Properties

Label 1134.2.a.k.1.1
Level $1134$
Weight $2$
Character 1134.1
Self dual yes
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(1,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 1134.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -1.37228 q^{5} +1.00000 q^{7} -1.00000 q^{8} +1.37228 q^{10} +4.37228 q^{11} +2.00000 q^{13} -1.00000 q^{14} +1.00000 q^{16} -4.37228 q^{17} +5.00000 q^{19} -1.37228 q^{20} -4.37228 q^{22} -7.37228 q^{23} -3.11684 q^{25} -2.00000 q^{26} +1.00000 q^{28} +2.74456 q^{29} +2.00000 q^{31} -1.00000 q^{32} +4.37228 q^{34} -1.37228 q^{35} +2.00000 q^{37} -5.00000 q^{38} +1.37228 q^{40} +10.3723 q^{41} +9.11684 q^{43} +4.37228 q^{44} +7.37228 q^{46} +1.00000 q^{49} +3.11684 q^{50} +2.00000 q^{52} +2.74456 q^{53} -6.00000 q^{55} -1.00000 q^{56} -2.74456 q^{58} +7.11684 q^{59} -14.1168 q^{61} -2.00000 q^{62} +1.00000 q^{64} -2.74456 q^{65} +15.1168 q^{67} -4.37228 q^{68} +1.37228 q^{70} +10.1168 q^{71} -5.11684 q^{73} -2.00000 q^{74} +5.00000 q^{76} +4.37228 q^{77} +12.1168 q^{79} -1.37228 q^{80} -10.3723 q^{82} -5.48913 q^{83} +6.00000 q^{85} -9.11684 q^{86} -4.37228 q^{88} +3.25544 q^{89} +2.00000 q^{91} -7.37228 q^{92} -6.86141 q^{95} +9.11684 q^{97} -1.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 3 q^{5} + 2 q^{7} - 2 q^{8} - 3 q^{10} + 3 q^{11} + 4 q^{13} - 2 q^{14} + 2 q^{16} - 3 q^{17} + 10 q^{19} + 3 q^{20} - 3 q^{22} - 9 q^{23} + 11 q^{25} - 4 q^{26} + 2 q^{28} - 6 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.37228 −0.613703 −0.306851 0.951757i \(-0.599275\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.37228 0.433953
\(11\) 4.37228 1.31829 0.659146 0.752015i \(-0.270918\pi\)
0.659146 + 0.752015i \(0.270918\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.37228 −1.06043 −0.530217 0.847862i \(-0.677890\pi\)
−0.530217 + 0.847862i \(0.677890\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) −1.37228 −0.306851
\(21\) 0 0
\(22\) −4.37228 −0.932174
\(23\) −7.37228 −1.53723 −0.768613 0.639713i \(-0.779053\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 0 0
\(25\) −3.11684 −0.623369
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 2.74456 0.509652 0.254826 0.966987i \(-0.417982\pi\)
0.254826 + 0.966987i \(0.417982\pi\)
\(30\) 0 0
\(31\) 2.00000 0.359211 0.179605 0.983739i \(-0.442518\pi\)
0.179605 + 0.983739i \(0.442518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.37228 0.749840
\(35\) −1.37228 −0.231958
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −5.00000 −0.811107
\(39\) 0 0
\(40\) 1.37228 0.216977
\(41\) 10.3723 1.61988 0.809939 0.586514i \(-0.199500\pi\)
0.809939 + 0.586514i \(0.199500\pi\)
\(42\) 0 0
\(43\) 9.11684 1.39031 0.695153 0.718862i \(-0.255337\pi\)
0.695153 + 0.718862i \(0.255337\pi\)
\(44\) 4.37228 0.659146
\(45\) 0 0
\(46\) 7.37228 1.08698
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 3.11684 0.440788
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 2.74456 0.376995 0.188497 0.982074i \(-0.439638\pi\)
0.188497 + 0.982074i \(0.439638\pi\)
\(54\) 0 0
\(55\) −6.00000 −0.809040
\(56\) −1.00000 −0.133631
\(57\) 0 0
\(58\) −2.74456 −0.360379
\(59\) 7.11684 0.926534 0.463267 0.886219i \(-0.346677\pi\)
0.463267 + 0.886219i \(0.346677\pi\)
\(60\) 0 0
\(61\) −14.1168 −1.80748 −0.903738 0.428085i \(-0.859188\pi\)
−0.903738 + 0.428085i \(0.859188\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.74456 −0.340421
\(66\) 0 0
\(67\) 15.1168 1.84682 0.923408 0.383819i \(-0.125391\pi\)
0.923408 + 0.383819i \(0.125391\pi\)
\(68\) −4.37228 −0.530217
\(69\) 0 0
\(70\) 1.37228 0.164019
\(71\) 10.1168 1.20065 0.600324 0.799757i \(-0.295038\pi\)
