Newspace parameters
Level: | \( N \) | \(=\) | \( 1134 = 2 \cdot 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1134.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.05503558921\) |
Analytic rank: | \(0\) |
Dimension: | \(16\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) |
Defining polynomial: |
\( x^{16} - 8 x^{15} + 56 x^{14} - 252 x^{13} + 962 x^{12} - 2860 x^{11} + 7240 x^{10} - 15036 x^{9} + 26533 x^{8} - 38796 x^{7} + 47500 x^{6} - 47396 x^{5} + 38144 x^{4} + \cdots + 457 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{10}\cdot 3^{6} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{16} - 8 x^{15} + 56 x^{14} - 252 x^{13} + 962 x^{12} - 2860 x^{11} + 7240 x^{10} - 15036 x^{9} + 26533 x^{8} - 38796 x^{7} + 47500 x^{6} - 47396 x^{5} + 38144 x^{4} + \cdots + 457 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 54 \nu^{14} - 378 \nu^{13} + 2506 \nu^{12} - 10122 \nu^{11} + 35295 \nu^{10} - 92699 \nu^{9} + 205329 \nu^{8} - 361020 \nu^{7} + 520549 \nu^{6} - 592287 \nu^{5} + 520258 \nu^{4} + \cdots + 1872 ) / 655 \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 321 \nu^{14} + 2247 \nu^{13} - 15086 \nu^{12} + 61305 \nu^{11} - 217429 \nu^{10} + 578736 \nu^{9} - 1315127 \nu^{8} + 2370641 \nu^{7} - 3566011 \nu^{6} + 4253522 \nu^{5} + \cdots - 76759 ) / 1965 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 259 \nu^{14} - 1813 \nu^{13} + 12233 \nu^{12} - 49829 \nu^{11} + 177662 \nu^{10} - 474754 \nu^{9} + 1084910 \nu^{8} - 1965161 \nu^{7} + 2973244 \nu^{6} - 3565294 \nu^{5} + \cdots + 62645 ) / 393 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 588 \nu^{14} + 4116 \nu^{13} - 27797 \nu^{12} + 113274 \nu^{11} - 404410 \nu^{10} + 1081803 \nu^{9} - 2477718 \nu^{8} + 4497900 \nu^{7} - 6833518 \nu^{6} + \cdots - 164484 ) / 655 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 395 \nu^{14} - 2765 \nu^{13} + 18656 \nu^{12} - 75991 \nu^{11} + 270978 \nu^{10} - 724205 \nu^{9} + 1655774 \nu^{8} - 3000797 \nu^{7} + 4545742 \nu^{6} - 5458815 \nu^{5} + \cdots + 96267 ) / 393 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 325218 \nu^{15} - 2510469 \nu^{14} + 16986696 \nu^{13} - 73571231 \nu^{12} + 267766992 \nu^{11} - 755616592 \nu^{10} + 1787650380 \nu^{9} + \cdots - 30378190 ) / 2595765 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 325218 \nu^{15} - 2367801 \nu^{14} + 15988020 \nu^{13} - 66777328 \nu^{12} + 239986362 \nu^{11} - 655964315 \nu^{10} + 1520242992 \nu^{9} + \cdots - 49140353 ) / 2595765 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 143764 \nu^{15} + 1078230 \nu^{14} - 7240864 \nu^{13} + 30712461 \nu^{12} - 110181896 \nu^{11} + 304140298 \nu^{10} - 704002373 \nu^{9} + \cdots + 4929077 ) / 865255 \)
