# Properties

 Label 1134.2.e.l Level $1134$ Weight $2$ Character orbit 1134.e Analytic conductor $9.055$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1134,2,Mod(865,1134)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1134, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([4, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1134.865");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1134 = 2 \cdot 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1134.e (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$9.05503558921$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 42) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + (\zeta_{6} - 1) q^{5} + ( - \zeta_{6} - 2) q^{7} + q^{8}+O(q^{10})$$ q + q^2 + q^4 + (z - 1) * q^5 + (-z - 2) * q^7 + q^8 $$q + q^{2} + q^{4} + (\zeta_{6} - 1) q^{5} + ( - \zeta_{6} - 2) q^{7} + q^{8} + (\zeta_{6} - 1) q^{10} - 5 \zeta_{6} q^{11} + ( - \zeta_{6} - 2) q^{14} + q^{16} + ( - 4 \zeta_{6} + 4) q^{17} - 8 \zeta_{6} q^{19} + (\zeta_{6} - 1) q^{20} - 5 \zeta_{6} q^{22} + ( - 4 \zeta_{6} + 4) q^{23} + 4 \zeta_{6} q^{25} + ( - \zeta_{6} - 2) q^{28} + ( - 5 \zeta_{6} + 5) q^{29} + 3 q^{31} + q^{32} + ( - 4 \zeta_{6} + 4) q^{34} + ( - 2 \zeta_{6} + 3) q^{35} + 4 \zeta_{6} q^{37} - 8 \zeta_{6} q^{38} + (\zeta_{6} - 1) q^{40} + (2 \zeta_{6} - 2) q^{43} - 5 \zeta_{6} q^{44} + ( - 4 \zeta_{6} + 4) q^{46} - 6 q^{47} + (5 \zeta_{6} + 3) q^{49} + 4 \zeta_{6} q^{50} + ( - 9 \zeta_{6} + 9) q^{53} + 5 q^{55} + ( - \zeta_{6} - 2) q^{56} + ( - 5 \zeta_{6} + 5) q^{58} - 11 q^{59} - 6 q^{61} + 3 q^{62} + q^{64} - 2 q^{67} + ( - 4 \zeta_{6} + 4) q^{68} + ( - 2 \zeta_{6} + 3) q^{70} + 2 q^{71} + (10 \zeta_{6} - 10) q^{73} + 4 \zeta_{6} q^{74} - 8 \zeta_{6} q^{76} + (15 \zeta_{6} - 5) q^{77} + 3 q^{79} + (\zeta_{6} - 1) q^{80} + ( - 7 \zeta_{6} + 7) q^{83} + 4 \zeta_{6} q^{85} + (2 \zeta_{6} - 2) q^{86} - 5 \zeta_{6} q^{88} + 6 \zeta_{6} q^{89} + ( - 4 \zeta_{6} + 4) q^{92} - 6 q^{94} + 8 q^{95} + (7 \zeta_{6} - 7) q^{97} + (5 \zeta_{6} + 3) q^{98} +O(q^{100})$$ q + q^2 + q^4 + (z - 1) * q^5 + (-z - 2) * q^7 + q^8 + (z - 1) * q^10 - 5*z * q^11 + (-z - 2) * q^14 + q^16 + (-4*z + 4) * q^17 - 8*z * q^19 + (z - 1) * q^20 - 5*z * q^22 + (-4*z + 4) * q^23 + 4*z * q^25 + (-z - 2) * q^28 + (-5*z + 5) * q^29 + 3 * q^31 + q^32 + (-4*z + 4) * q^34 + (-2*z + 3) * q^35 + 4*z * q^37 - 8*z * q^38 + (z - 1) * q^40 + (2*z - 2) * q^43 - 5*z * q^44 + (-4*z + 4) * q^46 - 6 * q^47 + (5*z + 3) * q^49 + 4*z * q^50 + (-9*z + 9) * q^53 + 5 * q^55 + (-z - 2) * q^56 + (-5*z + 5) * q^58 - 11 * q^59 - 6 * q^61 + 3 * q^62 + q^64 - 2 * q^67 + (-4*z + 4) * q^68 + (-2*z + 3) * q^70 + 2 * q^71 + (10*z - 10) * q^73 + 