0.600324 + 0.799757i \(0.295038\pi\)
\(72\) 0 0
\(73\) −5.11684 −0.598881 −0.299441 0.954115i \(-0.596800\pi\)
−0.299441 + 0.954115i \(0.596800\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) 4.37228 0.498268
\(78\) 0 0
\(79\) 12.1168 1.36325 0.681626 0.731701i \(-0.261273\pi\)
0.681626 + 0.731701i \(0.261273\pi\)
\(80\) −1.37228 −0.153426
\(81\) 0 0
\(82\) −10.3723 −1.14543
\(83\) −5.48913 −0.602510 −0.301255 0.953544i \(-0.597406\pi\)
−0.301255 + 0.953544i \(0.597406\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) −9.11684 −0.983095
\(87\) 0 0
\(88\) −4.37228 −0.466087
\(89\) 3.25544 0.345076 0.172538 0.985003i \(-0.444803\pi\)
0.172538 + 0.985003i \(0.444803\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −7.37228 −0.768613
\(93\) 0 0
\(94\) 0 0
\(95\) −6.86141 −0.703965
\(96\) 0 0
\(97\) 9.11684 0.925675 0.462838 0.886443i \(-0.346831\pi\)
0.462838 + 0.886443i \(0.346831\pi\)
\(98\) −1.00000 −0.101015
\(99\) 0 0
\(100\) −3.11684 −0.311684
\(101\) 7.37228 0.733569 0.366785 0.930306i \(-0.380459\pi\)
0.366785 + 0.930306i \(0.380459\pi\)
\(102\) 0 0
\(103\) −10.0000 −0.985329 −0.492665 0.870219i \(-0.663977\pi\)
−0.492665 + 0.870219i \(0.663977\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −2.74456 −0.266575
\(107\) −1.62772 −0.157358 −0.0786788 0.996900i \(-0.525070\pi\)
−0.0786788 + 0.996900i \(0.525070\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 6.00000 0.572078
\(111\) 0 0
\(112\) 1.00000 0.0944911
\(113\) 1.37228 0.129093 0.0645467 0.997915i \(-0.479440\pi\)
0.0645467 + 0.997915i \(0.479440\pi\)
\(114\) 0 0
\(115\) 10.1168 0.943401
\(116\) 2.74456 0.254826
\(117\) 0 0
\(118\) −7.11684 −0.655159
\(119\) −4.37228 −0.400806
\(120\) 0 0
\(121\) 8.11684 0.737895
\(122\) 14.1168 1.27808
\(123\) 0 0
\(124\) 2.00000 0.179605
\(125\) 11.1386 0.996266
\(126\) 0 0
\(127\) −14.1168 −1.25267 −0.626334 0.779555i \(-0.715445\pi\)
−0.626334 + 0.779555i \(0.715445\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 2.74456 0.240714
\(131\) −7.37228 −0.644119 −0.322060 0.946719i \(-0.604375\pi\)
−0.322060 + 0.946719i \(0.604375\pi\)
\(132\) 0 0
\(133\) 5.00000 0.433555
\(134\) −15.1168 −1.30590
\(135\) 0 0
\(136\) 4.37228 0.374920
\(137\) 16.3723 1.39878 0.699389 0.714741i \(-0.253455\pi\)
0.699389 + 0.714741i \(0.253455\pi\)
\(138\) 0 0
\(139\) −21.2337 −1.80102 −0.900509 0.434837i \(-0.856806\pi\)
−0.900509 + 0.434837i \(0.856806\pi\)
\(140\) −1.37228 −0.115979
\(141\) 0 0
\(142\) −10.1168 −0.848987
\(143\) 8.74456 0.731257
\(144\) 0 0
\(145\) −3.76631 −0.312775
\(146\) 5.11684 0.423473
\(147\) 0 0
\(148\) 2.00000 0.164399
\(149\) 14.7446 1.20792 0.603961 0.797014i \(-0.293588\pi\)
0.603961 + 0.797014i \(0.293588\pi\)
\(150\) 0 0
\(151\) −8.11684 −0.660539 −0.330270 0.943887i \(-0.607140\pi\)
−0.330270 + 0.943887i \(0.607140\pi\)
\(152\) −5.00000 −0.405554
\(153\) 0 0
\(154\) −4.37228 −0.352328
\(155\) −2.74456 −0.220449
\(156\) 0 0
\(157\) −8.11684 −0.647795 −0.323897 0.946092i \(-0.604993\pi\)
−0.323897 + 0.946092i \(0.604993\pi\)
\(158\) −12.1168 −0.963964
\(159\) 0 0
\(160\) 1.37228 0.108488
\(161\) −7.37228 −0.581017
\(162\) 0 0
\(163\) 16.2337 1.27152 0.635760 0.771887i \(-0.280687\pi\)
0.635760 + 0.771887i \(0.280687\pi\)
\(164\) 10.3723 0.809939
\(165\) 0 0
\(166\) 5.48913 0.426039
\(167\) 17.4891 1.35335 0.676675 0.736282i \(-0.263420\pi\)
0.676675 + 0.736282i \(0.263420\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) −6.00000 −0.460179
\(171\) 0 0
\(172\) 9.11684 0.695153
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) −3.11684 −0.235611
\(176\) 4.37228 0.329573
