205i 0.0569803 + 0.0986928i
\(309\) 0 0
\(310\) −3.00000 + 5.19615i −0.170389 + 0.295122i
\(311\) 7.00000 12.1244i 0.396934 0.687509i −0.596412 0.802678i \(-0.703408\pi\)
0.993346 + 0.115169i \(0.0367410\pi\)
\(312\) 0 0
\(313\) −0.500000 0.866025i −0.0282617 0.0489506i 0.851549 0.524276i \(-0.175664\pi\)
−0.879810 + 0.475325i \(0.842331\pi\)
\(314\) −13.0000 −0.733632
\(315\) 0 0
\(316\) −6.00000 −0.337526
\(317\) −1.50000 2.59808i −0.0842484 0.145922i 0.820822 0.571184i \(-0.193516\pi\)
−0.905071 + 0.425261i \(0.860182\pi\)
\(318\) 0 0
\(319\) −7.00000 + 12.1244i −0.391925 + 0.678834i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) 1.00000 + 1.73205i 0.0557278 + 0.0965234i
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) −12.0000 −0.665640
\(326\) 8.00000 + 13.8564i 0.443079 + 0.767435i
\(327\) 0 0
\(328\) −3.00000 + 5.19615i −0.165647 + 0.286910i
\(329\) 3.00000 5.19615i 0.165395 0.286473i
\(330\) 0 0
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) −10.0000 −0.548821
\(333\) 0 0
\(334\) 22.0000 1.20379
\(335\) −5.00000 8.66025i −0.273179 0.473160i
\(336\) 0 0
\(337\) 9.00000 15.5885i 0.490261 0.849157i −0.509676 0.860366i \(-0.670235\pi\)
0.999937 + 0.0112091i \(0.00356804\pi\)
\(338\) 2.00000 3.46410i 0.108786 0.188422i
\(339\) 0 0
\(340\) 0.500000 + 0.866025i 0.0271163 + 0.0469668i
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 2.00000 + 3.46410i 0.107833 + 0.186772i
\(345\) 0 0
\(346\) −6.50000 + 11.2583i −0.349442 + 0.605252i
\(347\) 6.00000 10.3923i 0.322097 0.557888i −0.658824 0.752297i \(-0.728946\pi\)
0.980921 + 0.194409i \(0.0622790\pi\)
\(348\) 0 0
\(349\) −5.00000 8.66025i −0.267644 0.463573i 0.700609 0.713545i \(-0.252912\pi\)
−0.968253 + 0.249973i \(0.919578\pi\)
\(350\) 4.00000 0.213809
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 15.0000 + 25.9808i 0.798369 + 1.38282i 0.920677 + 0.390324i \(0.127637\pi\)
−0.122308 + 0.992492i \(0.539030\pi\)
\(354\) 0 0
\(355\) 2.00000 3.46410i 0.106149 0.183855i
\(356\) −7.50000 + 12.9904i −0.397499 + 0.688489i
\(357\) 0 0
\(358\) 9.00000 + 15.5885i 0.475665 + 0.823876i
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) −9.00000 15.5885i −0.473029 0.819311i
\(363\) 0 0
\(364\) 1.50000 2.59808i 0.0786214 0.136176i
\(365\) 5.50000 9.52628i 0.287883 0.498628i
\(366\) 0 0
\(367\) 5.00000 + 8.66025i 0.260998 + 0.452062i 0.966507 0.256639i \(-0.0826151\pi\)
−0.705509 + 0.708700i \(0.749282\pi\)
\(368\) 2.00000 0.104257
\(369\) 0 0
\(370\) −7.00000 −0.363913
\(371\) −3.00000 5.19615i −0.155752 0.269771i
\(372\) 0 0
\(373\) −5.00000 + 8.66025i −0.258890 + 0.448411i −0.965945 0.258748i \(-0.916690\pi\)
0.707055 + 0.707159i \(0.250023\pi\)
\(374\) 1.00000 1.73205i 0.0517088 0.0895622i
\(375\) 0 0
\(376\) −3.00000 5.19615i −0.154713 0.267971i
\(377\) 21.0000 1.08156
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) −1.00000 1.73205i −0.0512989 0.0888523i
\(381\) 0 0
\(382\) 9.00000 15.5885i 0.460480 0.797575i
\(383\) −16.0000 + 27.7128i −0.817562 + 1.41606i 0.0899119 + 0.995950i \(0.471341\pi\)
−0.907474 + 0.420109i \(0.861992\pi\)
\(384\) 0 0
\(385\) 1.00000 + 1.73205i 0.0509647 + 0.0882735i
\(386\) 11.0000 0.559885
\(387\) 0 0
\(388\) −2.00000 −0.101535
\(389\) −17.0000 29.4449i −0.861934 1.49291i −0.870059 0.492947i \(-0.835920\pi\)
0.00812520 0.999967i \(-0.497414\pi\)
\(390\) 0 0
\(391\) 1.00000 1.73205i 0.0505722 0.0875936i
\(392\) −0.500000 + 0.866025i −0.0252538 + 0.0437409i
\(393\) 0 0
\(394\) 0.500000 + 0.866025i 0.0251896 + 0.0436297i
\(395\) −6.00000 −0.301893
\(396\) 0 0
\(397\) 39.0000 1.95735 0.978677 0.205406i \(-0.0658513\pi\)
