Properties

Label 1134.2.a.k.1.2
Level $1134$
Weight $2$
Character 1134.1
Self dual yes
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(1,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 1134.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +4.37228 q^{5} +1.00000 q^{7} -1.00000 q^{8} -4.37228 q^{10} -1.37228 q^{11} +2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} +1.37228 q^{17} +5.00000 q^{19} +4.37228 q^{20} +1.37228 q^{22} -1.62772 q^{23} +14.1168 q^{25} -2.00000 q^{26} +1.00000 q^{28} -8.74456 q^{29} +2.00000 q^{31} -1.00000 q^{32} -1.37228 q^{34} +4.37228 q^{35} +2.00000 q^{37} -5.00000 q^{38} -4.37228 q^{40} +4.62772 q^{41} -8.11684 q^{43} -1.37228 q^{44} +1.62772 q^{46} +1.00000 q^{49} -14.1168 q^{50} +2.00000 q^{52} -8.74456 q^{53} -6.00000 q^{55} -1.00000 q^{56} +8.74456 q^{58} -10.1168 q^{59} +3.11684 q^{61} -2.00000 q^{62} +1.00000 q^{64} +8.74456 q^{65} -2.11684 q^{67} +1.37228 q^{68} -4.37228 q^{70} -7.11684 q^{71} +12.1168 q^{73} -2.00000 q^{74} +5.00000 q^{76} -1.37228 q^{77} -5.11684 q^{79} +4.37228 q^{80} -4.62772 q^{82} +17.4891 q^{83} +6.00000 q^{85} +8.11684 q^{86} +1.37228 q^{88} +14.7446 q^{89} +2.00000 q^{91} -1.62772 q^{92} +21.8614 q^{95} -8.11684 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 3 q^{5} + 2 q^{7} - 2 q^{8} - 3 q^{10} + 3 q^{11} + 4 q^{13} - 2 q^{14} + 2 q^{16} - 3 q^{17} + 10 q^{19} + 3 q^{20} - 3 q^{22} - 9 q^{23} + 11 q^{25} - 4 q^{26} + 2 q^{28} - 6 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 4.37228 1.95534 0.977672 0.210138i \(-0.0673912\pi\)
0.977672 + 0.210138i \(0.0673912\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −4.37228 −1.38264
\(11\) −1.37228 −0.413758 −0.206879 0.978366i \(-0.566331\pi\)
−0.206879 + 0.978366i \(0.566331\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 1.37228 0.332827 0.166414 0.986056i \(-0.446781\pi\)
0.166414 + 0.986056i \(0.446781\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 4.37228 0.977672
\(21\) 0 0
\(22\) 1.37228 0.292571
\(23\) −1.62772 −0.339403 −0.169701 0.985496i \(-0.554280\pi\)
−0.169701 + 0.985496i \(0.554280\pi\)
\(24\) 0 0
\(25\) 14.1168 2.82337
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) −8.74456 −1.62382 −0.811912 0.583779i \(-0.801573\pi\)
−0.811912 + 0.583779i \(0.801573\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −1.37228 −0.235344
\(35\) 4.37228 0.739050
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −5.00000 −0.811107
\(39\) 0 0
\(40\) −4.37228 −0.691318
\(41\) 4.62772 0.722728 0.361364 0.932425i \(-0.382311\pi\)
0.361364 + 0.932425i \(0.382311\pi\)
\(42\) 0 0
\(43\) −8.11684 −1.23781 −0.618904 0.785467i \(-0.712423\pi\)
−0.618904 + 0.785467i \(0.712423\pi\)
\(44\) −1.37228 −0.206879
\(45\) 0 0
\(46\) 1.62772 0.239994
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −14.1168 −1.99642
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) −8.74456 −1.20116 −0.600579 0.799565i \(-0.705063\pi\)
−0.600579 + 0.799565i \(0.705063\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) 8.74456 1.14822
\(59\) −10.1168 −1.31710 −0.658550 0.752537i \(-0.728830\pi\)
−0.658550 + 0.752537i \(0.728830\pi\)
\(60\) 0 0
\(61\) 3.11684 0.399071 0.199535 0.979891i \(-0.436057\pi\)
0.199535 + 0.979891i \(0.436057\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 8.74456 1.08463
\(66\) 0 0
\(67\) −2.11684 −0.258614 −0.129307 0.991605i \(-0.541275\pi\)
−0.129307 + 0.991605i \(0.541275\pi\)
\(68\) 1.37228 0.166414
\(69\) 0 0
\(70\) −4.37228 −0.522588
\(71\) −7.11684 −0.844614 −0.422307 0.906453i \(-0.638780\pi\)
−0.422307 + 0.906453i \(0.638780\pi\)
\(72\) 0 0
\(73\) 12.1168 1.41817 0.709085 0.705123i \(-0.249108\pi\)
0.709085 + 0.705123i \(0.249108\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) −1.37228 −0.156386
\(78\) 0 0
\(79\) −5.11684 −0.575690 −0.287845 0.957677i \(-0.592939\pi\)
−0.287845 + 0.957677i \(0.592939\pi\)
\(80\) 4.37228 0.488836
\(81\) 0 0
\(82\) −4.62772 −0.511046
\(83\) 17.4891 1.91968 0.959840 0.280546i \(-0.0905157\pi\)
0.959840 + 0.280546i \(0.0905157\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 8.11684 0.875262
\(87\) 0 0
\(88\) 1.37228 0.146286
\(89\) 14.7446 1.56292 0.781460 0.623955i \(-0.214475\pi\)
0.781460 + 0.623955i \(0.214475\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −1.62772 −0.169701
\(93\) 0 0
\(94\) 0 0
\(95\) 21.8614 2.24293
\(96\) 0 0