\(177\) 0 0
\(178\) −3.25544 −0.244005
\(179\) 14.7446 1.10206 0.551030 0.834485i \(-0.314235\pi\)
0.551030 + 0.834485i \(0.314235\pi\)
\(180\) 0 0
\(181\) 18.1168 1.34661 0.673307 0.739363i \(-0.264873\pi\)
0.673307 + 0.739363i \(0.264873\pi\)
\(182\) −2.00000 −0.148250
\(183\) 0 0
\(184\) 7.37228 0.543492
\(185\) −2.74456 −0.201784
\(186\) 0 0
\(187\) −19.1168 −1.39796
\(188\) 0 0
\(189\) 0 0
\(190\) 6.86141 0.497779
\(191\) −1.88316 −0.136260 −0.0681302 0.997676i \(-0.521703\pi\)
−0.0681302 + 0.997676i \(0.521703\pi\)
\(192\) 0 0
\(193\) −7.00000 −0.503871 −0.251936 0.967744i \(-0.581067\pi\)
−0.251936 + 0.967744i \(0.581067\pi\)
\(194\) −9.11684 −0.654551
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 3.11684 0.220394
\(201\) 0 0
\(202\) −7.37228 −0.518712
\(203\) 2.74456 0.192631
\(204\) 0 0
\(205\) −14.2337 −0.994124
\(206\) 10.0000 0.696733
\(207\) 0 0
\(208\) 2.00000 0.138675
\(209\) 21.8614 1.51219
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 2.74456 0.188497
\(213\) 0 0
\(214\) 1.62772 0.111269
\(215\) −12.5109 −0.853235
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) −14.0000 −0.948200
\(219\) 0 0
\(220\) −6.00000 −0.404520
\(221\) −8.74456 −0.588223
\(222\) 0 0
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −1.37228 −0.0912828
\(227\) −23.7446 −1.57598 −0.787991 0.615687i \(-0.788879\pi\)
−0.787991 + 0.615687i \(0.788879\pi\)
\(228\) 0 0
\(229\) −20.1168 −1.32936 −0.664679 0.747129i \(-0.731432\pi\)
−0.664679 + 0.747129i \(0.731432\pi\)
\(230\) −10.1168 −0.667085
\(231\) 0 0
\(232\) −2.74456 −0.180189
\(233\) −11.7446 −0.769412 −0.384706 0.923039i \(-0.625697\pi\)
−0.384706 + 0.923039i \(0.625697\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 7.11684 0.463267
\(237\) 0 0
\(238\) 4.37228 0.283413
\(239\) −18.8614 −1.22004 −0.610021 0.792385i \(-0.708839\pi\)
−0.610021 + 0.792385i \(0.708839\pi\)
\(240\) 0 0
\(241\) 0.883156 0.0568891 0.0284445 0.999595i \(-0.490945\pi\)
0.0284445 + 0.999595i \(0.490945\pi\)
\(242\) −8.11684 −0.521770
\(243\) 0 0
\(244\) −14.1168 −0.903738
\(245\) −1.37228 −0.0876718
\(246\) 0 0
\(247\) 10.0000 0.636285
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) −11.1386 −0.704467
\(251\) −9.00000 −0.568075 −0.284037 0.958813i \(-0.591674\pi\)
−0.284037 + 0.958813i \(0.591674\pi\)
\(252\) 0 0
\(253\) −32.2337 −2.02651
\(254\) 14.1168 0.885770
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 21.8614 1.36368 0.681839 0.731503i \(-0.261181\pi\)
0.681839 + 0.731503i \(0.261181\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) −2.74456 −0.170211
\(261\) 0 0
\(262\) 7.37228 0.455461
\(263\) 13.3723 0.824570 0.412285 0.911055i \(-0.364731\pi\)
0.412285 + 0.911055i \(0.364731\pi\)
\(264\) 0 0
\(265\) −3.76631 −0.231363
\(266\) −5.00000 −0.306570
\(267\) 0 0
\(268\) 15.1168 0.923408
\(269\) −7.37228 −0.449496 −0.224748 0.974417i \(-0.572156\pi\)
−0.224748 + 0.974417i \(0.572156\pi\)
\(270\) 0 0
\(271\) −18.2337 −1.10762 −0.553809 0.832644i \(-0.686826\pi\)
−0.553809 + 0.832644i \(0.686826\pi\)
\(272\) −4.37228 −0.265108
\(273\) 0 0
\(274\) −16.3723 −0.989086
\(275\) −13.6277 −0.821782
\(276\) 0 0
\(277\) 22.2337 1.33589 0.667946 0.744209i \(-0.267174\pi\)
0.667946 + 0.744209i \(0.267174\pi\)
\(278\) 21.2337 1.27351
\(279\) 0 0
\(280\) 1.37228 0.0820095
\(281\) 10.6277 0.633997 0.316998 0.948426i \(-0.397325\pi\)
0.316998 + 0.948426i \(0.397325\pi\)
\(282\) 0 0
\(283\) 9.88316 0.587493 0.293746 0.955883i \(-0.405098\pi\)
0.293746 + 0.955883i \(0.405098\pi\)
\(284\) 10.1168 0.600324
\(285\) 0 0
\(286\) −8.74456 −0.517077
\(287\) 10.3723 0.612256
\(288\) 0 0
\(289\) 2.11684 0.124520