|
\(\beta_{9}\) | \(=\) |
\( ( 144812 \nu^{15} - 1086090 \nu^{14} + 7295622 \nu^{13} - 30949178 \nu^{12} + 110985188 \nu^{11} - 306216779 \nu^{10} + 707350209 \nu^{9} - 1319456100 \nu^{8} + \cdots + 11072049 ) / 865255 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 96874 \nu^{15} + 726555 \nu^{14} - 4887955 \nu^{13} + 20752290 \nu^{12} - 74578887 \nu^{11} + 206151407 \nu^{10} - 477998494 \nu^{9} + 895321773 \nu^{8} + \cdots + 3067531 ) / 519153 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 32580 \nu^{15} - 244350 \nu^{14} + 1650786 \nu^{13} - 7024134 \nu^{12} + 25400574 \nu^{11} - 70590828 \nu^{10} + 165381778 \nu^{9} - 313213977 \nu^{8} + \cdots - 3363404 ) / 173051 \)
|
\(\beta_{12}\) | \(=\) |
\( ( - 847558 \nu^{15} + 6356685 \nu^{14} - 42971171 \nu^{13} + 182902889 \nu^{12} - 661951717 \nu^{11} + 1840904054 \nu^{10} - 4318389740 \nu^{9} + \cdots + 117878701 ) / 2595765 \)
|
\(\beta_{13}\) | \(=\) |
\( ( 1265468 \nu^{15} - 9990348 \nu^{14} + 67896127 \nu^{13} - 298263571 \nu^{12} + 1094893661 \nu^{11} - 3131539819 \nu^{10} + 7501129528 \nu^{9} + \cdots - 347093285 ) / 2595765 \)
|
\(\beta_{14}\) | \(=\) |
\( ( 1265468 \nu^{15} - 8991672 \nu^{14} + 60905395 \nu^{13} - 251052352 \nu^{12} + 902505863 \nu^{11} - 2445049144 \nu^{10} + 5665618522 \nu^{9} + \cdots - 99619787 ) / 2595765 \)
|
\(\beta_{15}\) | \(=\) |
\( ( - 312314 \nu^{15} + 2342355 \nu^{14} - 15898989 \nu^{13} + 67817711 \nu^{12} - 246733441 \nu^{11} + 689195683 \nu^{10} - 1628974479 \nu^{9} + \cdots + 64404140 ) / 519153 \)
|
\(\nu\) | \(=\) |
\( ( -2\beta_{15} - \beta_{14} - \beta_{13} + 3\beta_{12} + 3\beta_{11} - \beta_{10} + 4 ) / 6 \)
|
\(\nu^{2}\) | \(=\) |
\( ( - 2 \beta_{15} - 4 \beta_{14} + 2 \beta_{13} + 3 \beta_{12} + 3 \beta_{11} - \beta_{10} + \beta_{7} - \beta_{6} - 2 \beta_{5} - 3 \beta_{4} + \beta_{3} + 3 \beta_{2} + 3 \beta _1 - 17 ) / 6 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 4 \beta_{15} - 2 \beta_{14} + 4 \beta_{13} - 13 \beta_{12} - 14 \beta_{11} + 5 \beta_{10} + 3 \beta_{9} + 3 \beta_{8} + 4 \beta_{7} + 2 \beta_{6} - 2 \beta_{5} - 3 \beta_{4} + \beta_{3} + 3 \beta_{2} + 3 \beta _1 - 20 ) / 4 \)
|
\(\nu^{4}\) | \(=\) |
\( ( 14 \beta_{15} + 34 \beta_{14} - 26 \beta_{13} - 42 \beta_{12} - 45 \beta_{11} + 16 \beta_{10} + 9 \beta_{9} + 9 \beta_{8} + 7 \beta_{7} + 11 \beta_{6} + 10 \beta_{5} + 18 \beta_{4} - 14 \beta_{3} - 36 \beta_{2} - 24 \beta _1 + 89 ) / 6 \)
|
\(\nu^{5}\) | \(=\) |
