Properties

Label 1134.2.e.q
Level $1134$
Weight $2$
Character orbit 1134.e
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Defining polynomial: \(x^{4} + 7 x^{2} + 49\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + ( -1 + \beta_{1} - \beta_{2} ) q^{5} -\beta_{1} q^{7} - q^{8} +O(q^{10})\) \( q - q^{2} + q^{4} + ( -1 + \beta_{1} - \beta_{2} ) q^{5} -\beta_{1} q^{7} - q^{8} + ( 1 - \beta_{1} + \beta_{2} ) q^{10} + ( \beta_{1} - \beta_{2} + \beta_{3} ) q^{11} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{13} + \beta_{1} q^{14} + q^{16} + ( 1 - \beta_{1} + \beta_{2} ) q^{17} + 2 \beta_{2} q^{19} + ( -1 + \beta_{1} - \beta_{2} ) q^{20} + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{22} + ( 4 + 2 \beta_{1} + 4 \beta_{2} ) q^{23} + ( -2 \beta_{1} + 3 \beta_{2} - 2 \beta_{3} ) q^{25} + ( -\beta_{1} + 2 \beta_{2} - \beta_{3} ) q^{26} -\beta_{1} q^{28} + ( 5 + \beta_{1} + 5 \beta_{2} ) q^{29} + ( -2 - \beta_{3} ) q^{31} - q^{32} + ( -1 + \beta_{1} - \beta_{2} ) q^{34} + ( \beta_{1} - 7 \beta_{2} + \beta_{3} ) q^{35} + ( 3 \beta_{1} - 4 \beta_{2} + 3 \beta_{3} ) q^{37} -2 \beta_{2} q^{38} + ( 1 - \beta_{1} + \beta_{2} ) q^{40} + ( 3 \beta_{1} - 3 \beta_{2} + 3 \beta_{3} ) q^{41} + ( -5 - 5 \beta_{2} ) q^{43} + ( \beta_{1} - \beta_{2} + \beta_{3} ) q^{44} + ( -4 - 2 \beta_{1} - 4 \beta_{2} ) q^{46} + ( 3 - 3 \beta_{3} ) q^{47} + 7 \beta_{2} q^{49} + ( 2 \beta_{1} - 3 \beta_{2} + 2 \beta_{3} ) q^{50} + ( \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{52} + ( 6 + 6 \beta_{2} ) q^{53} + ( -8 - 2 \beta_{3} ) q^{55} + \beta_{1} q^{56} + ( -5 - \beta_{1} - 5 \beta_{2} ) q^{58} + ( -11 + \beta_{3} ) q^{59} + ( 10 - \beta_{3} ) q^{61} + ( 2 + \beta_{3} ) q^{62} + q^{64} + ( -9 - 3 \beta_{3} ) q^{65} + ( 3 - 2 \beta_{3} ) q^{67} + ( 1 - \beta_{1} + \beta_{2} ) q^{68} + ( -\beta_{1} + 7 \beta_{2} - \beta_{3} ) q^{70} + ( -13 - \beta_{3} ) q^{71} + 4 \beta_{1} q^{73} + ( -3 \beta_{1} + 4 \beta_{2} - 3 \beta_{3} ) q^{74} + 2 \beta_{2} q^{76} + ( 7 + \beta_{3} ) q^{77} + ( -2 + 5 \beta_{3} ) q^{79} + ( -1 + \beta_{1} - \beta_{2} ) q^{80} + ( -3 \beta_{1} + 3 \beta_{2} - 3 \beta_{3} ) q^{82} + ( -8 + 2 \beta_{1} - 8 \beta_{2} ) q^{83} + ( 2 \beta_{1} - 8 \beta_{2} + 2 \beta_{3} ) q^{85} + ( 5 + 5 \beta_{2} ) q^{86} + ( -\beta_{1} + \beta_{2} - \beta_{3} ) q^{88} + ( 3 \beta_{1} + 3 \beta_{2} + 3 \beta_{3} ) q^{89} + ( 7 + 2 \beta_{3} ) q^{91} + ( 4 + 2 \beta_{1} + 4 \beta_{2} ) q^{92} + ( -3 + 3 \beta_{3} ) q^{94} + ( 2 + 2 \beta_{3} ) q^{95} + ( -3 + 4 \beta_{1} - 3 \beta_{2} ) q^{97} -7 \beta_{2} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 4q^{2} + 4q^{4} - 2q^{5} - 4q^{8} + O(q^{10}) \) \( 4q - 4q^{2} + 4q^{4} - 2q^{5} - 4q^{8} + 2q^{10} + 2q^{11} + 4q^{13} + 4q^{16} + 2q^{17} - 4q^{19} - 2q^{20} - 2q^{22} + 8q^{23} - 6q^{25} - 4q^{26} + 10q^{29} - 8q^{31} - 4q^{32} - 2q^{34} + 14q^{35} + 8q^{37} + 4q^{38} + 2q^{40} + 6q^{41} - 10q^{43} + 2q^{44} - 8q^{46} + 12q^{47} - 14q^{49} + 6q^{50} + 4q^{52} + 12q^{53} - 32q^{55} - 10q^{58} - 44q^{59} + 40q^{61} + 8q^{62} + 4q^{64} - 36q^{65} + 12q^{67} + 2q^{68} - 14q^{70} - 52q^{71} - 8q^{74} - 4q^{76} + 28q^{77} - 8q^{79} - 2q^{80} - 6q^{82} - 16q^{83} + 16q^{85} + 10q^{86} - 2q^{88} - 6q^{89} + 28q^{91} + 8q^{92} - 12q^{94} + 8q^{95} - 6q^{97} + 14q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 7 x^{2} + 49\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/7\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/7\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(7 \beta_{2}\)
