Properties

Label 1134.2.e.q
Level $1134$
Weight $2$
Character orbit 1134.e
Analytic conductor $9.055$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(865,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 378)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + ( - \beta_{2} + \beta_1 - 1) q^{5} - \beta_1 q^{7} - q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{2} + q^{4} + ( - \beta_{2} + \beta_1 - 1) q^{5} - \beta_1 q^{7} - q^{8} + (\beta_{2} - \beta_1 + 1) q^{10} + (\beta_{3} - \beta_{2} + \beta_1) q^{11} + (\beta_{3} - 2 \beta_{2} + \beta_1) q^{13} + \beta_1 q^{14} + q^{16} + (\beta_{2} - \beta_1 + 1) q^{17} + 2 \beta_{2} q^{19} + ( - \beta_{2} + \beta_1 - 1) q^{20} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{22} + (4 \beta_{2} + 2 \beta_1 + 4) q^{23} + ( - 2 \beta_{3} + 3 \beta_{2} - 2 \beta_1) q^{25} + ( - \beta_{3} + 2 \beta_{2} - \beta_1) q^{26} - \beta_1 q^{28} + (5 \beta_{2} + \beta_1 + 5) q^{29} + ( - \beta_{3} - 2) q^{31} - q^{32} + ( - \beta_{2} + \beta_1 - 1) q^{34} + (\beta_{3} - 7 \beta_{2} + \beta_1) q^{35} + (3 \beta_{3} - 4 \beta_{2} + 3 \beta_1) q^{37} - 2 \beta_{2} q^{38} + (\beta_{2} - \beta_1 + 1) q^{40} + (3 \beta_{3} - 3 \beta_{2} + 3 \beta_1) q^{41} + ( - 5 \beta_{2} - 5) q^{43} + (\beta_{3} - \beta_{2} + \beta_1) q^{44} + ( - 4 \beta_{2} - 2 \beta_1 - 4) q^{46} + ( - 3 \beta_{3} + 3) q^{47} + 7 \beta_{2} q^{49} + (2 \beta_{3} - 3 \beta_{2} + 2 \beta_1) q^{50} + (\beta_{3} - 2 \beta_{2} + \beta_1) q^{52} + (6 \beta_{2} + 6) q^{53} + ( - 2 \beta_{3} - 8) q^{55} + \beta_1 q^{56} + ( - 5 \beta_{2} - \beta_1 - 5) q^{58} + (\beta_{3} - 11) q^{59} + ( - \beta_{3} + 10) q^{61} + (\beta_{3} + 2) q^{62} + q^{64} + ( - 3 \beta_{3} - 9) q^{65} + ( - 2 \beta_{3} + 3) q^{67} + (\beta_{2} - \beta_1 + 1) q^{68} + ( - \beta_{3} + 7 \beta_{2} - \beta_1) q^{70} + ( - \beta_{3} - 13) q^{71} + 4 \beta_1 q^{73} + ( - 3 \beta_{3} + 4 \beta_{2} - 3 \beta_1) q^{74} + 2 \beta_{2} q^{76} + (\beta_{3} + 7) q^{77} + (5 \beta_{3} - 2) q^{79} + ( - \beta_{2} + \beta_1 - 1) q^{80} + ( - 3 \beta_{3} + 3 \beta_{2} - 3 \beta_1) q^{82} + ( - 8 \beta_{2} + 2 \beta_1 - 8) q^{83} + (2 \beta_{3} - 8 \beta_{2} + 2 \beta_1) q^{85} + (5 \beta_{2} + 5) q^{86} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{88} + (3 \beta_{3} + 3 \beta_{2} + 3 \beta_1) q^{89} + (2 \beta_{3} + 7) q^{91} + (4 \beta_{2} + 2 \beta_1 + 4) q^{92} + (3 \beta_{3} - 3) q^{94} + (2 \beta_{3} + 2) q^{95} + ( - 3 \beta_{2} + 4 \beta_1 - 3) q^{97} - 7 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 2 q^{5} - 4 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 4 q^{4} - 2 q^{5} - 4 q^{8} + 2 q^{10} + 2 q^{11} + 4 q^{13} + 4 q^{16} + 2 q^{17} - 4 q^{19} - 2 q^{20} - 2 q^{22} + 8 q^{23} - 6 q^{25} - 4 q^{26} + 10 q^{29} - 8 q^{31} - 4 q^{32} - 2 q^{34} + 14 q^{35} + 8 q^{37} + 4 q^{38} + 2 q^{40} + 6 q^{41} - 10 q^{43} + 2 q^{44} - 8 q^{46} + 12 q^{47} - 14 q^{49} + 6 q^{50} + 4 q^{52} + 12 q^{53} - 32 q^{55} - 10 q^{58} - 44 q^{59} + 40 q^{61} + 8 q^{62} + 4 q^{64} - 36 q^{65} + 12 q^{67} + 2 q^{68} - 14 q^{70} - 52 q^{71} - 8 q^{74} - 4 q^{76} + 28 q^{77} - 8 q^{79} - 2 q^{80} - 6 q^{82} - 16 q^{83} + 16 q^{85} + 10 q^{86} - 2 q^{88} - 6 q^{89} + 28 q^{91} + 8 q^{92} - 12 q^{94} + 8 q^{95} - 6 q^{97} + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 7\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 7\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(\beta_{2}\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