\( ( - 58 \beta_{15} + 172 \beta_{14} - 158 \beta_{13} + 249 \beta_{12} + 246 \beta_{11} - 119 \beta_{10} - 75 \beta_{9} - 105 \beta_{8} - 150 \beta_{7} - 120 \beta_{6} + 60 \beta_{5} + 105 \beta_{4} - 75 \beta_{3} - 195 \beta_{2} + \cdots + 554 ) / 12 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 41 \beta_{15} - 77 \beta_{14} + 77 \beta_{13} + 160 \beta_{12} + 161 \beta_{11} - 73 \beta_{10} - 45 \beta_{9} - 60 \beta_{8} - 80 \beta_{7} - 70 \beta_{6} - 21 \beta_{5} - 34 \beta_{4} + 48 \beta_{3} + 95 \beta_{2} + 53 \beta _1 - 180 ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( 150 \beta_{15} - 1164 \beta_{14} + 1041 \beta_{13} - 708 \beta_{12} - 675 \beta_{11} + 399 \beta_{10} + 231 \beta_{9} + 378 \beta_{8} + 553 \beta_{7} + 602 \beta_{6} - 329 \beta_{5} - 546 \beta_{4} + 637 \beta_{3} + 1344 \beta_{2} + \cdots - 2844 ) / 6 \)
|
\(\nu^{8}\) | \(=\) |
\( ( 1208 \beta_{15} + 1066 \beta_{14} - 1538 \beta_{13} - 5172 \beta_{12} - 5061 \beta_{11} + 2656 \beta_{10} + 1575 \beta_{9} + 2373 \beta_{8} + 3553 \beta_{7} + 3209 \beta_{6} + 328 \beta_{5} + 450 \beta_{4} + \cdots + 2771 ) / 6 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 270 \beta_{15} + 8796 \beta_{14} - 8310 \beta_{13} + 1431 \beta_{12} + 1316 \beta_{11} - 1017 \beta_{10} - 525 \beta_{9} - 987 \beta_{8} - 1188 \beta_{7} - 2370 \beta_{6} + 2388 \beta_{5} + 3687 \beta_{4} + \cdots + 19808 ) / 4 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 12019 \beta_{15} + 2860 \beta_{14} + 4282 \beta_{13} + 53097 \beta_{12} + 51438 \beta_{11} - 29162 \beta_{10} - 16740 \beta_{9} - 26505 \beta_{8} - 40966 \beta_{7} - 39674 \beta_{6} + 41 \beta_{5} + \cdots - 1384 ) / 6 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 13518 \beta_{15} - 267924 \beta_{14} + 270372 \beta_{13} + 56313 \beta_{12} + 55698 \beta_{11} - 26361 \beta_{10} - 16467 \beta_{9} - 23397 \beta_{8} - 53548 \beta_{7} - 6116 \beta_{6} + \cdots - 598980 ) / 12 \)
|
\(\nu^{12}\) | \(=\) |
\( ( 38178 \beta_{15} - 55687 \beta_{14} + 29399 \beta_{13} - 170578 \beta_{12} - 164538 \beta_{11} + 96870 \beta_{10} + 54615 \beta_{9} + 88209 \beta_{8} + 135537 \beta_{7} + 141069 \beta_{6} + \cdots - 87901 ) / 2 \)
|
\(\nu^{13}\) | \(=\) |
\( ( 176273 \beta_{15} + 1221805 \beta_{14} - 1326845 \beta_{13} - 778395 \beta_{12} - 754452 \beta_{11} + 428080 \beta_{10} + 245583 \beta_{9} + 389103 \beta_{8} + 714870 \beta_{7} + \cdots + 2815751 ) / 6 \)
|
\(\nu^{14}\) | \(=\) |
\( ( - 1004014 \beta_{15} + 2973496 \beta_{14} - 2241272 \beta_{13} + 4505304 \beta_{12} + 4335321 \beta_{11} - 2597126 \beta_{10} - 1451268 \beta_{9} - 2362542 \beta_{8} + \cdots + 5415443 ) / 6 \)
|
\(\nu^{15}\) | \(=\) |
\( ( - 1855568 \beta_{15} - 6465538 \beta_{14} + 7738524 \beta_{13} + 8283611 \beta_{12} + 7991044 \beta_{11} - 4704505 \beta_{10} - 2651201 \beta_{9} - 4279555 \beta_{8} + \cdots - 15882042 ) / 4 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).