\(97\) −8.11684 −0.824141 −0.412070 0.911152i \(-0.635194\pi\)
−0.412070 + 0.911152i \(0.635194\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) 14.1168 1.41168
\(101\) 1.62772 0.161964 0.0809820 0.996716i \(-0.474194\pi\)
0.0809820 + 0.996716i \(0.474194\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) 8.74456 0.849347
\(107\) −7.37228 −0.712705 −0.356353 0.934352i \(-0.615980\pi\)
−0.356353 + 0.934352i \(0.615980\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 6.00000 0.572078
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) −4.37228 −0.411310 −0.205655 0.978625i \(-0.565932\pi\)
−0.205655 + 0.978625i \(0.565932\pi\)
\(114\) 0 0
\(115\) −7.11684 −0.663649
\(116\) −8.74456 −0.811912
\(117\) 0 0
\(118\) 10.1168 0.931331
\(119\) 1.37228 0.125797
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) −3.11684 −0.282186
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 39.8614 3.56531
\(126\) 0 0
\(127\) 3.11684 0.276575 0.138288 0.990392i \(-0.455840\pi\)
0.138288 + 0.990392i \(0.455840\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −8.74456 −0.766949
\(131\) −1.62772 −0.142214 −0.0711072 0.997469i \(-0.522653\pi\)
−0.0711072 + 0.997469i \(0.522653\pi\)
\(132\) 0 0
\(133\) 5.00000 0.433555
\(134\) 2.11684 0.182867
\(135\) 0 0
\(136\) −1.37228 −0.117672
\(137\) 10.6277 0.907987 0.453994 0.891005i \(-0.349999\pi\)
0.453994 + 0.891005i \(0.349999\pi\)
\(138\) 0 0
\(139\) 13.2337 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(140\) 4.37228 0.369525
\(141\) 0 0
\(142\) 7.11684 0.597232
\(143\) −2.74456 −0.229512
\(144\) 0 0
\(145\) −38.2337 −3.17513
\(146\) −12.1168 −1.00280
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) 3.25544 0.266696 0.133348 0.991069i \(-0.457427\pi\)
0.133348 + 0.991069i \(0.457427\pi\)
\(150\) 0 0
\(151\) 9.11684 0.741918 0.370959 0.928649i \(-0.379029\pi\)
0.370959 + 0.928649i \(0.379029\pi\)
\(152\) −5.00000 −0.405554
\(153\) 0 0
\(154\) 1.37228 0.110582
\(155\) 8.74456 0.702380
\(156\) 0 0
\(157\) 9.11684 0.727603 0.363802 0.931476i \(-0.381479\pi\)
0.363802 + 0.931476i \(0.381479\pi\)
\(158\) 5.11684 0.407074
\(159\) 0 0
\(160\) −4.37228 −0.345659
\(161\) −1.62772 −0.128282
\(162\) 0 0
\(163\) −18.2337 −1.42817 −0.714086 0.700058i \(-0.753158\pi\)
−0.714086 + 0.700058i \(0.753158\pi\)
\(164\) 4.62772 0.361364
\(165\) 0 0
\(166\) −17.4891 −1.35742
\(167\) −5.48913 −0.424761 −0.212381 0.977187i \(-0.568122\pi\)
−0.212381 + 0.977187i \(0.568122\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −6.00000 −0.460179
\(171\) 0 0
\(172\) −8.11684 −0.618904
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 14.1168 1.06713
\(176\) −1.37228 −0.103440
\(177\) 0 0
\(178\) −14.7446 −1.10515
\(179\) 3.25544 0.243323 0.121661 0.992572i \(-0.461178\pi\)
0.121661 + 0.992572i \(0.461178\pi\)
\(180\) 0 0
\(181\) 0.883156 0.0656445 0.0328222 0.999461i \(-0.489550\pi\)
0.0328222 + 0.999461i \(0.489550\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) 1.62772 0.119997
\(185\) 8.74456 0.642913
\(186\) 0 0
\(187\) −1.88316 −0.137710
\(188\) 0 0
\(189\) 0 0
\(190\) −21.8614 −1.58599
\(191\) −19.1168 −1.38325 −0.691623 0.722259i \(-0.743104\pi\)
−0.691623 + 0.722259i \(0.743104\pi\)
\(192\) 0 0
\(193\) −7.00000 −0.503871 −0.251936 0.967744i \(-0.581067\pi\)
−0.251936 + 0.967744i \(0.581067\pi\)
\(194\) 8.11684 0.582755
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) −14.1168 −0.998212
\(201\) 0 0
\(202\) −1.62772 −0.114526
\(203\) −8.74456 −0.613748
\(204\) 0 0
\(205\) 20.2337 1.41318
\(206\) 10.0000 0.696733
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) −6.86141 −0.474613
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) −8.74456 −0.600579
\(213\) 0 0
\(214\) 7.37228 0.503959
\(215\) −35.4891 −2.42034
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) −6.00000 −0.404520
\(221\) 2.74456 0.184619
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 4.37228 0.290840
\(227\) −12.2554 −0.813422 −0.406711 0.913557i \(-0.633324\pi\)
−0.406711 + 0.913557i \(0.633324\pi\)
\(228\) 0 0
\(229\) −2.88316 −0.190524 −0.0952622 0.995452i \(-0.530369\pi\)
−0.0952622 + 0.995452i \(0.530369\pi\)
\(230\) 7.11684 0.469271
\(231\) 0 0
\(232\) 8.74456 0.574109
\(233\) −0.255437 −0.0167343 −0.00836713 0.999965i \(-0.502663\pi\)
−0.00836713 + 0.999965i \(0.502663\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.1168 −0.658550
\(237\) 0 0
\(238\) −1.37228 −0.0889518
