Defining parameters
Level: | \( N \) | \(=\) | \( 1134 = 2 \cdot 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1134.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(432\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1134, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 32 | 208 |
Cusp forms | 192 | 32 | 160 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1134, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1134.2.d.a | $16$ | $9.055$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta _{1}q^{2}-q^{4}+\beta _{2}q^{5}-\beta _{8}q^{7}-\beta _{1}q^{8}+\cdots\) |
1134.2.d.b | $16$ | $9.055$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q-\beta _{11}q^{2}-q^{4}-\beta _{2}q^{5}+\beta _{14}q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1134, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1134, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(567, [\chi])\)\(^{\oplus 2}\)