\(n\) | \(325\) | \(407\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1133.1 |
|
− | 1.00000i | 0 | −1.00000 | −3.79792 | 0 | 2.59077 | + | 0.536572i | 1.00000i | 0 | 3.79792i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.2 | − | 1.00000i | 0 | −1.00000 | −2.46193 | 0 | −1.59077 | + | 2.11411i | 1.00000i | 0 | 2.46193i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.3 | − | 1.00000i | 0 | −1.00000 | −1.57315 | 0 | 0.858719 | − | 2.50252i | 1.00000i | 0 | 1.57315i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.4 | − | 1.00000i | 0 | −1.00000 | −1.01976 | 0 | 0.141281 | + | 2.64198i | 1.00000i | 0 | 1.01976i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.5 | − | 1.00000i | 0 | −1.00000 | 1.01976 | 0 | 0.141281 | − | 2.64198i | 1.00000i | 0 | − | 1.01976i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.6 | − | 1.00000i | 0 | −1.00000 | 1.57315 | 0 | 0.858719 | + | 2.50252i | 1.00000i | 0 | − | 1.57315i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.7 | − | 1.00000i | 0 | −1.00000 | 2.46193 | 0 | −1.59077 | − | 2.11411i | 1.00000i | 0 | − | 2.46193i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.8 | − | 1.00000i | 0 | −1.00000 | 3.79792 | 0 | 2.59077 | − | 0.536572i | 1.00000i | 0 | − | 3.79792i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.9 | 1.00000i | 0 | −1.00000 | −3.79792 | 0 | 2.59077 | − | 0.536572i | − | 1.00000i | 0 | − | 3.79792i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.10 | 1.00000i | 0 | −1.00000 | −2.46193 | 0 | −1.59077 | − | 2.11411i | − | 1.00000i | 0 | − | 2.46193i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.11 | 1.00000i | 0 | −1.00000 | −1.57315 | 0 | 0.858719 | + | 2.50252i | − | 1.00000i | 0 | − | 1.57315i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.12 | 1.00000i | 0 | −1.00000 | −1.01976 | 0 | 0.141281 | − | 2.64198i | − | 1.00000i | 0 | − | 1.01976i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.13 | 1.00000i | 0 | −1.00000 | 1.01976 | 0 | 0.141281 | + | 2.64198i | − | 1.00000i | 0 | 1.01976i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.14 | 1.00000i | 0 | −1.00000 | 1.57315 | 0 | 0.858719 | − | 2.50252i | − | 1.00000i | 0 | 1.57315i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.15 | 1.00000i | 0 | −1.00000 | 2.46193 | 0 | −1.59077 | + | 2.11411i | − | 1.00000i | 0 | 2.46193i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1133.16 | 1.00000i | 0 | −1.00000 | 3.79792 | 0 | 2.59077 | + | 0.536572i | − | 1.00000i | 0 | 3.79792i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1134.2.d.b | ✓ | 16 |
3.b | odd | 2 | 1 | inner | 1134.2.d.b | ✓ | 16 |
7.b | odd | 2 | 1 | inner | 1134.2.d.b | ✓ | 16 |