0.978677 + 0.205406i \(0.0658513\pi\)
\(398\) 5.00000 + 8.66025i 0.250627 + 0.434099i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) 1.50000 2.59808i 0.0749064 0.129742i −0.826139 0.563466i \(-0.809468\pi\)
0.901046 + 0.433724i \(0.142801\pi\)
\(402\) 0 0
\(403\) −9.00000 15.5885i −0.448322 0.776516i
\(404\) −2.00000 −0.0995037
\(405\) 0 0
\(406\) −7.00000 −0.347404
\(407\) 7.00000 + 12.1244i 0.346977 + 0.600982i
\(408\) 0 0
\(409\) 3.50000 6.06218i 0.173064 0.299755i −0.766426 0.642333i \(-0.777967\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) −3.00000 + 5.19615i −0.148159 + 0.256620i
\(411\) 0 0
\(412\) 8.00000 + 13.8564i 0.394132 + 0.682656i
\(413\) −10.0000 −0.492068
\(414\) 0 0
\(415\) −10.0000 −0.490881
\(416\) −1.50000 2.59808i −0.0735436 0.127381i
\(417\) 0 0
\(418\) −2.00000 + 3.46410i −0.0978232 + 0.169435i
\(419\) −6.00000 + 10.3923i −0.293119 + 0.507697i −0.974546 0.224189i \(-0.928027\pi\)
0.681426 + 0.731887i \(0.261360\pi\)
\(420\) 0 0
\(421\) −4.50000 7.79423i −0.219317 0.379867i 0.735283 0.677761i \(-0.237049\pi\)
−0.954599 + 0.297893i \(0.903716\pi\)
\(422\) −22.0000 −1.07094
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −2.00000 3.46410i −0.0970143 0.168034i
\(426\) 0 0
\(427\) −4.50000 + 7.79423i −0.217770 + 0.377189i
\(428\) 0 0
\(429\) 0 0
\(430\) 2.00000 + 3.46410i 0.0964486 + 0.167054i
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 5.00000 0.240285 0.120142 0.992757i \(-0.461665\pi\)
0.120142 + 0.992757i \(0.461665\pi\)
\(434\) 3.00000 + 5.19615i 0.144005 + 0.249423i
\(435\) 0 0
\(436\) 5.50000 9.52628i 0.263402 0.456226i
\(437\) −2.00000 + 3.46410i −0.0956730 + 0.165710i
\(438\) 0 0
\(439\) 6.00000 + 10.3923i 0.286364 + 0.495998i 0.972939 0.231062i \(-0.0742199\pi\)
−0.686575 + 0.727059i \(0.740887\pi\)
\(440\) 2.00000 0.0953463
\(441\) 0 0
\(442\) −3.00000 −0.142695
\(443\) 11.0000 + 19.0526i 0.522626 + 0.905214i 0.999653 + 0.0263261i \(0.00838082\pi\)
−0.477028 + 0.878888i \(0.658286\pi\)
\(444\) 0 0
\(445\) −7.50000 + 12.9904i −0.355534 + 0.615803i
\(446\) −10.0000 + 17.3205i −0.473514 + 0.820150i
\(447\) 0 0
\(448\) 0.500000 + 0.866025i 0.0236228 + 0.0409159i
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) −0.500000 0.866025i −0.0235180 0.0407344i
\(453\) 0 0
\(454\) 12.0000 20.7846i 0.563188 0.975470i
\(455\) 1.50000 2.59808i 0.0703211 0.121800i
\(456\) 0 0
\(457\) 20.5000 + 35.5070i 0.958950 + 1.66095i 0.725059 + 0.688686i \(0.241812\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) −29.0000 −1.35508
\(459\) 0 0
\(460\) 2.00000 0.0932505
\(461\) −11.0000 19.0526i −0.512321 0.887366i −0.999898 0.0142861i \(-0.995452\pi\)
0.487577 0.873080i \(-0.337881\pi\)
\(462\) 0 0
\(463\) −17.0000 + 29.4449i −0.790057 + 1.36842i 0.135874 + 0.990726i \(0.456616\pi\)
−0.925931 + 0.377693i \(0.876718\pi\)
\(464\) −3.50000 + 6.06218i −0.162483 + 0.281430i
\(465\) 0 0
\(466\) 9.50000 + 16.4545i 0.440079 + 0.762239i
\(467\) 34.0000 1.57333 0.786666 0.617379i \(-0.211805\pi\)
0.786666 + 0.617379i \(0.211805\pi\)
\(468\) 0 0
\(469\) −10.0000 −0.461757
\(470\) −3.00000 5.19615i −0.138380 0.239681i
\(471\) 0 0
\(472\) −5.00000 + 8.66025i −0.230144 + 0.398621i
\(473\) 4.00000 6.92820i 0.183920 0.318559i
\(474\) 0 0
\(475\) 4.00000 + 6.92820i 0.183533 + 0.317888i
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) −6.00000 −0.274434
\(479\) 11.0000 + 19.0526i 0.502603 + 0.870534i 0.999995 + 0.00300810i \(0.000957509\pi\)
−0.497393 + 0.867526i \(0.665709\pi\)
\(480\) 0 0
\(481\) 10.5000 18.1865i 0.478759 0.829235i