\(290\) 3.76631 0.221165
\(291\) 0 0
\(292\) −5.11684 −0.299441
\(293\) −4.62772 −0.270354 −0.135177 0.990821i \(-0.543160\pi\)
−0.135177 + 0.990821i \(0.543160\pi\)
\(294\) 0 0
\(295\) −9.76631 −0.568617
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) −14.7446 −0.854130
\(299\) −14.7446 −0.852700
\(300\) 0 0
\(301\) 9.11684 0.525486
\(302\) 8.11684 0.467072
\(303\) 0 0
\(304\) 5.00000 0.286770
\(305\) 19.3723 1.10925
\(306\) 0 0
\(307\) −13.0000 −0.741949 −0.370975 0.928643i \(-0.620976\pi\)
−0.370975 + 0.928643i \(0.620976\pi\)
\(308\) 4.37228 0.249134
\(309\) 0 0
\(310\) 2.74456 0.155881
\(311\) −26.2337 −1.48758 −0.743788 0.668416i \(-0.766973\pi\)
−0.743788 + 0.668416i \(0.766973\pi\)
\(312\) 0 0
\(313\) −2.88316 −0.162966 −0.0814828 0.996675i \(-0.525966\pi\)
−0.0814828 + 0.996675i \(0.525966\pi\)
\(314\) 8.11684 0.458060
\(315\) 0 0
\(316\) 12.1168 0.681626
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) −1.37228 −0.0767129
\(321\) 0 0
\(322\) 7.37228 0.410841
\(323\) −21.8614 −1.21640
\(324\) 0 0
\(325\) −6.23369 −0.345783
\(326\) −16.2337 −0.899101
\(327\) 0 0
\(328\) −10.3723 −0.572713
\(329\) 0 0
\(330\) 0 0
\(331\) −12.2337 −0.672424 −0.336212 0.941786i \(-0.609146\pi\)
−0.336212 + 0.941786i \(0.609146\pi\)
\(332\) −5.48913 −0.301255
\(333\) 0 0
\(334\) −17.4891 −0.956962
\(335\) −20.7446 −1.13340
\(336\) 0 0
\(337\) 9.11684 0.496626 0.248313 0.968680i \(-0.420124\pi\)
0.248313 + 0.968680i \(0.420124\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) 8.74456 0.473545
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −9.11684 −0.491547
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 7.11684 0.382052 0.191026 0.981585i \(-0.438818\pi\)
0.191026 + 0.981585i \(0.438818\pi\)
\(348\) 0 0
\(349\) −22.0000 −1.17763 −0.588817 0.808267i \(-0.700406\pi\)
−0.588817 + 0.808267i \(0.700406\pi\)
\(350\) 3.11684 0.166602
\(351\) 0 0
\(352\) −4.37228 −0.233043
\(353\) −7.62772 −0.405983 −0.202991 0.979181i \(-0.565066\pi\)
−0.202991 + 0.979181i \(0.565066\pi\)
\(354\) 0 0
\(355\) −13.8832 −0.736841
\(356\) 3.25544 0.172538
\(357\) 0 0
\(358\) −14.7446 −0.779274
\(359\) −6.86141 −0.362131 −0.181066 0.983471i \(-0.557955\pi\)
−0.181066 + 0.983471i \(0.557955\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) −18.1168 −0.952200
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 7.02175 0.367535
\(366\) 0 0
\(367\) 22.2337 1.16059 0.580295 0.814407i \(-0.302937\pi\)
0.580295 + 0.814407i \(0.302937\pi\)
\(368\) −7.37228 −0.384307
\(369\) 0 0
\(370\) 2.74456 0.142683
\(371\) 2.74456 0.142491
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 19.1168 0.988508
\(375\) 0 0
\(376\) 0 0
\(377\) 5.48913 0.282704
\(378\) 0 0
\(379\) 9.11684 0.468301 0.234150 0.972200i \(-0.424769\pi\)
0.234150 + 0.972200i \(0.424769\pi\)
\(380\) −6.86141 −0.351983
\(381\) 0 0
\(382\) 1.88316 0.0963506
\(383\) −21.2554 −1.08610 −0.543051 0.839700i \(-0.682731\pi\)
−0.543051 + 0.839700i \(0.682731\pi\)
\(384\) 0 0
\(385\) −6.00000 −0.305788
\(386\) 7.00000 0.356291
\(387\) 0 0
\(388\) 9.11684 0.462838
\(389\) −34.9783 −1.77347 −0.886734 0.462280i \(-0.847031\pi\)
−0.886734 + 0.462280i \(0.847031\pi\)
\(390\) 0 0
\(391\) 32.2337 1.63013
\(392\) −1.00000 −0.0505076
\(393\) 0 0
\(394\) 6.00000 0.302276
\(395\) −16.6277 −0.836631
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 10.0000 0.501255
\(399\) 0 0
\(400\) −3.11684 −0.155842
\(401\) −0.255437 −0.0127559 −0.00637797 0.999980i \(-0.502030\pi\)
−0.00637797 + 0.999980i \(0.502030\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 7.37228 0.366785
\(405\) 0 0