9.c | even | 3 | 1 | 1134.2.m.h | 16 | ||
9.c | even | 3 | 1 | 1134.2.m.i | 16 | ||
9.d | odd | 6 | 1 | 1134.2.m.h | 16 | ||
9.d | odd | 6 | 1 | 1134.2.m.i | 16 | ||
21.c | even | 2 | 1 | inner | 1134.2.d.b | ✓ | 16 |
63.l | odd | 6 | 1 | 1134.2.m.h | 16 | ||
63.l | odd | 6 | 1 | 1134.2.m.i | 16 | ||
63.o | even | 6 | 1 | 1134.2.m.h | 16 | ||
63.o | even | 6 | 1 | 1134.2.m.i | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1134.2.d.b | ✓ | 16 | 1.a | even | 1 | 1 | trivial |
1134.2.d.b | ✓ | 16 | 3.b | odd | 2 | 1 | inner |
1134.2.d.b | ✓ | 16 | 7.b | odd | 2 | 1 | inner |
1134.2.d.b | ✓ | 16 | 21.c | even | 2 | 1 | inner |
1134.2.m.h | 16 | 9.c | even | 3 | 1 | ||
1134.2.m.h | 16 | 9.d | odd | 6 | 1 | ||
1134.2.m.h | 16 | 63.l | odd | 6 | 1 | ||
1134.2.m.h | 16 | 63.o | even | 6 | 1 | ||
1134.2.m.i | 16 | 9.c | even | 3 | 1 | ||
1134.2.m.i | 16 | 9.d | odd | 6 | 1 | ||
1134.2.m.i | 16 | 63.l | odd | 6 | 1 | ||
1134.2.m.i | 16 | 63.o | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} - 24T_{5}^{6} + 162T_{5}^{4} - 360T_{5}^{2} + 225 \)
acting on \(S_{2}^{\mathrm{new}}(1134, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 1)^{8} \)
$3$
\( T^{16} \)
$5$
\( (T^{8} - 24 T^{6} + 162 T^{4} - 360 T^{2} + \cdots + 225)^{2} \)
$7$
\( (T^{8} - 4 T^{7} + 16 T^{6} - 52 T^{5} + \cdots + 2401)^{2} \)
$11$
\( (T^{8} + 36 T^{6} + 288 T^{4} + 648 T^{2} + \cdots + 324)^{2} \)
$13$
\( (T^{8} + 84 T^{6} + 2502 T^{4} + \cdots + 119025)^{2} \)
$17$
\( (T^{8} - 60 T^{6} + 918 T^{4} - 3420 T^{2} + \cdots + 225)^{2} \)
$19$
\( (T^{8} + 156 T^{6} + 7632 T^{4} + \cdots + 476100)^{2} \)
$23$
\( (T^{8} + 36 T^{6} + 288 T^{4} + 648 T^{2} + \cdots + 324)^{2} \)
$29$
\( (T^{8} + 108 T^{6} + 2502 T^{4} + \cdots + 42849)^{2} \)
$31$
\( (T^{8} + 180 T^{6} + 9072 T^{4} + \cdots + 72900)^{2} \)
$37$
\( (T^{4} - 4 T^{3} - 84 T^{2} - 148 T + 73)^{4} \)
$41$
\( (T^{8} - 240 T^{6} + 20232 T^{4} + \cdots + 8643600)^{2} \)
$43$
\( (T^{4} - 16 T^{3} + 24 T^{2} + 608 T - 2336)^{4} \)
$47$
\( (T^{8} - 348 T^{6} + 39888 T^{4} + \cdots + 476100)^{2} \)
$53$
\( (T^{4} + 72 T^{2} + 324)^{4} \)
$59$
\( (T^{8} - 60 T^{6} + 432 T^{4} - 1080 T^{2} + \cdots + 900)^{2} \)
$61$
\( (T^{8} + 348 T^{6} + 34038 T^{4} + \cdots + 497025)^{2} \)
$67$
\( (T^{4} + 4 T^{3} - 102 T^{2} - 572 T - 242)^{4} \)
$71$
\( (T^{8} + 360 T^{6} + 32256 T^{4} + \cdots + 11451456)^{2} \)
$73$
\( (T^{8} + 168 T^{6} + 9378 T^{4} + \cdots + 225)^{2} \)
$79$
\( (T^{4} - 8 T^{3} - 66 T^{2} + 4 T + 142)^{4} \)
$83$
\( (T^{8} - 420 T^{6} + 46512 T^{4} + \cdots + 8468100)^{2} \)
$89$
\( (T^{8} - 540 T^{6} + 79542 T^{4} + \cdots + 9641025)^{2} \)
$97$
\( (T^{8} + 120 T^{6} + 1368 T^{4} + \cdots + 3600)^{2} \)
show more
show less