\(482\) 3.50000 6.06218i 0.159421 0.276125i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) −10.0000 −0.453143 −0.226572 0.973995i \(-0.572752\pi\)
−0.226572 + 0.973995i \(0.572752\pi\)
\(488\) 4.50000 + 7.79423i 0.203705 + 0.352828i
\(489\) 0 0
\(490\) −0.500000 + 0.866025i −0.0225877 + 0.0391230i
\(491\) −18.0000 + 31.1769i −0.812329 + 1.40699i 0.0989017 + 0.995097i \(0.468467\pi\)
−0.911230 + 0.411897i \(0.864866\pi\)
\(492\) 0 0
\(493\) 3.50000 + 6.06218i 0.157632 + 0.273027i
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) 6.00000 0.269408
\(497\) −2.00000 3.46410i −0.0897123 0.155386i
\(498\) 0 0
\(499\) −11.0000 + 19.0526i −0.492428 + 0.852910i −0.999962 0.00872186i \(-0.997224\pi\)
0.507534 + 0.861632i \(0.330557\pi\)
\(500\) 4.50000 7.79423i 0.201246 0.348569i
\(501\) 0 0
\(502\) 3.00000 + 5.19615i 0.133897 + 0.231916i
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) −2.00000 −0.0889988
\(506\) −2.00000 3.46410i −0.0889108 0.153998i
\(507\) 0 0
\(508\) −6.00000 + 10.3923i −0.266207 + 0.461084i
\(509\) 9.00000 15.5885i 0.398918 0.690946i −0.594675 0.803966i \(-0.702719\pi\)
0.993593 + 0.113020i \(0.0360525\pi\)
\(510\) 0 0
\(511\) −5.50000 9.52628i −0.243306 0.421418i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −9.00000 −0.396973
\(515\) 8.00000 + 13.8564i 0.352522 + 0.610586i
\(516\) 0 0
\(517\) −6.00000 + 10.3923i −0.263880 + 0.457053i
\(518\) −3.50000 + 6.06218i −0.153781 + 0.266357i
\(519\) 0 0
\(520\) −1.50000 2.59808i −0.0657794 0.113933i
\(521\) 42.0000 1.84005 0.920027 0.391856i \(-0.128167\pi\)
0.920027 + 0.391856i \(0.128167\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) −8.00000 13.8564i −0.349482 0.605320i
\(525\) 0 0
\(526\) 9.00000 15.5885i 0.392419 0.679689i
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) 0 0
\(529\) 9.50000 + 16.4545i 0.413043 + 0.715412i
\(530\) −6.00000 −0.260623
\(531\) 0 0
\(532\) −2.00000 −0.0867110
\(533\) −9.00000 15.5885i −0.389833 0.675211i
\(534\) 0 0
\(535\) 0 0
\(536\) −5.00000 + 8.66025i −0.215967 + 0.374066i
\(537\) 0 0
\(538\) −0.500000 0.866025i −0.0215565 0.0373370i
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) −3.00000 −0.128980 −0.0644900 0.997918i \(-0.520542\pi\)
−0.0644900 + 0.997918i \(0.520542\pi\)
\(542\) −15.0000 25.9808i −0.644305 1.11597i
\(543\) 0 0
\(544\) 0.500000 0.866025i 0.0214373 0.0371305i
\(545\) 5.50000 9.52628i 0.235594 0.408061i
\(546\) 0 0
\(547\) 3.00000 + 5.19615i 0.128271 + 0.222171i 0.923007 0.384784i \(-0.125724\pi\)
−0.794736 + 0.606955i \(0.792391\pi\)
\(548\) −11.0000 −0.469897
\(549\) 0 0
\(550\) −8.00000 −0.341121
\(551\) −7.00000 12.1244i −0.298210 0.516515i
\(552\) 0 0
\(553\) −3.00000 + 5.19615i −0.127573 + 0.220963i
\(554\) −7.00000 + 12.1244i −0.297402 + 0.515115i
\(555\) 0 0
\(556\) 1.00000 + 1.73205i 0.0424094 + 0.0734553i
\(557\) −17.0000 −0.720313 −0.360157 0.932892i \(-0.617277\pi\)
−0.360157 + 0.932892i \(0.617277\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0.500000 + 0.866025i 0.0211289 + 0.0365963i
\(561\) 0 0
\(562\) −14.5000 + 25.1147i −0.611646 + 1.05940i
\(563\) −4.00000 + 6.92820i −0.168580 + 0.291989i −0.937921 0.346850i \(-0.887251\pi\)
0.769341 + 0.638838i \(0.220585\pi\)
\(564\) 0 0
\(565\) −0.500000 0.866025i −0.0210352 0.0364340i
\(566\) 16.0000 0.672530
\(567\) 0 0
\(568\) −4.00000 −0.167836
\(569\) 13.5000 + 23.3827i 0.565949 + 0.980253i 0.996961 + 0.0779066i \(0.0248236\pi\)
−0.431011 + 0.902347i \(0.641843\pi\)
\(570\) 0 0
\(571\) −9.00000 + 15.5885i −0.376638 + 0.652357i −0.990571 0.137002i \(-0.956253\pi\)
0.613933 + 0.789359i \(0.289587\pi\)
\(572\) −3.00000 + 5.19615i −0.125436 + 0.217262i