\(406\) −2.74456 −0.136210
\(407\) 8.74456 0.433452
\(408\) 0 0
\(409\) 29.3505 1.45129 0.725645 0.688069i \(-0.241541\pi\)
0.725645 + 0.688069i \(0.241541\pi\)
\(410\) 14.2337 0.702952
\(411\) 0 0
\(412\) −10.0000 −0.492665
\(413\) 7.11684 0.350197
\(414\) 0 0
\(415\) 7.53262 0.369762
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) −21.8614 −1.06928
\(419\) 27.6060 1.34864 0.674320 0.738439i \(-0.264437\pi\)
0.674320 + 0.738439i \(0.264437\pi\)
\(420\) 0 0
\(421\) −0.233688 −0.0113893 −0.00569463 0.999984i \(-0.501813\pi\)
−0.00569463 + 0.999984i \(0.501813\pi\)
\(422\) 16.0000 0.778868
\(423\) 0 0
\(424\) −2.74456 −0.133288
\(425\) 13.6277 0.661041
\(426\) 0 0
\(427\) −14.1168 −0.683162
\(428\) −1.62772 −0.0786788
\(429\) 0 0
\(430\) 12.5109 0.603328
\(431\) −29.4891 −1.42044 −0.710221 0.703979i \(-0.751405\pi\)
−0.710221 + 0.703979i \(0.751405\pi\)
\(432\) 0 0
\(433\) −2.88316 −0.138556 −0.0692778 0.997597i \(-0.522069\pi\)
−0.0692778 + 0.997597i \(0.522069\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) −36.8614 −1.76332
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 6.00000 0.286039
\(441\) 0 0
\(442\) 8.74456 0.415936
\(443\) −22.8832 −1.08721 −0.543606 0.839341i \(-0.682941\pi\)
−0.543606 + 0.839341i \(0.682941\pi\)
\(444\) 0 0
\(445\) −4.46738 −0.211774
\(446\) 4.00000 0.189405
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 33.0000 1.55737 0.778683 0.627417i \(-0.215888\pi\)
0.778683 + 0.627417i \(0.215888\pi\)
\(450\) 0 0
\(451\) 45.3505 2.13547
\(452\) 1.37228 0.0645467
\(453\) 0 0
\(454\) 23.7446 1.11439
\(455\) −2.74456 −0.128667
\(456\) 0 0
\(457\) 33.4674 1.56554 0.782769 0.622312i \(-0.213807\pi\)
0.782769 + 0.622312i \(0.213807\pi\)
\(458\) 20.1168 0.939998
\(459\) 0 0
\(460\) 10.1168 0.471700
\(461\) 30.8614 1.43736 0.718680 0.695341i \(-0.244747\pi\)
0.718680 + 0.695341i \(0.244747\pi\)
\(462\) 0 0
\(463\) −5.88316 −0.273413 −0.136707 0.990612i \(-0.543652\pi\)
−0.136707 + 0.990612i \(0.543652\pi\)
\(464\) 2.74456 0.127413
\(465\) 0 0
\(466\) 11.7446 0.544056
\(467\) −30.0951 −1.39263 −0.696317 0.717734i \(-0.745179\pi\)
−0.696317 + 0.717734i \(0.745179\pi\)
\(468\) 0 0
\(469\) 15.1168 0.698031
\(470\) 0 0
\(471\) 0 0
\(472\) −7.11684 −0.327579
\(473\) 39.8614 1.83283
\(474\) 0 0
\(475\) −15.5842 −0.715053
\(476\) −4.37228 −0.200403
\(477\) 0 0
\(478\) 18.8614 0.862701
\(479\) 21.2554 0.971186 0.485593 0.874185i \(-0.338604\pi\)
0.485593 + 0.874185i \(0.338604\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) −0.883156 −0.0402267
\(483\) 0 0
\(484\) 8.11684 0.368947
\(485\) −12.5109 −0.568090
\(486\) 0 0
\(487\) −16.3505 −0.740913 −0.370457 0.928850i \(-0.620799\pi\)
−0.370457 + 0.928850i \(0.620799\pi\)
\(488\) 14.1168 0.639040
\(489\) 0 0
\(490\) 1.37228 0.0619934
\(491\) −19.6277 −0.885787 −0.442893 0.896574i \(-0.646048\pi\)
−0.442893 + 0.896574i \(0.646048\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) −10.0000 −0.449921
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 10.1168 0.453802
\(498\) 0 0
\(499\) 0.883156 0.0395355 0.0197677 0.999805i \(-0.493707\pi\)
0.0197677 + 0.999805i \(0.493707\pi\)
\(500\) 11.1386 0.498133
\(501\) 0 0
\(502\) 9.00000 0.401690
\(503\) 2.23369 0.0995952 0.0497976 0.998759i \(-0.484142\pi\)
0.0497976 + 0.998759i \(0.484142\pi\)
\(504\) 0 0
\(505\) −10.1168 −0.450194
\(506\) 32.2337 1.43296
\(507\) 0 0
\(508\) −14.1168 −0.626334
\(509\) 16.9783 0.752548 0.376274 0.926508i \(-0.377205\pi\)
0.376274 + 0.926508i \(0.377205\pi\)
\(510\) 0 0
\(511\) −5.11684 −0.226356
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −21.8614 −0.964265
\(515\) 13.7228 0.604699