865.1
−1.32288 + 2.29129i
1.32288 2.29129i
−1.32288 2.29129i
1.32288 + 2.29129i
−1.00000 0 1.00000 −1.82288 + 3.15731i 0 1.32288 2.29129i −1.00000 0 1.82288 3.15731i
865.2 −1.00000 0 1.00000 0.822876 1.42526i 0 −1.32288 + 2.29129i −1.00000 0 −0.822876 + 1.42526i
919.1 −1.00000 0 1.00000 −1.82288 3.15731i 0 1.32288 + 2.29129i −1.00000 0 1.82288 + 3.15731i
919.2 −1.00000 0 1.00000 0.822876 + 1.42526i 0 −1.32288 2.29129i −1.00000 0 −0.822876 1.42526i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.e.q 4
3.b odd 2 1 1134.2.e.t 4
7.c even 3 1 1134.2.h.t 4
9.c even 3 1 378.2.g.h yes 4
9.c even 3 1 1134.2.h.t 4
9.d odd 6 1 378.2.g.g 4
9.d odd 6 1 1134.2.h.q 4
21.h odd 6 1 1134.2.h.q 4
63.g even 3 1 378.2.g.h yes 4
63.h even 3 1 inner 1134.2.e.q 4
63.h even 3 1 2646.2.a.bi 2
63.i even 6 1 2646.2.a.bo 2
63.j odd 6 1 1134.2.e.t 4
63.j odd 6 1 2646.2.a.bl 2
63.n odd 6 1 378.2.g.g 4
63.t odd 6 1 2646.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.g.g 4 9.d odd 6 1
378.2.g.g 4 63.n odd 6 1
378.2.g.h yes 4 9.c even 3 1
378.2.g.h yes 4 63.g even 3 1
1134.2.e.q 4 1.a even 1 1 trivial
1134.2.e.q 4 63.h even 3 1 inner
1134.2.e.t 4 3.b odd 2 1
1134.2.e.t 4 63.j odd 6 1
1134.2.h.q 4 9.d odd 6 1
1134.2.h.q 4 21.h odd 6 1
1134.2.h.t 4 7.c even 3 1
1134.2.h.t 4 9.c even 3 1
2646.2.a.bf 2 63.t odd 6 1
2646.2.a.bi 2 63.h even 3 1
2646.2.a.bl 2 63.j odd 6 1
2646.2.a.bo 2 63.i even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\):

\( T_{5}^{4} + 2T_{5}^{3} + 10T_{5}^{2} - 12T_{5} + 36 \) Copy content Toggle raw display
\( T_{11}^{4} - 2T_{11}^{3} + 10T_{11}^{2} + 12T_{11} + 36 \) Copy content Toggle raw display
\( T_{17}^{4} - 2T_{17}^{3} + 10T_{17}^{2} + 12T_{17} + 36 \) Copy content Toggle raw display
\( T_{23}^{4} - 8T_{23}^{3} + 76T_{23}^{2} + 96T_{23} + 144 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$7$ \( T^{4} + 7T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( T^{4} - 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$17$ \( T^{4} - 2 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$19$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 8 T^{3} + \cdots + 144 \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$31$ \( (T^{2} + 4 T - 3)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 2209 \) Copy content Toggle raw display
$41$ \( T^{4} - 6 T^{3} + \cdots + 2916 \) Copy content Toggle raw display
$43$ \( (T^{2} + 5 T + 25)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 6 T - 54)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 6 T + 36)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 22 T + 114)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 20 T + 93)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 6 T - 19)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 26 T + 162)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 112 T^{2} + 12544 \) Copy content Toggle raw display
$79$ \( (T^{2} + 4 T - 171)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 16 T^{3} + \cdots + 1296 \) Copy content Toggle raw display
$89$ \( T^{4} + 6 T^{3} + \cdots + 2916 \) Copy content Toggle raw display
$97$ \( T^{4} + 6 T^{3} + \cdots + 10609 \) Copy content Toggle raw display
show more
show less