\(573\) 0 0
\(574\) 3.00000 + 5.19615i 0.125218 + 0.216883i
\(575\) −8.00000 −0.333623
\(576\) 0 0
\(577\) −35.0000 −1.45707 −0.728535 0.685009i \(-0.759798\pi\)
−0.728535 + 0.685009i \(0.759798\pi\)
\(578\) 8.00000 + 13.8564i 0.332756 + 0.576351i
\(579\) 0 0
\(580\) −3.50000 + 6.06218i −0.145330 + 0.251718i
\(581\) −5.00000 + 8.66025i −0.207435 + 0.359288i
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) −15.0000 −0.619644
\(587\) −1.00000 1.73205i −0.0412744 0.0714894i 0.844650 0.535319i \(-0.179808\pi\)
−0.885925 + 0.463829i \(0.846475\pi\)
\(588\) 0 0
\(589\) −6.00000 + 10.3923i −0.247226 + 0.428207i
\(590\) −5.00000 + 8.66025i −0.205847 + 0.356537i
\(591\) 0 0
\(592\) 3.50000 + 6.06218i 0.143849 + 0.249154i
\(593\) 39.0000 1.60154 0.800769 0.598973i \(-0.204424\pi\)
0.800769 + 0.598973i \(0.204424\pi\)
\(594\) 0 0
\(595\) 1.00000 0.0409960
\(596\) 10.5000 + 18.1865i 0.430097 + 0.744949i
\(597\) 0 0
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) 3.00000 5.19615i 0.122577 0.212309i −0.798206 0.602384i \(-0.794218\pi\)
0.920783 + 0.390075i \(0.127551\pi\)
\(600\) 0 0
\(601\) 9.50000 + 16.4545i 0.387513 + 0.671192i 0.992114 0.125336i \(-0.0400009\pi\)
−0.604601 + 0.796528i \(0.706668\pi\)
\(602\) 4.00000 0.163028
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 3.50000 + 6.06218i 0.142295 + 0.246463i
\(606\) 0 0
\(607\) 3.00000 5.19615i 0.121766 0.210905i −0.798698 0.601732i \(-0.794478\pi\)
0.920464 + 0.390827i \(0.127811\pi\)
\(608\) −1.00000 + 1.73205i −0.0405554 + 0.0702439i
\(609\) 0 0
\(610\) 4.50000 + 7.79423i 0.182200 + 0.315579i
\(611\) 18.0000 0.728202
\(612\) 0 0
\(613\) −18.0000 −0.727013 −0.363507 0.931592i \(-0.618421\pi\)
−0.363507 + 0.931592i \(0.618421\pi\)
\(614\) −8.00000 13.8564i −0.322854 0.559199i
\(615\) 0 0
\(616\) 1.00000 1.73205i 0.0402911 0.0697863i
\(617\) 3.50000 6.06218i 0.140905 0.244054i −0.786933 0.617039i \(-0.788332\pi\)
0.927838 + 0.372985i \(0.121666\pi\)
\(618\) 0 0
\(619\) 10.0000 + 17.3205i 0.401934 + 0.696170i 0.993959 0.109749i \(-0.0350048\pi\)
−0.592025 + 0.805919i \(0.701671\pi\)
\(620\) 6.00000 0.240966
\(621\) 0 0
\(622\) −14.0000 −0.561349
\(623\) 7.50000 + 12.9904i 0.300481 + 0.520449i
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) −0.500000 + 0.866025i −0.0199840 + 0.0346133i
\(627\) 0 0
\(628\) 6.50000 + 11.2583i 0.259378 + 0.449256i
\(629\) 7.00000 0.279108
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 3.00000 + 5.19615i 0.119334 + 0.206692i
\(633\) 0 0
\(634\) −1.50000 + 2.59808i −0.0595726 + 0.103183i
\(635\) −6.00000 + 10.3923i −0.238103 + 0.412406i
\(636\) 0 0
\(637\) −1.50000 2.59808i −0.0594322 0.102940i
\(638\) 14.0000 0.554265
\(639\) 0 0
\(640\) 1.00000 0.0395285
\(641\) −8.50000 14.7224i −0.335730 0.581501i 0.647895 0.761730i \(-0.275650\pi\)
−0.983625 + 0.180229i \(0.942316\pi\)
\(642\) 0 0
\(643\) −13.0000 + 22.5167i −0.512670 + 0.887970i 0.487222 + 0.873278i \(0.338010\pi\)
−0.999892 + 0.0146923i \(0.995323\pi\)
\(644\) 1.00000 1.73205i 0.0394055 0.0682524i
\(645\) 0 0
\(646\) 1.00000 + 1.73205i 0.0393445 + 0.0681466i
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 6.00000 + 10.3923i 0.235339 + 0.407620i
\(651\) 0 0
\(652\) 8.00000 13.8564i 0.313304 0.542659i
\(653\) −9.00000 + 15.5885i −0.352197 + 0.610023i −0.986634 0.162951i \(-0.947899\pi\)
0.634437 + 0.772975i \(0.281232\pi\)
\(654\) 0 0
\(655\) −8.00000 13.8564i −0.312586 0.541415i
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) −6.00000 −0.233904
\(659\) −16.0000 27.7128i −0.623272 1.07954i −0.988872 0.148766i \(-0.952470\pi\)