\(239\) 9.86141 0.637881 0.318941 0.947775i \(-0.396673\pi\)
0.318941 + 0.947775i \(0.396673\pi\)
\(240\) 0 0
\(241\) 18.1168 1.16701 0.583504 0.812110i \(-0.301681\pi\)
0.583504 + 0.812110i \(0.301681\pi\)
\(242\) 9.11684 0.586053
\(243\) 0 0
\(244\) 3.11684 0.199535
\(245\) 4.37228 0.279335
\(246\) 0 0
\(247\) 10.0000 0.636285
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) −39.8614 −2.52106
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) 0 0
\(253\) 2.23369 0.140431
\(254\) −3.11684 −0.195568
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.86141 −0.428003 −0.214001 0.976833i \(-0.568650\pi\)
−0.214001 + 0.976833i \(0.568650\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 8.74456 0.542315
\(261\) 0 0
\(262\) 1.62772 0.100561
\(263\) 7.62772 0.470345 0.235173 0.971954i \(-0.424434\pi\)
0.235173 + 0.971954i \(0.424434\pi\)
\(264\) 0 0
\(265\) −38.2337 −2.34868
\(266\) −5.00000 −0.306570
\(267\) 0 0
\(268\) −2.11684 −0.129307
\(269\) −1.62772 −0.0992438 −0.0496219 0.998768i \(-0.515802\pi\)
−0.0496219 + 0.998768i \(0.515802\pi\)
\(270\) 0 0
\(271\) 16.2337 0.986126 0.493063 0.869994i \(-0.335877\pi\)
0.493063 + 0.869994i \(0.335877\pi\)
\(272\) 1.37228 0.0832068
\(273\) 0 0
\(274\) −10.6277 −0.642044
\(275\) −19.3723 −1.16819
\(276\) 0 0
\(277\) −12.2337 −0.735051 −0.367526 0.930013i \(-0.619795\pi\)
−0.367526 + 0.930013i \(0.619795\pi\)
\(278\) −13.2337 −0.793704
\(279\) 0 0
\(280\) −4.37228 −0.261294
\(281\) 16.3723 0.976688 0.488344 0.872651i \(-0.337601\pi\)
0.488344 + 0.872651i \(0.337601\pi\)
\(282\) 0 0
\(283\) 27.1168 1.61193 0.805965 0.591964i \(-0.201647\pi\)
0.805965 + 0.591964i \(0.201647\pi\)
\(284\) −7.11684 −0.422307
\(285\) 0 0
\(286\) 2.74456 0.162289
\(287\) 4.62772 0.273166
\(288\) 0 0
\(289\) −15.1168 −0.889226
\(290\) 38.2337 2.24516
\(291\) 0 0
\(292\) 12.1168 0.709085
\(293\) −10.3723 −0.605955 −0.302978 0.952998i \(-0.597981\pi\)
−0.302978 + 0.952998i \(0.597981\pi\)
\(294\) 0 0
\(295\) −44.2337 −2.57538
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) −3.25544 −0.188582
\(299\) −3.25544 −0.188267
\(300\) 0 0
\(301\) −8.11684 −0.467847
\(302\) −9.11684 −0.524615
\(303\) 0 0
\(304\) 5.00000 0.286770
\(305\) 13.6277 0.780321
\(306\) 0 0
\(307\) −13.0000 −0.741949 −0.370975 0.928643i \(-0.620976\pi\)
−0.370975 + 0.928643i \(0.620976\pi\)
\(308\) −1.37228 −0.0781930
\(309\) 0 0
\(310\) −8.74456 −0.496658
\(311\) 8.23369 0.466890 0.233445 0.972370i \(-0.425000\pi\)
0.233445 + 0.972370i \(0.425000\pi\)
\(312\) 0 0
\(313\) −20.1168 −1.13707 −0.568536 0.822659i \(-0.692490\pi\)
−0.568536 + 0.822659i \(0.692490\pi\)
\(314\) −9.11684 −0.514493
\(315\) 0 0
\(316\) −5.11684 −0.287845
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 4.37228 0.244418
\(321\) 0 0
\(322\) 1.62772 0.0907092
\(323\) 6.86141 0.381779
\(324\) 0 0
\(325\) 28.2337 1.56612
\(326\) 18.2337 1.00987
\(327\) 0 0
\(328\) −4.62772 −0.255523
\(329\) 0 0
\(330\) 0 0
\(331\) 22.2337 1.22207 0.611037 0.791602i \(-0.290753\pi\)
0.611037 + 0.791602i \(0.290753\pi\)
\(332\) 17.4891 0.959840
\(333\) 0 0
\(334\) 5.48913 0.300352
\(335\) −9.25544 −0.505679
\(336\) 0 0
\(337\) −8.11684 −0.442153 −0.221076 0.975257i \(-0.570957\pi\)
−0.221076 + 0.975257i \(0.570957\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) −2.74456 −0.148626
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 8.11684 0.437631
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) −10.1168 −0.543101 −0.271550 0.962424i \(-0.587536\pi\)
−0.271550 + 0.962424i \(0.587536\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) −14.1168 −0.754577
\(351\) 0 0
\(352\) 1.37228 0.0731428
\(353\) −13.3723 −0.711735 −0.355867 0.934536i \(-0.615815\pi\)
−0.355867 + 0.934536i \(0.615815\pi\)
\(354\) 0 0
\(355\) −31.1168 −1.65151
\(356\) 14.7446 0.781460
\(357\) 0 0
\(358\) −3.25544 −0.172055
\(359\) 21.8614 1.15380 0.576900 0.816814i \(-0.304262\pi\)
0.576900 + 0.816814i \(0.304262\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) −0.883156 −0.0464177
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 52.9783 2.77301
\(366\) 0 0
\(367\) −12.2337 −0.638593 −0.319297 0.947655i \(-0.603447\pi\)
−0.319297 + 0.947655i \(0.603447\pi\)
\(368\) −1.62772 −0.0848507
\(369\) 0 0
\(370\) −8.74456 −0.454608
\(371\) −8.74456 −0.453995
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 1.88316 0.0973757
\(375\) 0 0