\(516\) 0 0
\(517\) 0 0
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) 2.74456 0.120357
\(521\) 3.86141 0.169171 0.0845856 0.996416i \(-0.473043\pi\)
0.0845856 + 0.996416i \(0.473043\pi\)
\(522\) 0 0
\(523\) −17.8832 −0.781976 −0.390988 0.920396i \(-0.627867\pi\)
−0.390988 + 0.920396i \(0.627867\pi\)
\(524\) −7.37228 −0.322060
\(525\) 0 0
\(526\) −13.3723 −0.583059
\(527\) −8.74456 −0.380919
\(528\) 0 0
\(529\) 31.3505 1.36307
\(530\) 3.76631 0.163598
\(531\) 0 0
\(532\) 5.00000 0.216777
\(533\) 20.7446 0.898547
\(534\) 0 0
\(535\) 2.23369 0.0965708
\(536\) −15.1168 −0.652948
\(537\) 0 0
\(538\) 7.37228 0.317842
\(539\) 4.37228 0.188327
\(540\) 0 0
\(541\) 28.2337 1.21386 0.606931 0.794755i \(-0.292401\pi\)
0.606931 + 0.794755i \(0.292401\pi\)
\(542\) 18.2337 0.783204
\(543\) 0 0
\(544\) 4.37228 0.187460
\(545\) −19.2119 −0.822949
\(546\) 0 0
\(547\) 0.883156 0.0377610 0.0188805 0.999822i \(-0.493990\pi\)
0.0188805 + 0.999822i \(0.493990\pi\)
\(548\) 16.3723 0.699389
\(549\) 0 0
\(550\) 13.6277 0.581088
\(551\) 13.7228 0.584611
\(552\) 0 0
\(553\) 12.1168 0.515261
\(554\) −22.2337 −0.944619
\(555\) 0 0
\(556\) −21.2337 −0.900509
\(557\) 6.51087 0.275875 0.137937 0.990441i \(-0.455953\pi\)
0.137937 + 0.990441i \(0.455953\pi\)
\(558\) 0 0
\(559\) 18.2337 0.771203
\(560\) −1.37228 −0.0579895
\(561\) 0 0
\(562\) −10.6277 −0.448303
\(563\) 3.00000 0.126435 0.0632175 0.998000i \(-0.479864\pi\)
0.0632175 + 0.998000i \(0.479864\pi\)
\(564\) 0 0
\(565\) −1.88316 −0.0792250
\(566\) −9.88316 −0.415420
\(567\) 0 0
\(568\) −10.1168 −0.424493
\(569\) −1.11684 −0.0468205 −0.0234103 0.999726i \(-0.507452\pi\)
−0.0234103 + 0.999726i \(0.507452\pi\)
\(570\) 0 0
\(571\) 29.3505 1.22828 0.614141 0.789197i \(-0.289503\pi\)
0.614141 + 0.789197i \(0.289503\pi\)
\(572\) 8.74456 0.365629
\(573\) 0 0
\(574\) −10.3723 −0.432931
\(575\) 22.9783 0.958259
\(576\) 0 0
\(577\) 27.1168 1.12889 0.564444 0.825471i \(-0.309090\pi\)
0.564444 + 0.825471i \(0.309090\pi\)
\(578\) −2.11684 −0.0880491
\(579\) 0 0
\(580\) −3.76631 −0.156388
\(581\) −5.48913 −0.227727
\(582\) 0 0
\(583\) 12.0000 0.496989
\(584\) 5.11684 0.211737
\(585\) 0 0
\(586\) 4.62772 0.191169
\(587\) −8.48913 −0.350384 −0.175192 0.984534i \(-0.556055\pi\)
−0.175192 + 0.984534i \(0.556055\pi\)
\(588\) 0 0
\(589\) 10.0000 0.412043
\(590\) 9.76631 0.402073
\(591\) 0 0
\(592\) 2.00000 0.0821995
\(593\) 3.25544 0.133685 0.0668424 0.997764i \(-0.478708\pi\)
0.0668424 + 0.997764i \(0.478708\pi\)
\(594\) 0 0
\(595\) 6.00000 0.245976
\(596\) 14.7446 0.603961
\(597\) 0 0
\(598\) 14.7446 0.602950
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) 6.88316 0.280770 0.140385 0.990097i \(-0.455166\pi\)
0.140385 + 0.990097i \(0.455166\pi\)
\(602\) −9.11684 −0.371575
\(603\) 0 0
\(604\) −8.11684 −0.330270
\(605\) −11.1386 −0.452848
\(606\) 0 0
\(607\) −12.2337 −0.496550 −0.248275 0.968690i \(-0.579864\pi\)
−0.248275 + 0.968690i \(0.579864\pi\)
\(608\) −5.00000 −0.202777
\(609\) 0 0
\(610\) −19.3723 −0.784361
\(611\) 0 0
\(612\) 0 0
\(613\) −1.76631 −0.0713407 −0.0356703 0.999364i \(-0.511357\pi\)
−0.0356703 + 0.999364i \(0.511357\pi\)
\(614\) 13.0000 0.524637
\(615\) 0 0
\(616\) −4.37228 −0.176164
\(617\) −9.86141 −0.397005 −0.198503 0.980100i \(-0.563608\pi\)
−0.198503 + 0.980100i \(0.563608\pi\)
\(618\) 0 0
\(619\) −23.4674 −0.943233 −0.471617 0.881804i \(-0.656329\pi\)
−0.471617 + 0.881804i \(0.656329\pi\)
\(620\) −2.74456 −0.110224
\(621\) 0 0
\(622\) 26.2337 1.05188
\(623\) 3.25544 0.130426
\(624\) 0 0
\(625\) 0.298936 0.0119574
\(626\) 2.88316 0.115234
\(627\) 0 0
\(628\) −8.11684 −0.323897