4*z * q^74 - 8*z * q^76 + (15*z - 5) * q^77 + 3 * q^79 + (z - 1) * q^80 + (-7*z + 7) * q^83 + 4*z * q^85 + (2*z - 2) * q^86 - 5*z * q^88 + 6*z * q^89 + (-4*z + 4) * q^92 - 6 * q^94 + 8 * q^95 + (7*z - 7) * q^97 + (5*z + 3) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} + 2 q^{4} - q^{5} - 5 q^{7} + 2 q^{8}+O(q^{10})$$ 2 * q + 2 * q^2 + 2 * q^4 - q^5 - 5 * q^7 + 2 * q^8 $$2 q + 2 q^{2} + 2 q^{4} - q^{5} - 5 q^{7} + 2 q^{8} - q^{10} - 5 q^{11} - 5 q^{14} + 2 q^{16} + 4 q^{17} - 8 q^{19} - q^{20} - 5 q^{22} + 4 q^{23} + 4 q^{25} - 5 q^{28} + 5 q^{29} + 6 q^{31} + 2 q^{32} + 4 q^{34} + 4 q^{35} + 4 q^{37} - 8 q^{38} - q^{40} - 2 q^{43} - 5 q^{44} + 4 q^{46} - 12 q^{47} + 11 q^{49} + 4 q^{50} + 9 q^{53} + 10 q^{55} - 5 q^{56} + 5 q^{58} - 22 q^{59} - 12 q^{61} + 6 q^{62} + 2 q^{64} - 4 q^{67} + 4 q^{68} + 4 q^{70} + 4 q^{71} - 10 q^{73} + 4 q^{74} - 8 q^{76} + 5 q^{77} + 6 q^{79} - q^{80} + 7 q^{83} + 4 q^{85} - 2 q^{86} - 5 q^{88} + 6 q^{89} + 4 q^{92} - 12 q^{94} + 16 q^{95} - 7 q^{97} + 11 q^{98}+O(q^{100})$$ 2 * q + 2 * q^2 + 2 * q^4 - q^5 - 5 * q^7 + 2 * q^8 - q^10 - 5 * q^11 - 5 * q^14 + 2 * q^16 + 4 * q^17 - 8 * q^19 - q^20 - 5 * q^22 + 4 * q^23 + 4 * q^25 - 5 * q^28 + 5 * q^29 + 6 * q^31 + 2 * q^32 + 4 * q^34 + 4 * q^35 + 4 * q^37 - 8 * q^38 - q^40 - 2 * q^43 - 5 * q^44 + 4 * q^46 - 12 * q^47 + 11 * q^49 + 4 * q^50 + 9 * q^53 + 10 * q^55 - 5 * q^56 + 5 * q^58 - 22 * q^59 - 12 * q^61 + 6 * q^62 + 2 * q^64 - 4 * q^67 + 4 * q^68 + 4 * q^70 + 4 * q^71 - 10 * q^73 + 4 * q^74 - 8 * q^76 + 5 * q^77 + 6 * q^79 - q^80 + 7 * q^83 + 4 * q^85 - 2 * q^86 - 5 * q^88 + 6 * q^89 + 4 * q^92 - 12 * q^94 + 16 * q^95 - 7 * q^97 + 11 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$407$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
865.1
 0.5 + 0.866025i 0.5 − 0.866025i
1.00000 0 1.00000 −0.500000 + 0.866025i 0 −2.50000 0.866025i 1.00000 0 −0.500000 + 0.866025i
919.1 1.00000 0 1.00000 −0.500000 0.866025i 0 −2.50000 + 0.866025i 1.00000 0 −0.500000 0.866025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.e.l 2
3.b odd 2 1 1134.2.e.e 2
7.c even 3 1 1134.2.h.e 2
9.c even 3 1 42.2.e.a 2
9.c even 3 1 1134.2.h.e 2
9.d odd 6 1 126.2.g.c 2
9.d odd 6 1 1134.2.h.l 2
21.h odd 6 1 1134.2.h.l 2
36.f odd 6 1 336.2.q.b 2
36.h even 6 1 1008.2.s.k 2
45.j even 6 1 1050.2.i.l 2
45.k odd 12 2 1050.2.o.a 4
63.g even 3 1 42.2.e.a 2
63.h even 3 1 294.2.a.e 1
63.h even 3 1 inner 1134.2.e.l 2
63.i even 6 1 882.2.a.d 1
63.j odd 6 1 882.2.a.c 1
63.j odd 6 1 1134.2.e.e 2
63.k odd 6 1 294.2.e.b 2
63.l odd 6 1 294.2.e.b 2
63.n odd 6 1 126.2.g.c 2
63.o even 6 1 882.2.g.i 2
63.s even 6 1 882.2.g.i 2
63.t odd 6 1 294.2.a.f 1
72.n even 6 1 1344.2.q.g 2