\(376\) 0 0
\(377\) −17.4891 −0.900736
\(378\) 0 0
\(379\) −8.11684 −0.416934 −0.208467 0.978029i \(-0.566847\pi\)
−0.208467 + 0.978029i \(0.566847\pi\)
\(380\) 21.8614 1.12147
\(381\) 0 0
\(382\) 19.1168 0.978103
\(383\) −32.7446 −1.67317 −0.836584 0.547838i \(-0.815451\pi\)
−0.836584 + 0.547838i \(0.815451\pi\)
\(384\) 0 0
\(385\) −6.00000 −0.305788
\(386\) 7.00000 0.356291
\(387\) 0 0
\(388\) −8.11684 −0.412070
\(389\) 10.9783 0.556619 0.278310 0.960491i \(-0.410226\pi\)
0.278310 + 0.960491i \(0.410226\pi\)
\(390\) 0 0
\(391\) −2.23369 −0.112962
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −22.3723 −1.12567
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) 14.1168 0.705842
\(401\) −11.7446 −0.586495 −0.293248 0.956036i \(-0.594736\pi\)
−0.293248 + 0.956036i \(0.594736\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 1.62772 0.0809820
\(405\) 0 0
\(406\) 8.74456 0.433985
\(407\) −2.74456 −0.136043
\(408\) 0 0
\(409\) −22.3505 −1.10516 −0.552581 0.833459i \(-0.686357\pi\)
−0.552581 + 0.833459i \(0.686357\pi\)
\(410\) −20.2337 −0.999271
\(411\) 0 0
\(412\) −10.0000 −0.492665
\(413\) −10.1168 −0.497817
\(414\) 0 0
\(415\) 76.4674 3.75364
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) 6.86141 0.335602
\(419\) −12.6060 −0.615842 −0.307921 0.951412i \(-0.599633\pi\)
−0.307921 + 0.951412i \(0.599633\pi\)
\(420\) 0 0
\(421\) 34.2337 1.66845 0.834224 0.551426i \(-0.185916\pi\)
0.834224 + 0.551426i \(0.185916\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) 8.74456 0.424674
\(425\) 19.3723 0.939694
\(426\) 0 0
\(427\) 3.11684 0.150835
\(428\) −7.37228 −0.356353
\(429\) 0 0
\(430\) 35.4891 1.71144
\(431\) −6.51087 −0.313618 −0.156809 0.987629i \(-0.550121\pi\)
−0.156809 + 0.987629i \(0.550121\pi\)
\(432\) 0 0
\(433\) −20.1168 −0.966754 −0.483377 0.875412i \(-0.660590\pi\)
−0.483377 + 0.875412i \(0.660590\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) −8.13859 −0.389322
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 6.00000 0.286039
\(441\) 0 0
\(442\) −2.74456 −0.130546
\(443\) −40.1168 −1.90601 −0.953004 0.302956i \(-0.902026\pi\)
−0.953004 + 0.302956i \(0.902026\pi\)
\(444\) 0 0
\(445\) 64.4674 3.05605
\(446\) 4.00000 0.189405
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) 0 0
\(451\) −6.35053 −0.299035
\(452\) −4.37228 −0.205655
\(453\) 0 0
\(454\) 12.2554 0.575176
\(455\) 8.74456 0.409951
\(456\) 0 0
\(457\) −35.4674 −1.65909 −0.829547 0.558437i \(-0.811401\pi\)
−0.829547 + 0.558437i \(0.811401\pi\)
\(458\) 2.88316 0.134721
\(459\) 0 0
\(460\) −7.11684 −0.331825
\(461\) 2.13859 0.0996042 0.0498021 0.998759i \(-0.484141\pi\)
0.0498021 + 0.998759i \(0.484141\pi\)
\(462\) 0 0
\(463\) −23.1168 −1.07433 −0.537165 0.843477i \(-0.680505\pi\)
−0.537165 + 0.843477i \(0.680505\pi\)
\(464\) −8.74456 −0.405956
\(465\) 0 0
\(466\) 0.255437 0.0118329
\(467\) 33.0951 1.53146 0.765729 0.643163i \(-0.222378\pi\)
0.765729 + 0.643163i \(0.222378\pi\)
\(468\) 0 0
\(469\) −2.11684 −0.0977468
\(470\) 0 0
\(471\) 0 0
\(472\) 10.1168 0.465665
\(473\) 11.1386 0.512153
\(474\) 0 0
\(475\) 70.5842 3.23863
\(476\) 1.37228 0.0628984
\(477\) 0 0
\(478\) −9.86141 −0.451050
\(479\) 32.7446 1.49614 0.748069 0.663621i \(-0.230981\pi\)
0.748069 + 0.663621i \(0.230981\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) −18.1168 −0.825200
\(483\) 0 0
\(484\) −9.11684 −0.414402
\(485\) −35.4891 −1.61148
\(486\) 0 0
\(487\) 35.3505 1.60189 0.800943 0.598741i \(-0.204332\pi\)
0.800943 + 0.598741i \(0.204332\pi\)
\(488\) −3.11684 −0.141093
\(489\) 0 0
\(490\) −4.37228 −0.197520
\(491\) −25.3723 −1.14504 −0.572518 0.819892i \(-0.694033\pi\)
−0.572518 + 0.819892i \(0.694033\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) −10.0000 −0.449921
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) −7.11684 −0.319234
\(498\) 0 0
\(499\) 18.1168 0.811021 0.405511 0.914090i \(-0.367094\pi\)
0.405511 + 0.914090i \(0.367094\pi\)
\(500\) 39.8614 1.78266
\(501\) 0 0
\(502\) 9.00000 0.401690
\(503\) −32.2337 −1.43723 −0.718615 0.695409i \(-0.755223\pi\)
−0.718615 + 0.695409i \(0.755223\pi\)
\(504\) 0 0
\(505\) 7.11684 0.316695
\(506\) −2.23369 −0.0992995
\(507\) 0 0
\(508\) 3.11684 0.138288
\(509\) −28.9783 −1.28444 −0.642219 0.766521i \(-0.721986\pi\)
−0.642219 + 0.766521i \(0.721986\pi\)
\(510\) 0 0
\(511\) 12.1168 0.536018
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 6.86141 0.302644