\(629\) −8.74456 −0.348669
\(630\) 0 0
\(631\) 14.3505 0.571286 0.285643 0.958336i \(-0.407793\pi\)
0.285643 + 0.958336i \(0.407793\pi\)
\(632\) −12.1168 −0.481982
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 19.3723 0.768766
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) −12.0000 −0.475085
\(639\) 0 0
\(640\) 1.37228 0.0542442
\(641\) −46.2119 −1.82526 −0.912631 0.408785i \(-0.865953\pi\)
−0.912631 + 0.408785i \(0.865953\pi\)
\(642\) 0 0
\(643\) −25.3505 −0.999727 −0.499864 0.866104i \(-0.666617\pi\)
−0.499864 + 0.866104i \(0.666617\pi\)
\(644\) −7.37228 −0.290509
\(645\) 0 0
\(646\) 21.8614 0.860126
\(647\) −17.4891 −0.687568 −0.343784 0.939049i \(-0.611709\pi\)
−0.343784 + 0.939049i \(0.611709\pi\)
\(648\) 0 0
\(649\) 31.1168 1.22144
\(650\) 6.23369 0.244505
\(651\) 0 0
\(652\) 16.2337 0.635760
\(653\) −15.2554 −0.596991 −0.298496 0.954411i \(-0.596485\pi\)
−0.298496 + 0.954411i \(0.596485\pi\)
\(654\) 0 0
\(655\) 10.1168 0.395298
\(656\) 10.3723 0.404970
\(657\) 0 0
\(658\) 0 0
\(659\) −9.25544 −0.360541 −0.180270 0.983617i \(-0.557697\pi\)
−0.180270 + 0.983617i \(0.557697\pi\)
\(660\) 0 0
\(661\) 9.88316 0.384410 0.192205 0.981355i \(-0.438436\pi\)
0.192205 + 0.981355i \(0.438436\pi\)
\(662\) 12.2337 0.475476
\(663\) 0 0
\(664\) 5.48913 0.213019
\(665\) −6.86141 −0.266074
\(666\) 0 0
\(667\) −20.2337 −0.783452
\(668\) 17.4891 0.676675
\(669\) 0 0
\(670\) 20.7446 0.801432
\(671\) −61.7228 −2.38278
\(672\) 0 0
\(673\) −20.1168 −0.775447 −0.387724 0.921776i \(-0.626739\pi\)
−0.387724 + 0.921776i \(0.626739\pi\)
\(674\) −9.11684 −0.351168
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −34.4674 −1.32469 −0.662344 0.749199i \(-0.730438\pi\)
−0.662344 + 0.749199i \(0.730438\pi\)
\(678\) 0 0
\(679\) 9.11684 0.349872
\(680\) −6.00000 −0.230089
\(681\) 0 0
\(682\) −8.74456 −0.334847
\(683\) −44.8397 −1.71574 −0.857871 0.513865i \(-0.828213\pi\)
−0.857871 + 0.513865i \(0.828213\pi\)
\(684\) 0 0
\(685\) −22.4674 −0.858434
\(686\) −1.00000 −0.0381802
\(687\) 0 0
\(688\) 9.11684 0.347576
\(689\) 5.48913 0.209119
\(690\) 0 0
\(691\) −5.88316 −0.223806 −0.111903 0.993719i \(-0.535695\pi\)
−0.111903 + 0.993719i \(0.535695\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −7.11684 −0.270152
\(695\) 29.1386 1.10529
\(696\) 0 0
\(697\) −45.3505 −1.71777
\(698\) 22.0000 0.832712
\(699\) 0 0
\(700\) −3.11684 −0.117806
\(701\) −3.76631 −0.142252 −0.0711258 0.997467i \(-0.522659\pi\)
−0.0711258 + 0.997467i \(0.522659\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) 4.37228 0.164787
\(705\) 0 0
\(706\) 7.62772 0.287073
\(707\) 7.37228 0.277263
\(708\) 0 0
\(709\) 44.0000 1.65245 0.826227 0.563337i \(-0.190483\pi\)
0.826227 + 0.563337i \(0.190483\pi\)
\(710\) 13.8832 0.521026
\(711\) 0 0
\(712\) −3.25544 −0.122003
\(713\) −14.7446 −0.552188
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 14.7446 0.551030
\(717\) 0 0
\(718\) 6.86141 0.256065
\(719\) −8.74456 −0.326117 −0.163059 0.986616i \(-0.552136\pi\)
−0.163059 + 0.986616i \(0.552136\pi\)
\(720\) 0 0
\(721\) −10.0000 −0.372419
\(722\) −6.00000 −0.223297
\(723\) 0 0
\(724\) 18.1168 0.673307
\(725\) −8.55437 −0.317701
\(726\) 0 0
\(727\) −1.76631 −0.0655089 −0.0327544 0.999463i \(-0.510428\pi\)
−0.0327544 + 0.999463i \(0.510428\pi\)
\(728\) −2.00000 −0.0741249
\(729\) 0 0
\(730\) −7.02175 −0.259887
\(731\) −39.8614 −1.47433
\(732\) 0 0
\(733\) −23.8832 −0.882144 −0.441072 0.897472i \(-0.645402\pi\)
−0.441072 + 0.897472i \(0.645402\pi\)
\(734\) −22.2337 −0.820660
\(735\) 0 0
\(736\) 7.37228 0.271746
\(737\) 66.0951 2.43464
\(738\) 0 0
\(739\) 9.11684 0.335369 0.167684 0.985841i \(-0.446371\pi\)