72.p odd 6 1 1344.2.q.s 2
252.n even 6 1 2352.2.q.u 2
252.o even 6 1 1008.2.s.k 2
252.r odd 6 1 7056.2.a.bl 1
252.u odd 6 1 2352.2.a.t 1
252.bb even 6 1 7056.2.a.w 1
252.bi even 6 1 2352.2.q.u 2
252.bj even 6 1 2352.2.a.f 1
252.bl odd 6 1 336.2.q.b 2
315.q odd 6 1 7350.2.a.q 1
315.r even 6 1 7350.2.a.bl 1
315.bo even 6 1 1050.2.i.l 2
315.ch odd 12 2 1050.2.o.a 4
504.w even 6 1 1344.2.q.g 2
504.ba odd 6 1 1344.2.q.s 2
504.bf even 6 1 9408.2.a.cr 1
504.bp odd 6 1 9408.2.a.z 1
504.ce odd 6 1 9408.2.a.q 1
504.cq even 6 1 9408.2.a.ce 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.e.a 2 9.c even 3 1
42.2.e.a 2 63.g even 3 1
126.2.g.c 2 9.d odd 6 1
126.2.g.c 2 63.n odd 6 1
294.2.a.e 1 63.h even 3 1
294.2.a.f 1 63.t odd 6 1
294.2.e.b 2 63.k odd 6 1
294.2.e.b 2 63.l odd 6 1
336.2.q.b 2 36.f odd 6 1
336.2.q.b 2 252.bl odd 6 1
882.2.a.c 1 63.j odd 6 1
882.2.a.d 1 63.i even 6 1
882.2.g.i 2 63.o even 6 1
882.2.g.i 2 63.s even 6 1
1008.2.s.k 2 36.h even 6 1
1008.2.s.k 2 252.o even 6 1
1050.2.i.l 2 45.j even 6 1
1050.2.i.l 2 315.bo even 6 1
1050.2.o.a 4 45.k odd 12 2
1050.2.o.a 4 315.ch odd 12 2
1134.2.e.e 2 3.b odd 2 1
1134.2.e.e 2 63.j odd 6 1
1134.2.e.l 2 1.a even 1 1 trivial
1134.2.e.l 2 63.h even 3 1 inner
1134.2.h.e 2 7.c even 3 1
1134.2.h.e 2 9.c even 3 1
1134.2.h.l 2 9.d odd 6 1
1134.2.h.l 2 21.h odd 6 1
1344.2.q.g 2 72.n even 6 1
1344.2.q.g 2 504.w even 6 1
1344.2.q.s 2 72.p odd 6 1
1344.2.q.s 2 504.ba odd 6 1
2352.2.a.f 1 252.bj even 6 1
2352.2.a.t 1 252.u odd 6 1
2352.2.q.u 2 252.n even 6 1
2352.2.q.u 2 252.bi even 6 1
7056.2.a.w 1 252.bb even 6 1
7056.2.a.bl 1 252.r odd 6 1
7350.2.a.q 1 315.q odd 6 1
7350.2.a.bl 1 315.r even 6 1
9408.2.a.q 1 504.ce odd 6 1
9408.2.a.z 1 504.bp odd 6 1
9408.2.a.ce 1 504.cq even 6 1
9408.2.a.cr 1 504.bf even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1134, [\chi])$$:

 $$T_{5}^{2} + T_{5} + 1$$ T5^2 + T5 + 1 $$T_{11}^{2} + 5T_{11} + 25$$ T11^2 + 5*T11 + 25 $$T_{17}^{2} - 4T_{17} + 16$$ T17^2 - 4*T17 + 16 $$T_{23}^{2} - 4T_{23} + 16$$ T23^2 - 4*T23 + 16

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T - 1)^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + T + 1$$
$7$ $$T^{2} + 5T + 7$$
$11$ $$T^{2} + 5T + 25$$
$13$ $$T^{2}$$
$17$ $$T^{2} - 4T + 16$$
$19$ $$T^{2} + 8T + 64$$
$23$ $$T^{2} - 4T + 16$$
$29$ $$T^{2} - 5T + 25$$
$31$ $$(T - 3)^{2}$$
$37$ $$T^{2} - 4T + 16$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 2T + 4$$
$47$ $$(T + 6)^{2}$$
$53$ $$T^{2} - 9T + 81$$
$59$ $$(T + 11)^{2}$$
$61$ $$(T + 6)^{2}$$
$67$ $$(T + 2)^{2}$$
$71$ $$(T - 2)^{2}$$
$73$ $$T^{2} + 10T + 100$$
$79$ $$(T - 3)^{2}$$
$83$ $$T^{2} - 7T + 49$$
$89$ $$T^{2} - 6T + 36$$
$97$ $$T^{2} + 7T + 49$$