\(515\) −43.7228 −1.92666
\(516\) 0 0
\(517\) 0 0
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) −8.74456 −0.383474
\(521\) −24.8614 −1.08920 −0.544599 0.838697i \(-0.683318\pi\)
−0.544599 + 0.838697i \(0.683318\pi\)
\(522\) 0 0
\(523\) −35.1168 −1.53555 −0.767776 0.640718i \(-0.778637\pi\)
−0.767776 + 0.640718i \(0.778637\pi\)
\(524\) −1.62772 −0.0711072
\(525\) 0 0
\(526\) −7.62772 −0.332584
\(527\) 2.74456 0.119555
\(528\) 0 0
\(529\) −20.3505 −0.884806
\(530\) 38.2337 1.66077
\(531\) 0 0
\(532\) 5.00000 0.216777
\(533\) 9.25544 0.400897
\(534\) 0 0
\(535\) −32.2337 −1.39358
\(536\) 2.11684 0.0914337
\(537\) 0 0
\(538\) 1.62772 0.0701759
\(539\) −1.37228 −0.0591083
\(540\) 0 0
\(541\) −6.23369 −0.268007 −0.134004 0.990981i \(-0.542783\pi\)
−0.134004 + 0.990981i \(0.542783\pi\)
\(542\) −16.2337 −0.697297
\(543\) 0 0
\(544\) −1.37228 −0.0588361
\(545\) 61.2119 2.62203
\(546\) 0 0
\(547\) 18.1168 0.774620 0.387310 0.921949i \(-0.373404\pi\)
0.387310 + 0.921949i \(0.373404\pi\)
\(548\) 10.6277 0.453994
\(549\) 0 0
\(550\) 19.3723 0.826037
\(551\) −43.7228 −1.86265
\(552\) 0 0
\(553\) −5.11684 −0.217590
\(554\) 12.2337 0.519760
\(555\) 0 0
\(556\) 13.2337 0.561233
\(557\) 29.4891 1.24949 0.624747 0.780827i \(-0.285202\pi\)
0.624747 + 0.780827i \(0.285202\pi\)
\(558\) 0 0
\(559\) −16.2337 −0.686612
\(560\) 4.37228 0.184763
\(561\) 0 0
\(562\) −16.3723 −0.690623
\(563\) 3.00000 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(564\) 0 0
\(565\) −19.1168 −0.804252
\(566\) −27.1168 −1.13981
\(567\) 0 0
\(568\) 7.11684 0.298616
\(569\) 16.1168 0.675653 0.337827 0.941208i \(-0.390308\pi\)
0.337827 + 0.941208i \(0.390308\pi\)
\(570\) 0 0
\(571\) −22.3505 −0.935341 −0.467670 0.883903i \(-0.654907\pi\)
−0.467670 + 0.883903i \(0.654907\pi\)
\(572\) −2.74456 −0.114756
\(573\) 0 0
\(574\) −4.62772 −0.193157
\(575\) −22.9783 −0.958259
\(576\) 0 0
\(577\) 9.88316 0.411441 0.205721 0.978611i \(-0.434046\pi\)
0.205721 + 0.978611i \(0.434046\pi\)
\(578\) 15.1168 0.628778
\(579\) 0 0
\(580\) −38.2337 −1.58757
\(581\) 17.4891 0.725571
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) −12.1168 −0.501399
\(585\) 0 0
\(586\) 10.3723 0.428475
\(587\) 14.4891 0.598030 0.299015 0.954248i \(-0.403342\pi\)
0.299015 + 0.954248i \(0.403342\pi\)
\(588\) 0 0
\(589\) 10.0000 0.412043
\(590\) 44.2337 1.82107
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) 14.7446 0.605487 0.302743 0.953072i \(-0.402098\pi\)
0.302743 + 0.953072i \(0.402098\pi\)
\(594\) 0 0
\(595\) 6.00000 0.245976
\(596\) 3.25544 0.133348
\(597\) 0 0
\(598\) 3.25544 0.133125
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 24.1168 0.983747 0.491873 0.870667i \(-0.336312\pi\)
0.491873 + 0.870667i \(0.336312\pi\)
\(602\) 8.11684 0.330818
\(603\) 0 0
\(604\) 9.11684 0.370959
\(605\) −39.8614 −1.62060
\(606\) 0 0
\(607\) 22.2337 0.902438 0.451219 0.892413i \(-0.350989\pi\)
0.451219 + 0.892413i \(0.350989\pi\)
\(608\) −5.00000 −0.202777
\(609\) 0 0
\(610\) −13.6277 −0.551770
\(611\) 0 0
\(612\) 0 0
\(613\) −36.2337 −1.46346 −0.731732 0.681592i \(-0.761288\pi\)
−0.731732 + 0.681592i \(0.761288\pi\)
\(614\) 13.0000 0.524637
\(615\) 0 0
\(616\) 1.37228 0.0552908
\(617\) 18.8614 0.759332 0.379666 0.925124i \(-0.376039\pi\)
0.379666 + 0.925124i \(0.376039\pi\)
\(618\) 0 0
\(619\) 45.4674 1.82749 0.913744 0.406290i \(-0.133178\pi\)
0.913744 + 0.406290i \(0.133178\pi\)
\(620\) 8.74456 0.351190
\(621\) 0 0
\(622\) −8.23369 −0.330141
\(623\) 14.7446 0.590728
\(624\) 0 0
\(625\) 103.701 4.14804
\(626\) 20.1168 0.804031
\(627\) 0 0
\(628\) 9.11684 0.363802
\(629\) 2.74456 0.109433
\(630\) 0 0
\(631\) −37.3505 −1.48690 −0.743451 0.668791i \(-0.766812\pi\)
−0.743451 + 0.668791i \(0.766812\pi\)
\(632\) 5.11684 0.203537
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 13.6277 0.540800
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) −12.0000 −0.475085
\(639\) 0 0
\(640\) −4.37228 −0.172830
\(641\) 34.2119 1.35129 0.675645 0.737227i \(-0.263865\pi\)
0.675645 + 0.737227i \(0.263865\pi\)
\(642\) 0 0
\(643\) 26.3505 1.03916 0.519582 0.854421i \(-0.326088\pi\)
0.519582 + 0.854421i \(0.326088\pi\)
\(644\) −1.62772 −0.0641411
\(645\) 0 0
\(646\) −6.86141 −0.269958
\(647\) 5.48913 0.215800 0.107900 0.994162i \(-0.465587\pi\)
0.107900 + 0.994162i \(0.465587\pi\)
\(648\) 0 0
\(649\) 13.8832 0.544962
\(650\) −28.2337 −1.10742
\(651\) 0 0