0.365601 0.930772i \(-0.380864\pi\)
\(660\) 0 0
\(661\) −3.50000 + 6.06218i −0.136134 + 0.235791i −0.926030 0.377450i \(-0.876801\pi\)
0.789896 + 0.613241i \(0.210135\pi\)
\(662\) −10.0000 + 17.3205i −0.388661 + 0.673181i
\(663\) 0 0
\(664\) 5.00000 + 8.66025i 0.194038 + 0.336083i
\(665\) −2.00000 −0.0775567
\(666\) 0 0
\(667\) 14.0000 0.542082
\(668\) −11.0000 19.0526i −0.425603 0.737166i
\(669\) 0 0
\(670\) −5.00000 + 8.66025i −0.193167 + 0.334575i
\(671\) 9.00000 15.5885i 0.347441 0.601786i
\(672\) 0 0
\(673\) −11.5000 19.9186i −0.443292 0.767805i 0.554639 0.832091i \(-0.312856\pi\)
−0.997932 + 0.0642860i \(0.979523\pi\)
\(674\) −18.0000 −0.693334
\(675\) 0 0
\(676\) −4.00000 −0.153846
\(677\) 3.00000 + 5.19615i 0.115299 + 0.199704i 0.917899 0.396813i \(-0.129884\pi\)
−0.802600 + 0.596518i \(0.796551\pi\)
\(678\) 0 0
\(679\) −1.00000 + 1.73205i −0.0383765 + 0.0664700i
\(680\) 0.500000 0.866025i 0.0191741 0.0332106i
\(681\) 0 0
\(682\) −6.00000 10.3923i −0.229752 0.397942i
\(683\) −12.0000 −0.459167 −0.229584 0.973289i \(-0.573736\pi\)
−0.229584 + 0.973289i \(0.573736\pi\)
\(684\) 0 0
\(685\) −11.0000 −0.420288
\(686\) 0.500000 + 0.866025i 0.0190901 + 0.0330650i
\(687\) 0 0
\(688\) 2.00000 3.46410i 0.0762493 0.132068i
\(689\) 9.00000 15.5885i 0.342873 0.593873i
\(690\) 0 0
\(691\) 2.00000 + 3.46410i 0.0760836 + 0.131781i 0.901557 0.432660i \(-0.142425\pi\)
−0.825473 + 0.564441i \(0.809092\pi\)
\(692\) 13.0000 0.494186
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 1.00000 + 1.73205i 0.0379322 + 0.0657004i
\(696\) 0 0
\(697\) 3.00000 5.19615i 0.113633 0.196818i
\(698\) −5.00000 + 8.66025i −0.189253 + 0.327795i
\(699\) 0 0
\(700\) −2.00000 3.46410i −0.0755929 0.130931i
\(701\) −5.00000 −0.188847 −0.0944237 0.995532i \(-0.530101\pi\)
−0.0944237 + 0.995532i \(0.530101\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) −1.00000 1.73205i −0.0376889 0.0652791i
\(705\) 0 0
\(706\) 15.0000 25.9808i 0.564532 0.977799i
\(707\) −1.00000 + 1.73205i −0.0376089 + 0.0651405i
\(708\) 0 0
\(709\) −2.50000 4.33013i −0.0938895 0.162621i 0.815255 0.579102i \(-0.196597\pi\)
−0.909145 + 0.416481i \(0.863263\pi\)
\(710\) −4.00000 −0.150117
\(711\) 0 0
\(712\) 15.0000 0.562149
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) −3.00000 + 5.19615i −0.112194 + 0.194325i
\(716\) 9.00000 15.5885i 0.336346 0.582568i
\(717\) 0 0
\(718\) −8.00000 13.8564i −0.298557 0.517116i
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 7.50000 + 12.9904i 0.279121 + 0.483452i
\(723\) 0 0
\(724\) −9.00000 + 15.5885i −0.334482 + 0.579340i
\(725\) 14.0000 24.2487i 0.519947 0.900575i
\(726\) 0 0
\(727\) 4.00000 + 6.92820i 0.148352 + 0.256953i 0.930618 0.365991i \(-0.119270\pi\)
−0.782267 + 0.622944i \(0.785937\pi\)
\(728\) −3.00000 −0.111187
\(729\) 0 0
\(730\) −11.0000 −0.407128
\(731\) −2.00000 3.46410i −0.0739727 0.128124i
\(732\) 0 0
\(733\) −21.0000 + 36.3731i −0.775653 + 1.34347i 0.158774 + 0.987315i \(0.449246\pi\)
−0.934427 + 0.356155i \(0.884088\pi\)
\(734\) 5.00000 8.66025i 0.184553 0.319656i
\(735\) 0 0
\(736\) −1.00000 1.73205i −0.0368605 0.0638442i
\(737\) 20.0000 0.736709
\(738\) 0 0
\(739\) −6.00000 −0.220714 −0.110357 0.993892i \(-0.535199\pi\)
−0.110357 + 0.993892i \(0.535199\pi\)
\(740\) 3.50000 + 6.06218i 0.128663 + 0.222850i
\(741\) 0 0
\(742\) −3.00000 + 5.19615i −0.110133 + 0.190757i
\(743\) −12.0000 + 20.7846i −0.440237 + 0.762513i −0.997707 0.0676840i \(-0.978439\pi\)
0.557470 + 0.830197i \(0.311772\pi\)
\(744\) 0 0
\(745\) 10.5000 + 18.1865i 0.384690 + 0.666303i
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) 0 0
