Properties

Label 1134.2.a.o
Level $1134$
Weight $2$
Character orbit 1134.a
Self dual yes
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(1,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + \beta q^{5} + q^{7} + q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + \beta q^{5} + q^{7} + q^{8} + \beta q^{10} + ( - \beta + 3) q^{11} - q^{13} + q^{14} + q^{16} + ( - 2 \beta + 3) q^{17} + (3 \beta - 1) q^{19} + \beta q^{20} + ( - \beta + 3) q^{22} + (\beta + 3) q^{23} - 2 q^{25} - q^{26} + q^{28} + ( - 2 \beta + 3) q^{29} + ( - 3 \beta - 1) q^{31} + q^{32} + ( - 2 \beta + 3) q^{34} + \beta q^{35} + (3 \beta + 2) q^{37} + (3 \beta - 1) q^{38} + \beta q^{40} + (2 \beta + 6) q^{41} + ( - 6 \beta + 2) q^{43} + ( - \beta + 3) q^{44} + (\beta + 3) q^{46} + ( - 3 \beta - 3) q^{47} + q^{49} - 2 q^{50} - q^{52} + ( - 2 \beta + 6) q^{53} + (3 \beta - 3) q^{55} + q^{56} + ( - 2 \beta + 3) q^{58} + (3 \beta - 3) q^{59} + ( - 6 \beta - 1) q^{61} + ( - 3 \beta - 1) q^{62} + q^{64} - \beta q^{65} + ( - 3 \beta - 1) q^{67} + ( - 2 \beta + 3) q^{68} + \beta q^{70} + (6 \beta + 6) q^{71} + (3 \beta - 4) q^{73} + (3 \beta + 2) q^{74} + (3 \beta - 1) q^{76} + ( - \beta + 3) q^{77} + (3 \beta - 1) q^{79} + \beta q^{80} + (2 \beta + 6) q^{82} + (\beta + 3) q^{83} + (3 \beta - 6) q^{85} + ( - 6 \beta + 2) q^{86} + ( - \beta + 3) q^{88} + (2 \beta - 9) q^{89} - q^{91} + (\beta + 3) q^{92} + ( - 3 \beta - 3) q^{94} + ( - \beta + 9) q^{95} - 16 q^{97} + q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{7} + 2 q^{8} + 6 q^{11} - 2 q^{13} + 2 q^{14} + 2 q^{16} + 6 q^{17} - 2 q^{19} + 6 q^{22} + 6 q^{23} - 4 q^{25} - 2 q^{26} + 2 q^{28} + 6 q^{29} - 2 q^{31} + 2 q^{32} + 6 q^{34} + 4 q^{37} - 2 q^{38} + 12 q^{41} + 4 q^{43} + 6 q^{44} + 6 q^{46} - 6 q^{47} + 2 q^{49} - 4 q^{50} - 2 q^{52} + 12 q^{53} - 6 q^{55} + 2 q^{56} + 6 q^{58} - 6 q^{59} - 2 q^{61} - 2 q^{62} + 2 q^{64} - 2 q^{67} + 6 q^{68} + 12 q^{71} - 8 q^{73} + 4 q^{74} - 2 q^{76} + 6 q^{77} - 2 q^{79} + 12 q^{82} + 6 q^{83} - 12 q^{85} + 4 q^{86} + 6 q^{88} - 18 q^{89} - 2 q^{91} + 6 q^{92} - 6 q^{94} + 18 q^{95} - 32 q^{97} + 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
1.00000 0 1.00000 −1.73205 0 1.00000 1.00000 0 −1.73205
1.2 1.00000 0 1.00000 1.73205 0 1.00000 1.00000 0 1.73205
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.a.o yes 2
3.b odd 2 1 1134.2.a.j 2
4.b odd 2 1 9072.2.a.bf 2
7.b odd 2 1 7938.2.a.br 2
9.c even 3 2 1134.2.f.q 4
9.d odd 6 2 1134.2.f.t 4
12.b even 2 1 9072.2.a.bi 2
21.c even 2 1 7938.2.a.bi 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1134.2.a.j 2 3.b odd 2 1
1134.2.a.o yes 2 1.a even 1 1 trivial
1134.2.f.q 4 9.c even 3 2
1134.2.f.t 4 9.d odd 6 2
7938.2.a.bi 2 21.c even 2 1
7938.2.a.br 2 7.b odd 2 1
9072.2.a.bf 2 4.b odd 2 1
9072.2.a.bi 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1134))\):

\( T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 6 \) Copy content Toggle raw display
\( T_{13} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 3 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$13$ \( (T + 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T - 3 \) Copy content Toggle raw display
$19$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$29$ \( T^{2} - 6T - 3 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$37$ \( T^{2} - 4T - 23 \) Copy content Toggle raw display
$41$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T - 104 \) Copy content Toggle raw display
$47$ \( T^{2} + 6T - 18 \) Copy content Toggle raw display
$53$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$59$ \( T^{2} + 6T - 18 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T - 107 \) Copy content Toggle raw display
$67$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$71$ \( T^{2} - 12T - 72 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 11 \) Copy content Toggle raw display
$79$ \( T^{2} + 2T - 26 \) Copy content Toggle raw display
$83$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$89$ \( T^{2} + 18T + 69 \) Copy content Toggle raw display
$97$ \( (T + 16)^{2} \) Copy content Toggle raw display
show more
show less