\(652\) −18.2337 −0.714086
\(653\) −26.7446 −1.04660 −0.523298 0.852150i \(-0.675298\pi\)
−0.523298 + 0.852150i \(0.675298\pi\)
\(654\) 0 0
\(655\) −7.11684 −0.278078
\(656\) 4.62772 0.180682
\(657\) 0 0
\(658\) 0 0
\(659\) −20.7446 −0.808093 −0.404047 0.914738i \(-0.632397\pi\)
−0.404047 + 0.914738i \(0.632397\pi\)
\(660\) 0 0
\(661\) 27.1168 1.05472 0.527361 0.849641i \(-0.323181\pi\)
0.527361 + 0.849641i \(0.323181\pi\)
\(662\) −22.2337 −0.864137
\(663\) 0 0
\(664\) −17.4891 −0.678710
\(665\) 21.8614 0.847749
\(666\) 0 0
\(667\) 14.2337 0.551131
\(668\) −5.48913 −0.212381
\(669\) 0 0
\(670\) 9.25544 0.357569
\(671\) −4.27719 −0.165119
\(672\) 0 0
\(673\) −2.88316 −0.111137 −0.0555687 0.998455i \(-0.517697\pi\)
−0.0555687 + 0.998455i \(0.517697\pi\)
\(674\) 8.11684 0.312649
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 34.4674 1.32469 0.662344 0.749199i \(-0.269562\pi\)
0.662344 + 0.749199i \(0.269562\pi\)
\(678\) 0 0
\(679\) −8.11684 −0.311496
\(680\) −6.00000 −0.230089
\(681\) 0 0
\(682\) 2.74456 0.105095
\(683\) 29.8397 1.14178 0.570891 0.821026i \(-0.306598\pi\)
0.570891 + 0.821026i \(0.306598\pi\)
\(684\) 0 0
\(685\) 46.4674 1.77543
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) −8.11684 −0.309452
\(689\) −17.4891 −0.666283
\(690\) 0 0
\(691\) −23.1168 −0.879406 −0.439703 0.898143i \(-0.644916\pi\)
−0.439703 + 0.898143i \(0.644916\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 10.1168 0.384030
\(695\) 57.8614 2.19481
\(696\) 0 0
\(697\) 6.35053 0.240544
\(698\) 22.0000 0.832712
\(699\) 0 0
\(700\) 14.1168 0.533567
\(701\) −38.2337 −1.44407 −0.722033 0.691858i \(-0.756792\pi\)
−0.722033 + 0.691858i \(0.756792\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) −1.37228 −0.0517198
\(705\) 0 0
\(706\) 13.3723 0.503272
\(707\) 1.62772 0.0612167
\(708\) 0 0
\(709\) 44.0000 1.65245 0.826227 0.563337i \(-0.190483\pi\)
0.826227 + 0.563337i \(0.190483\pi\)
\(710\) 31.1168 1.16779
\(711\) 0 0
\(712\) −14.7446 −0.552576
\(713\) −3.25544 −0.121917
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 3.25544 0.121661
\(717\) 0 0
\(718\) −21.8614 −0.815860
\(719\) 2.74456 0.102355 0.0511775 0.998690i \(-0.483703\pi\)
0.0511775 + 0.998690i \(0.483703\pi\)
\(720\) 0 0
\(721\) −10.0000 −0.372419
\(722\) −6.00000 −0.223297
\(723\) 0 0
\(724\) 0.883156 0.0328222
\(725\) −123.446 −4.58466
\(726\) 0 0
\(727\) −36.2337 −1.34383 −0.671917 0.740627i \(-0.734529\pi\)
−0.671917 + 0.740627i \(0.734529\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 0 0
\(730\) −52.9783 −1.96081
\(731\) −11.1386 −0.411976
\(732\) 0 0
\(733\) −41.1168 −1.51869 −0.759343 0.650691i \(-0.774479\pi\)
−0.759343 + 0.650691i \(0.774479\pi\)
\(734\) 12.2337 0.451554
\(735\) 0 0
\(736\) 1.62772 0.0599985
\(737\) 2.90491 0.107004
\(738\) 0 0
\(739\) −8.11684 −0.298583 −0.149291 0.988793i \(-0.547699\pi\)
−0.149291 + 0.988793i \(0.547699\pi\)
\(740\) 8.74456 0.321457
\(741\) 0 0
\(742\) 8.74456 0.321023
\(743\) −13.7228 −0.503441 −0.251721 0.967800i \(-0.580996\pi\)
−0.251721 + 0.967800i \(0.580996\pi\)
\(744\) 0 0
\(745\) 14.2337 0.521482
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) −1.88316 −0.0688550
\(749\) −7.37228 −0.269377
\(750\) 0 0
\(751\) −17.1168 −0.624603 −0.312301 0.949983i \(-0.601100\pi\)
−0.312301 + 0.949983i \(0.601100\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 17.4891 0.636916
\(755\) 39.8614 1.45071
\(756\) 0 0
\(757\) 46.2337 1.68039 0.840196 0.542283i \(-0.182440\pi\)
0.840196 + 0.542283i \(0.182440\pi\)
\(758\) 8.11684 0.294817
\(759\) 0 0
\(760\) −21.8614 −0.792997
\(761\) 35.4891 1.28648 0.643240 0.765665i \(-0.277590\pi\)
0.643240 + 0.765665i \(0.277590\pi\)
\(762\) 0 0
\(763\) 14.0000 0.506834
\(764\) −19.1168 −0.691623
\(765\) 0 0
\(766\) 32.7446 1.18311
\(767\) −20.2337 −0.730596
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 6.00000 0.216225
\(771\) 0 0
\(772\) −7.00000 −0.251936
\(773\) −39.8614 −1.43372 −0.716858 0.697220i \(-0.754420\pi\)
−0.716858 + 0.697220i \(0.754420\pi\)
\(774\) 0 0
\(775\) 28.2337 1.01418
\(776\) 8.11684 0.291378
\(777\) 0 0
\(778\) −10.9783 −0.393589
\(779\) 23.1386 0.829026
\(780\) 0 0
\(781\) 9.76631 0.349466
\(782\) 2.23369 0.0798765
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 39.8614 1.42271
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 22.3723 0.795970
\(791\) −4.37228 −0.155460
\(792\) 0 0