\(750\) 0 0
\(751\) −6.00000 + 10.3923i −0.218943 + 0.379221i −0.954485 0.298259i \(-0.903594\pi\)
0.735542 + 0.677479i \(0.236928\pi\)
\(752\) −3.00000 + 5.19615i −0.109399 + 0.189484i
\(753\) 0 0
\(754\) −10.5000 18.1865i −0.382387 0.662314i
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) 42.0000 1.52652 0.763258 0.646094i \(-0.223599\pi\)
0.763258 + 0.646094i \(0.223599\pi\)
\(758\) −5.00000 8.66025i −0.181608 0.314555i
\(759\) 0 0
\(760\) −1.00000 + 1.73205i −0.0362738 + 0.0628281i
\(761\) −5.50000 + 9.52628i −0.199375 + 0.345327i −0.948326 0.317298i \(-0.897224\pi\)
0.748951 + 0.662625i \(0.230558\pi\)
\(762\) 0 0
\(763\) −5.50000 9.52628i −0.199113 0.344874i
\(764\) −18.0000 −0.651217
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −15.0000 25.9808i −0.541619 0.938111i
\(768\) 0 0
\(769\) 11.5000 19.9186i 0.414701 0.718283i −0.580696 0.814120i \(-0.697220\pi\)
0.995397 + 0.0958377i \(0.0305530\pi\)
\(770\) 1.00000 1.73205i 0.0360375 0.0624188i
\(771\) 0 0
\(772\) −5.50000 9.52628i −0.197949 0.342858i
\(773\) −35.0000 −1.25886 −0.629431 0.777056i \(-0.716712\pi\)
−0.629431 + 0.777056i \(0.716712\pi\)
\(774\) 0 0
\(775\) −24.0000 −0.862105
\(776\) 1.00000 + 1.73205i 0.0358979 + 0.0621770i
\(777\) 0 0
\(778\) −17.0000 + 29.4449i −0.609480 + 1.05565i
\(779\) −6.00000 + 10.3923i −0.214972 + 0.372343i
\(780\) 0 0
\(781\) 4.00000 + 6.92820i 0.143131 + 0.247911i
\(782\) −2.00000 −0.0715199
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 6.50000 + 11.2583i 0.231995 + 0.401827i
\(786\) 0 0
\(787\) 12.0000 20.7846i 0.427754 0.740891i −0.568919 0.822393i \(-0.692638\pi\)
0.996673 + 0.0815020i \(0.0259717\pi\)
\(788\) 0.500000 0.866025i 0.0178118 0.0308509i
\(789\) 0 0
\(790\) 3.00000 + 5.19615i 0.106735 + 0.184871i
\(791\) −1.00000 −0.0355559
\(792\) 0 0
\(793\) −27.0000 −0.958798
\(794\) −19.5000 33.7750i −0.692029 1.19863i
\(795\) 0 0
\(796\) 5.00000 8.66025i 0.177220 0.306955i
\(797\) 1.50000 2.59808i 0.0531327 0.0920286i −0.838236 0.545308i \(-0.816413\pi\)
0.891368 + 0.453279i \(0.149746\pi\)
\(798\) 0 0
\(799\) 3.00000 + 5.19615i 0.106132 + 0.183827i
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) −3.00000 −0.105934
\(803\) 11.0000 + 19.0526i 0.388182 + 0.672350i
\(804\) 0 0
\(805\) 1.00000 1.73205i 0.0352454 0.0610468i
\(806\) −9.00000 + 15.5885i −0.317011 + 0.549080i
\(807\) 0 0
\(808\) 1.00000 + 1.73205i 0.0351799 + 0.0609333i
\(809\) 1.00000 0.0351581 0.0175791 0.999845i \(-0.494404\pi\)
0.0175791 + 0.999845i \(0.494404\pi\)
\(810\) 0 0
\(811\) 34.0000 1.19390 0.596951 0.802278i \(-0.296379\pi\)
0.596951 + 0.802278i \(0.296379\pi\)
\(812\) 3.50000 + 6.06218i 0.122826 + 0.212741i
\(813\) 0 0
\(814\) 7.00000 12.1244i 0.245350 0.424958i
\(815\) 8.00000 13.8564i 0.280228 0.485369i
\(816\) 0 0
\(817\) 4.00000 + 6.92820i 0.139942 + 0.242387i
\(818\) −7.00000 −0.244749
\(819\) 0 0
\(820\) 6.00000 0.209529
\(821\) −5.50000 9.52628i −0.191951 0.332469i 0.753946 0.656937i \(-0.228148\pi\)
−0.945897 + 0.324468i \(0.894815\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 8.00000 13.8564i 0.278693 0.482711i
\(825\) 0 0
\(826\) 5.00000 + 8.66025i 0.173972 + 0.301329i
\(827\) −48.0000 −1.66912 −0.834562 0.550914i \(-0.814279\pi\)
−0.834562 + 0.550914i \(0.814279\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 5.00000 + 8.66025i 0.173553 + 0.300602i
\(831\) 0 0
\(832\) −1.50000 + 2.59808i −0.0520031 + 0.0900721i
\(833\) 0.500000 0.866025i 0.0173240 0.0300060i
\(834\) 0 0
\(835\) −11.0000 19.0526i −0.380671 0.659341i
\(836\) 4.00000 0.138343
\(837\) 0 0
\(838\) 12.0000 0.414533