\(\nu^{3}\)\(=\)\(7 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(\beta_{2}\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
865.1
−1.32288 + 2.29129i
1.32288 2.29129i
−1.32288 2.29129i
1.32288 + 2.29129i
−1.00000 0 1.00000 −1.82288 + 3.15731i 0 1.32288 2.29129i −1.00000 0 1.82288 3.15731i
865.2 −1.00000 0 1.00000 0.822876 1.42526i 0 −1.32288 + 2.29129i −1.00000 0 −0.822876 + 1.42526i
919.1 −1.00000 0 1.00000 −1.82288 3.15731i 0 1.32288 + 2.29129i −1.00000 0 1.82288 + 3.15731i
919.2 −1.00000 0 1.00000 0.822876 + 1.42526i 0 −1.32288 2.29129i −1.00000 0 −0.822876 1.42526i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.e.q 4
3.b odd 2 1 1134.2.e.t 4
7.c even 3 1 1134.2.h.t 4
9.c even 3 1 378.2.g.h yes 4
9.c even 3 1 1134.2.h.t 4
9.d odd 6 1 378.2.g.g 4
9.d odd 6 1 1134.2.h.q 4
21.h odd 6 1 1134.2.h.q 4
63.g even 3 1 378.2.g.h yes 4
63.h even 3 1 inner 1134.2.e.q 4
63.h even 3 1 2646.2.a.bi 2
63.i even 6 1 2646.2.a.bo 2
63.j odd 6 1 1134.2.e.t 4
63.j odd 6 1 2646.2.a.bl 2
63.n odd 6 1 378.2.g.g 4
63.t odd 6 1 2646.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.g 4 9.d odd 6 1
378.2.g.g 4 63.n odd 6 1
378.2.g.h yes 4 9.c even 3 1
378.2.g.h yes 4 63.g even 3 1
1134.2.e.q 4 1.a even 1 1 trivial
1134.2.e.q 4 63.h even 3 1 inner
1134.2.e.t 4 3.b odd 2 1
1134.2.e.t 4 63.j odd 6 1
1134.2.h.q 4 9.d odd 6 1
1134.2.h.q 4 21.h odd 6 1
1134.2.h.t 4 7.c even 3 1
1134.2.h.t 4 9.c even 3 1
2646.2.a.bf 2 63.t odd 6 1
2646.2.a.bi 2 63.h even 3 1
2646.2.a.bl 2 63.j odd 6 1
2646.2.a.bo 2 63.i even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5}^{4} + 2 T_{5}^{3} + 10 T_{5}^{2} - 12 T_{5} + 36 \)
\( T_{11}^{4} - 2 T_{11}^{3} + 10 T_{11}^{2} + 12 T_{11} + 36 \)
\( T_{17}^{4} - 2 T_{17}^{3} + 10 T_{17}^{2} + 12 T_{17} + 36 \)
\( T_{23}^{4} - 8 T_{23}^{3} + 76 T_{23}^{2} + 96 T_{23} + 144 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{4} \)
$3$ \( T^{4} \)
$5$ \( 36 - 12 T + 10 T^{2} + 2 T^{3} + T^{4} \)
$7$ \( 49 + 7 T^{2} + T^{4} \)
$11$ \( 36 + 12 T + 10 T^{2} - 2 T^{3} + T^{4} \)
$13$ \( 9 + 12 T + 19 T^{2} - 4 T^{3} + T^{4} \)
$17$ \( 36 + 12 T + 10 T^{2} - 2 T^{3} + T^{4} \)
$19$ \( ( 4 + 2 T + T^{2} )^{2} \)
$23$ \( 144 + 96 T + 76 T^{2} - 8 T^{3} + T^{4} \)
$29$ \( 324 - 180 T + 82 T^{2} - 10 T^{3} + T^{4} \)
$31$ \( ( -3 + 4 T + T^{2} )^{2} \)
$37$ \( 2209 + 376 T + 111 T^{2} - 8 T^{3} + T^{4} \)
$41$ \( 2916 + 324 T + 90 T^{2} - 6 T^{3} + T^{4} \)
$43$ \( ( 25 + 5 T + T^{2} )^{2} \)
$47$ \( ( -54 - 6 T + T^{2} )^{2} \)
$53$ \( ( 36 - 6 T + T^{2} )^{2} \)
$59$ \( ( 114 + 22 T + T^{2} )^{2} \)
$61$ \( ( 93 - 20 T + T^{2} )^{2} \)
$67$ \( ( -19 - 6 T + T^{2} )^{2} \)
$71$ \( ( 162 + 26 T + T^{2} )^{2} \)
$73$ \( 12544 + 112 T^{2} + T^{4} \)
$79$ \( ( -171 + 4 T + T^{2} )^{2} \)
$83$ \( 1296 + 576 T + 220 T^{2} + 16 T^{3} + T^{4} \)
$89$ \( 2916 - 324 T + 90 T^{2} + 6 T^{3} + T^{4} \)
$97$ \( 10609 - 618 T + 139 T^{2} + 6 T^{3} + T^{4} \)
show more
show less