\(793\) 6.23369 0.221365
\(794\) 22.0000 0.780751
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) −8.13859 −0.288284 −0.144142 0.989557i \(-0.546042\pi\)
−0.144142 + 0.989557i \(0.546042\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −14.1168 −0.499106
\(801\) 0 0
\(802\) 11.7446 0.414715
\(803\) −16.6277 −0.586779
\(804\) 0 0
\(805\) −7.11684 −0.250836
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) −1.62772 −0.0572629
\(809\) −6.86141 −0.241234 −0.120617 0.992699i \(-0.538487\pi\)
−0.120617 + 0.992699i \(0.538487\pi\)
\(810\) 0 0
\(811\) 42.1168 1.47892 0.739461 0.673199i \(-0.235080\pi\)
0.739461 + 0.673199i \(0.235080\pi\)
\(812\) −8.74456 −0.306874
\(813\) 0 0
\(814\) 2.74456 0.0961969
\(815\) −79.7228 −2.79257
\(816\) 0 0
\(817\) −40.5842 −1.41986
\(818\) 22.3505 0.781468
\(819\) 0 0
\(820\) 20.2337 0.706591
\(821\) −3.76631 −0.131445 −0.0657226 0.997838i \(-0.520935\pi\)
−0.0657226 + 0.997838i \(0.520935\pi\)
\(822\) 0 0
\(823\) −12.2337 −0.426440 −0.213220 0.977004i \(-0.568395\pi\)
−0.213220 + 0.977004i \(0.568395\pi\)
\(824\) 10.0000 0.348367
\(825\) 0 0
\(826\) 10.1168 0.352010
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −13.7663 −0.478124 −0.239062 0.971004i \(-0.576840\pi\)
−0.239062 + 0.971004i \(0.576840\pi\)
\(830\) −76.4674 −2.65422
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 1.37228 0.0475467
\(834\) 0 0
\(835\) −24.0000 −0.830554
\(836\) −6.86141 −0.237307
\(837\) 0 0
\(838\) 12.6060 0.435466
\(839\) 5.48913 0.189506 0.0947528 0.995501i \(-0.469794\pi\)
0.0947528 + 0.995501i \(0.469794\pi\)
\(840\) 0 0
\(841\) 47.4674 1.63681
\(842\) −34.2337 −1.17977
\(843\) 0 0
\(844\) −16.0000 −0.550743
\(845\) −39.3505 −1.35370
\(846\) 0 0
\(847\) −9.11684 −0.313258
\(848\) −8.74456 −0.300290
\(849\) 0 0
\(850\) −19.3723 −0.664464
\(851\) −3.25544 −0.111595
\(852\) 0 0
\(853\) −35.1168 −1.20238 −0.601189 0.799107i \(-0.705306\pi\)
−0.601189 + 0.799107i \(0.705306\pi\)
\(854\) −3.11684 −0.106656
\(855\) 0 0
\(856\) 7.37228 0.251979
\(857\) −39.9565 −1.36489 −0.682444 0.730938i \(-0.739083\pi\)
−0.682444 + 0.730938i \(0.739083\pi\)
\(858\) 0 0
\(859\) 33.8832 1.15608 0.578039 0.816009i \(-0.303818\pi\)
0.578039 + 0.816009i \(0.303818\pi\)
\(860\) −35.4891 −1.21017
\(861\) 0 0
\(862\) 6.51087 0.221761
\(863\) 9.86141 0.335686 0.167843 0.985814i \(-0.446320\pi\)
0.167843 + 0.985814i \(0.446320\pi\)
\(864\) 0 0
\(865\) −26.2337 −0.891972
\(866\) 20.1168 0.683598
\(867\) 0 0
\(868\) 2.00000 0.0678844
\(869\) 7.02175 0.238197
\(870\) 0 0
\(871\) −4.23369 −0.143453
\(872\) −14.0000 −0.474100
\(873\) 0 0
\(874\) 8.13859 0.275292
\(875\) 39.8614 1.34756
\(876\) 0 0
\(877\) −58.7011 −1.98219 −0.991097 0.133141i \(-0.957494\pi\)
−0.991097 + 0.133141i \(0.957494\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) −6.00000 −0.202260
\(881\) −20.2337 −0.681690 −0.340845 0.940119i \(-0.610713\pi\)
−0.340845 + 0.940119i \(0.610713\pi\)
\(882\) 0 0
\(883\) −40.3505 −1.35790 −0.678952 0.734183i \(-0.737565\pi\)
−0.678952 + 0.734183i \(0.737565\pi\)
\(884\) 2.74456 0.0923096
\(885\) 0 0
\(886\) 40.1168 1.34775
\(887\) 25.7228 0.863688 0.431844 0.901948i \(-0.357863\pi\)
0.431844 + 0.901948i \(0.357863\pi\)
\(888\) 0 0
\(889\) 3.11684 0.104536
\(890\) −64.4674 −2.16095
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 0 0
\(894\) 0 0
\(895\) 14.2337 0.475780
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −33.0000 −1.10122
\(899\) −17.4891 −0.583295
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 6.35053 0.211450
\(903\) 0 0
\(904\) 4.37228 0.145420
\(905\) 3.86141 0.128357
\(906\) 0 0
\(907\) −26.1168 −0.867196 −0.433598 0.901107i \(-0.642756\pi\)
−0.433598 + 0.901107i \(0.642756\pi\)
\(908\) −12.2554 −0.406711
\(909\) 0 0
\(910\) −8.74456 −0.289879
\(911\) −37.6277 −1.24666 −0.623331 0.781958i \(-0.714221\pi\)
−0.623331 + 0.781958i \(0.714221\pi\)
\(912\) 0 0
\(913\) −24.0000 −0.794284
\(914\) 35.4674 1.17316
\(915\) 0 0
\(916\) −2.88316 −0.0952622
\(917\) −1.62772 −0.0537520
\(918\) 0 0
\(919\) −47.1168 −1.55424 −0.777121 0.629352i \(-0.783321\pi\)
−0.777121 + 0.629352i \(0.783321\pi\)
\(920\) 7.11684 0.234635
\(921\) 0 0
\(922\) −2.13859 −0.0704308
\(923\) −14.2337 −0.468508
\(924\) 0 0
\(925\) 28.2337 0.928318
\(926\) 23.1168 0.759667
\(927\) 0 0
\(928\) 8.74456 0.287054
\(929\) 44.2337 1.45126 0.725630 0.688085i \(-0.241548\pi\)
0.725630 + 0.688085i \(0.241548\pi\)