\(839\) −16.0000 27.7128i −0.552381 0.956753i −0.998102 0.0615805i \(-0.980386\pi\)
0.445721 0.895172i \(-0.352947\pi\)
\(840\) 0 0
\(841\) −10.0000 + 17.3205i −0.344828 + 0.597259i
\(842\) −4.50000 + 7.79423i −0.155080 + 0.268607i
\(843\) 0 0
\(844\) 11.0000 + 19.0526i 0.378636 + 0.655816i
\(845\) −4.00000 −0.137604
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 3.00000 + 5.19615i 0.103020 + 0.178437i
\(849\) 0 0
\(850\) −2.00000 + 3.46410i −0.0685994 + 0.118818i
\(851\) 7.00000 12.1244i 0.239957 0.415618i
\(852\) 0 0
\(853\) 5.00000 + 8.66025i 0.171197 + 0.296521i 0.938839 0.344358i \(-0.111903\pi\)
−0.767642 + 0.640879i \(0.778570\pi\)
\(854\) 9.00000 0.307974
\(855\) 0 0
\(856\) 0 0
\(857\) −1.50000 2.59808i −0.0512390 0.0887486i 0.839268 0.543718i \(-0.182984\pi\)
−0.890507 + 0.454969i \(0.849650\pi\)
\(858\) 0 0
\(859\) 26.0000 45.0333i 0.887109 1.53652i 0.0438309 0.999039i \(-0.486044\pi\)
0.843278 0.537478i \(-0.180623\pi\)
\(860\) 2.00000 3.46410i 0.0681994 0.118125i
\(861\) 0 0
\(862\) −6.00000 10.3923i −0.204361 0.353963i
\(863\) −14.0000 −0.476566 −0.238283 0.971196i \(-0.576585\pi\)
−0.238283 + 0.971196i \(0.576585\pi\)
\(864\) 0 0
\(865\) 13.0000 0.442013
\(866\) −2.50000 4.33013i −0.0849535 0.147144i
\(867\) 0 0
\(868\) 3.00000 5.19615i 0.101827 0.176369i
\(869\) 6.00000 10.3923i 0.203536 0.352535i
\(870\) 0 0
\(871\) −15.0000 25.9808i −0.508256 0.880325i
\(872\) −11.0000 −0.372507
\(873\) 0 0
\(874\) 4.00000 0.135302
\(875\) −4.50000 7.79423i −0.152128 0.263493i
\(876\) 0 0
\(877\) 11.5000 19.9186i 0.388327 0.672603i −0.603897 0.797062i \(-0.706386\pi\)
0.992225 + 0.124459i \(0.0397196\pi\)
\(878\) 6.00000 10.3923i 0.202490 0.350723i
\(879\) 0 0
\(880\) −1.00000 1.73205i −0.0337100 0.0583874i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −10.0000 −0.336527 −0.168263 0.985742i \(-0.553816\pi\)
−0.168263 + 0.985742i \(0.553816\pi\)
\(884\) 1.50000 + 2.59808i 0.0504505 + 0.0873828i
\(885\) 0 0
\(886\) 11.0000 19.0526i 0.369552 0.640083i
\(887\) −21.0000 + 36.3731i −0.705111 + 1.22129i 0.261540 + 0.965193i \(0.415770\pi\)
−0.966651 + 0.256096i \(0.917564\pi\)
\(888\) 0 0
\(889\) 6.00000 + 10.3923i 0.201234 + 0.348547i
\(890\) 15.0000 0.502801
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) −6.00000 10.3923i −0.200782 0.347765i
\(894\) 0 0
\(895\) 9.00000 15.5885i 0.300837 0.521065i
\(896\) 0.500000 0.866025i 0.0167038 0.0289319i
\(897\) 0 0
\(898\) −17.0000 29.4449i −0.567297 0.982588i
\(899\) 42.0000 1.40078
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) −6.00000 10.3923i −0.199778 0.346026i
\(903\) 0 0
\(904\) −0.500000 + 0.866025i −0.0166298 + 0.0288036i
\(905\) −9.00000 + 15.5885i −0.299170 + 0.518178i
\(906\) 0 0
\(907\) 6.00000 + 10.3923i 0.199227 + 0.345071i 0.948278 0.317441i \(-0.102824\pi\)
−0.749051 + 0.662512i \(0.769490\pi\)
\(908\) −24.0000 −0.796468
\(909\) 0 0
\(910\) −3.00000 −0.0994490
\(911\) −6.00000 10.3923i −0.198789 0.344312i 0.749347 0.662177i \(-0.230367\pi\)
−0.948136 + 0.317865i \(0.897034\pi\)
\(912\) 0 0
\(913\) 10.0000 17.3205i 0.330952 0.573225i
\(914\) 20.5000 35.5070i 0.678080 1.17447i
\(915\) 0 0
\(916\) 14.5000 + 25.1147i 0.479093 + 0.829814i
\(917\) −16.0000 −0.528367
\(918\) 0 0
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) −1.00000 1.73205i −0.0329690 0.0571040i
\(921\) 0 0
\(922\) −11.0000 + 19.0526i −0.362266 + 0.627463i
\(923\) 6.00000 10.3923i 0.197492 0.342067i
\(924\) 0 0
\(925\) −14.0000 24.2487i −0.460317 0.797293i
\(926\) 34.0000 1.11731
\(927\) 0 0
\(928\) 7.00000 0.229786
\(929\) 16.5000 + 28.5788i 0.541347 + 0.937641i 0.998827 + 0.0484211i \(0.0154190\pi\)
−0.457480 + 0.889220i \(0.651248\pi\)
\(930\) 0 0
\(931\) −1.00000 + 1.73205i −0.0327737 + 0.0567657i
\(932\) 9.50000 16.4545i 0.311183 0.538985i
\(933\) 0 0
\(934\) −17.0000 29.4449i −0.556257 0.963465i
\(935\) −2.00000 −0.0654070
\(936\) 0 0
\(937\) −43.0000 −1.40475 −0.702374 0.711808i \(-0.747877\pi\)
−0.702374 + 0.711808i \(0.747877\pi\)
\(938\) 5.00000 + 8.66025i 0.163256 + 0.282767i
\(939\) 0 0
\(940\) −3.00000 + 5.19615i −0.0978492 + 0.169480i
\(941\) −12.5000 + 21.6506i −0.407488 + 0.705791i −0.994608 0.103710i \(-0.966929\pi\)
0.587119 + 0.809500i \(0.300262\pi\)
\(942\) 0 0
\(943\) −6.00000 10.3923i −0.195387 0.338420i
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) −8.00000 −0.260102
\(947\) −2.00000 3.46410i −0.0649913 0.112568i 0.831699 0.555227i \(-0.187369\pi\)
−0.896690 + 0.442659i \(0.854035\pi\)
\(948\) 0 0
\(949\) 16.5000 28.5788i 0.535613 0.927708i
\(950\) 4.00000 6.92820i 0.129777 0.224781i
\(951\) 0 0
\(952\) −0.500000 0.866025i −0.0162051 0.0280680i
\(953\) −19.0000 −0.615470 −0.307735 0.951472i \(-0.599571\pi\)
−0.307735 + 0.951472i \(0.599571\pi\)
\(954\) 0 0
\(955\) −18.0000 −0.582466
\(956\) 3.00000 + 5.19615i 0.0970269 + 0.168056i
\(957\) 0 0
\(958\) 11.0000 19.0526i 0.355394 0.615560i
\(959\) −5.50000 + 9.52628i −0.177604 + 0.307620i
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) −21.0000 −0.677067
\(963\) 0 0
\(964\) −7.00000 −0.225455
\(965\) −5.50000 9.52628i −0.177051 0.306662i
\(966\) 0 0
\(967\) 11.0000 19.0526i 0.353736 0.612689i −0.633165 0.774017i \(-0.718244\pi\)
0.986901 + 0.161328i \(0.0515777\pi\)
\(968\) 3.50000 6.06218i 0.112494 0.194846i
\(969\) 0 0
\(970\) 1.00000 + 1.73205i 0.0321081 + 0.0556128i
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 0 0
\(973\) 2.00000 0.0641171
\(974\) 5.00000 + 8.66025i 0.160210 + 0.277492i
\(975\) 0 0
\(976\) 4.50000 7.79423i 0.144041 0.249487i
\(977\) −9.00000 + 15.5885i −0.287936 + 0.498719i −0.973317 0.229465i \(-0.926302\pi\)
0.685381 + 0.728184i \(0.259636\pi\)
\(978\) 0 0
\(979\) −15.0000 25.9808i −0.479402 0.830349i
\(980\) 1.00000 0.0319438
\(981\) 0 0
\(982\) 36.0000 1.14881
\(983\) 30.0000 + 51.9615i 0.956851 + 1.65732i 0.730073 + 0.683369i \(0.239486\pi\)
0.226778 + 0.973946i \(0.427181\pi\)
\(984\) 0 0
\(985\) 0.500000 0.866025i 0.0159313 0.0275939i
\(986\) 3.50000 6.06218i 0.111463 0.193059i
\(987\) 0 0
\(988\) −3.00000 5.19615i −0.0954427 0.165312i
\(989\) −8.00000 −0.254385
\(990\) 0 0
\(991\) 62.0000 1.96949 0.984747 0.173990i \(-0.0556660\pi\)
0.984747 + 0.173990i \(0.0556660\pi\)
\(992\) −3.00000 5.19615i −0.0952501 0.164978i
\(993\) 0 0
\(994\) −2.00000 + 3.46410i −0.0634361 + 0.109875i
\(995\) 5.00000 8.66025i 0.158511 0.274549i
\(996\) 0 0
\(997\) −11.5000 19.9186i −0.364209 0.630828i 0.624440 0.781073i \(-0.285327\pi\)
−0.988649 + 0.150245i \(0.951994\pi\)
\(998\) 22.0000 0.696398
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.f.d.757.1 2
3.2 odd 2 1134.2.f.m.757.1 2
9.2 odd 6 1134.2.f.m.379.1 2
9.4 even 3 1134.2.a.g.1.1 yes 1
9.5 odd 6 1134.2.a.b.1.1 1
9.7 even 3 inner 1134.2.f.d.379.1 2
36.23 even 6 9072.2.a.k.1.1 1
36.31 odd 6 9072.2.a.p.1.1 1
63.13 odd 6 7938.2.a.w.1.1 1
63.41 even 6 7938.2.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1134.2.a.b.1.1 1 9.5 odd 6
1134.2.a.g.1.1 yes 1 9.4 even 3
1134.2.f.d.379.1 2 9.7 even 3 inner
1134.2.f.d.757.1 2 1.1 even 1 trivial
1134.2.f.m.379.1 2 9.2 odd 6
1134.2.f.m.757.1 2 3.2 odd 2
7938.2.a.j.1.1 1 63.41 even 6
7938.2.a.w.1.1 1 63.13 odd 6
9072.2.a.k.1.1 1 36.23 even 6
9072.2.a.p.1.1 1 36.31 odd 6