\(930\) 0 0
\(931\) 5.00000 0.163868
\(932\) −0.255437 −0.00836713
\(933\) 0 0
\(934\) −33.0951 −1.08290
\(935\) −8.23369 −0.269270
\(936\) 0 0
\(937\) 30.4674 0.995326 0.497663 0.867371i \(-0.334192\pi\)
0.497663 + 0.867371i \(0.334192\pi\)
\(938\) 2.11684 0.0691174
\(939\) 0 0
\(940\) 0 0
\(941\) 19.1168 0.623191 0.311596 0.950215i \(-0.399137\pi\)
0.311596 + 0.950215i \(0.399137\pi\)
\(942\) 0 0
\(943\) −7.53262 −0.245296
\(944\) −10.1168 −0.329275
\(945\) 0 0
\(946\) −11.1386 −0.362147
\(947\) 34.1168 1.10865 0.554324 0.832301i \(-0.312977\pi\)
0.554324 + 0.832301i \(0.312977\pi\)
\(948\) 0 0
\(949\) 24.2337 0.786659
\(950\) −70.5842 −2.29005
\(951\) 0 0
\(952\) −1.37228 −0.0444759
\(953\) 28.1168 0.910794 0.455397 0.890288i \(-0.349497\pi\)
0.455397 + 0.890288i \(0.349497\pi\)
\(954\) 0 0
\(955\) −83.5842 −2.70472
\(956\) 9.86141 0.318941
\(957\) 0 0
\(958\) −32.7446 −1.05793
\(959\) 10.6277 0.343187
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −4.00000 −0.128965
\(963\) 0 0
\(964\) 18.1168 0.583504
\(965\) −30.6060 −0.985241
\(966\) 0 0
\(967\) 30.8832 0.993135 0.496568 0.867998i \(-0.334593\pi\)
0.496568 + 0.867998i \(0.334593\pi\)
\(968\) 9.11684 0.293026
\(969\) 0 0
\(970\) 35.4891 1.13949
\(971\) 1.62772 0.0522360 0.0261180 0.999659i \(-0.491685\pi\)
0.0261180 + 0.999659i \(0.491685\pi\)
\(972\) 0 0
\(973\) 13.2337 0.424253
\(974\) −35.3505 −1.13270
\(975\) 0 0
\(976\) 3.11684 0.0997677
\(977\) 40.1168 1.28345 0.641726 0.766934i \(-0.278219\pi\)
0.641726 + 0.766934i \(0.278219\pi\)
\(978\) 0 0
\(979\) −20.2337 −0.646671
\(980\) 4.37228 0.139667
\(981\) 0 0
\(982\) 25.3723 0.809662
\(983\) −39.2554 −1.25205 −0.626027 0.779801i \(-0.715320\pi\)
−0.626027 + 0.779801i \(0.715320\pi\)
\(984\) 0 0
\(985\) −26.2337 −0.835875
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 10.0000 0.318142
\(989\) 13.2119 0.420115
\(990\) 0 0
\(991\) 48.4674 1.53962 0.769808 0.638275i \(-0.220352\pi\)
0.769808 + 0.638275i \(0.220352\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) 7.11684 0.225733
\(995\) −43.7228 −1.38611
\(996\) 0 0
\(997\) −5.11684 −0.162052 −0.0810260 0.996712i \(-0.525820\pi\)
−0.0810260 + 0.996712i \(0.525820\pi\)
\(998\) −18.1168 −0.573479
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.a.k.1.2 2
3.2 odd 2 1134.2.a.n.1.1 2
4.3 odd 2 9072.2.a.bm.1.2 2
7.6 odd 2 7938.2.a.bh.1.1 2
9.2 odd 6 378.2.f.c.253.2 4
9.4 even 3 126.2.f.d.43.1 4
9.5 odd 6 378.2.f.c.127.2 4
9.7 even 3 126.2.f.d.85.1 yes 4
12.11 even 2 9072.2.a.bb.1.1 2
21.20 even 2 7938.2.a.bs.1.2 2
36.7 odd 6 1008.2.r.f.337.2 4
36.11 even 6 3024.2.r.f.1009.2 4
36.23 even 6 3024.2.r.f.2017.2 4
36.31 odd 6 1008.2.r.f.673.2 4
63.2 odd 6 2646.2.h.k.361.1 4
63.4 even 3 882.2.h.m.79.2 4
63.5 even 6 2646.2.e.m.2125.1 4
63.11 odd 6 2646.2.e.n.1549.2 4
63.13 odd 6 882.2.f.k.295.2 4
63.16 even 3 882.2.h.m.67.2 4
63.20 even 6 2646.2.f.j.1765.1 4
63.23 odd 6 2646.2.e.n.2125.2 4
63.25 even 3 882.2.e.l.373.2 4
63.31 odd 6 882.2.h.n.79.1 4
63.32 odd 6 2646.2.h.k.667.1 4
63.34 odd 6 882.2.f.k.589.2 4
63.38 even 6 2646.2.e.m.1549.1 4
63.40 odd 6 882.2.e.k.655.2 4
63.41 even 6 2646.2.f.j.883.1 4
63.47 even 6 2646.2.h.l.361.2 4
63.52 odd 6 882.2.e.k.373.1 4
63.58 even 3 882.2.e.l.655.1 4
63.59 even 6 2646.2.h.l.667.2 4
63.61 odd 6 882.2.h.n.67.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.d.43.1 4 9.4 even 3
126.2.f.d.85.1 yes 4 9.7 even 3
378.2.f.c.127.2 4 9.5 odd 6
378.2.f.c.253.2 4 9.2 odd 6
882.2.e.k.373.1 4 63.52 odd 6
882.2.e.k.655.2 4 63.40 odd 6
882.2.e.l.373.2 4 63.25 even 3
882.2.e.l.655.1 4 63.58 even 3
882.2.f.k.295.2 4 63.13 odd 6
882.2.f.k.589.2 4 63.34 odd 6
882.2.h.m.67.2 4 63.16 even 3
882.2.h.m.79.2 4 63.4 even 3
882.2.h.n.67.1 4 63.61 odd 6
882.2.h.n.79.1 4 63.31 odd 6
1008.2.r.f.337.2 4 36.7 odd 6
1008.2.r.f.673.2 4 36.31 odd 6
1134.2.a.k.1.2 2 1.1 even 1 trivial
1134.2.a.n.1.1 2 3.2 odd 2
2646.2.e.m.1549.1 4 63.38 even 6
2646.2.e.m.2125.1 4 63.5 even 6
2646.2.e.n.1549.2 4 63.11 odd 6
2646.2.e.n.2125.2 4 63.23 odd 6
2646.2.f.j.883.1 4 63.41 even 6
2646.2.f.j.1765.1 4 63.20 even 6
2646.2.h.k.361.1 4 63.2 odd 6
2646.2.h.k.667.1 4 63.32 odd 6
2646.2.h.l.361.2 4 63.47 even 6
2646.2.h.l.667.2 4 63.59 even 6
3024.2.r.f.1009.2 4 36.11 even 6
3024.2.r.f.2017.2 4 36.23 even 6
7938.2.a.bh.1.1 2 7.6 odd 2
7938.2.a.bs.1.2 2 21.20 even 2
9072.2.a.bb.1.1 2 12.11 even 2
9072.2.a.bm.1.2 2 4.3 odd 2