0.167684 + 0.985841i \(0.446371\pi\)
\(740\) −2.74456 −0.100892
\(741\) 0 0
\(742\) −2.74456 −0.100756
\(743\) 43.7228 1.60403 0.802017 0.597301i \(-0.203760\pi\)
0.802017 + 0.597301i \(0.203760\pi\)
\(744\) 0 0
\(745\) −20.2337 −0.741305
\(746\) 10.0000 0.366126
\(747\) 0 0
\(748\) −19.1168 −0.698981
\(749\) −1.62772 −0.0594755
\(750\) 0 0
\(751\) 0.116844 0.00426370 0.00213185 0.999998i \(-0.499321\pi\)
0.00213185 + 0.999998i \(0.499321\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −5.48913 −0.199902
\(755\) 11.1386 0.405375
\(756\) 0 0
\(757\) 11.7663 0.427654 0.213827 0.976872i \(-0.431407\pi\)
0.213827 + 0.976872i \(0.431407\pi\)
\(758\) −9.11684 −0.331139
\(759\) 0 0
\(760\) 6.86141 0.248889
\(761\) 12.5109 0.453519 0.226759 0.973951i \(-0.427187\pi\)
0.226759 + 0.973951i \(0.427187\pi\)
\(762\) 0 0
\(763\) 14.0000 0.506834
\(764\) −1.88316 −0.0681302
\(765\) 0 0
\(766\) 21.2554 0.767990
\(767\) 14.2337 0.513949
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) 6.00000 0.216225
\(771\) 0 0
\(772\) −7.00000 −0.251936
\(773\) −11.1386 −0.400627 −0.200314 0.979732i \(-0.564196\pi\)
−0.200314 + 0.979732i \(0.564196\pi\)
\(774\) 0 0
\(775\) −6.23369 −0.223921
\(776\) −9.11684 −0.327276
\(777\) 0 0
\(778\) 34.9783 1.25403
\(779\) 51.8614 1.85813
\(780\) 0 0
\(781\) 44.2337 1.58281
\(782\) −32.2337 −1.15267
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 11.1386 0.397553
\(786\) 0 0
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) −6.00000 −0.213741
\(789\) 0 0
\(790\) 16.6277 0.591588
\(791\) 1.37228 0.0487927
\(792\) 0 0
\(793\) −28.2337 −1.00261
\(794\) 22.0000 0.780751
\(795\) 0 0
\(796\) −10.0000 −0.354441
\(797\) −36.8614 −1.30570 −0.652849 0.757488i \(-0.726426\pi\)
−0.652849 + 0.757488i \(0.726426\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 3.11684 0.110197
\(801\) 0 0
\(802\) 0.255437 0.00901981
\(803\) −22.3723 −0.789501
\(804\) 0 0
\(805\) 10.1168 0.356572
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) −7.37228 −0.259356
\(809\) 21.8614 0.768606 0.384303 0.923207i \(-0.374442\pi\)
0.384303 + 0.923207i \(0.374442\pi\)
\(810\) 0 0
\(811\) 24.8832 0.873766 0.436883 0.899518i \(-0.356082\pi\)
0.436883 + 0.899518i \(0.356082\pi\)
\(812\) 2.74456 0.0963153
\(813\) 0 0
\(814\) −8.74456 −0.306497
\(815\) −22.2772 −0.780336
\(816\) 0 0
\(817\) 45.5842 1.59479
\(818\) −29.3505 −1.02622
\(819\) 0 0
\(820\) −14.2337 −0.497062
\(821\) −38.2337 −1.33436 −0.667182 0.744894i \(-0.732500\pi\)
−0.667182 + 0.744894i \(0.732500\pi\)
\(822\) 0 0
\(823\) 22.2337 0.775018 0.387509 0.921866i \(-0.373336\pi\)
0.387509 + 0.921866i \(0.373336\pi\)
\(824\) 10.0000 0.348367
\(825\) 0 0
\(826\) −7.11684 −0.247627
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) −48.2337 −1.67523 −0.837613 0.546265i \(-0.816049\pi\)
−0.837613 + 0.546265i \(0.816049\pi\)
\(830\) −7.53262 −0.261461
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) −4.37228 −0.151491
\(834\) 0 0
\(835\) −24.0000 −0.830554
\(836\) 21.8614 0.756093
\(837\) 0 0
\(838\) −27.6060 −0.953632
\(839\) −17.4891 −0.603792 −0.301896 0.953341i \(-0.597619\pi\)
−0.301896 + 0.953341i \(0.597619\pi\)
\(840\) 0 0
\(841\) −21.4674 −0.740254
\(842\) 0.233688 0.00805342
\(843\) 0 0
\(844\) −16.0000 −0.550743
\(845\) 12.3505 0.424871
\(846\) 0 0
\(847\) 8.11684 0.278898
\(848\) 2.74456 0.0942487
\(849\) 0 0
\(850\) −13.6277 −0.467427
\(851\) −14.7446 −0.505437
\(852\) 0 0
\(853\) −17.8832 −0.612308 −0.306154 0.951982i \(-0.599042\pi\)
−0.306154 + 0.951982i \(0.599042\pi\)
\(854\) 14.1168 0.483068
\(855\) 0 0
\(856\) 1.62772 0.0556343
\(857\) 51.9565 1.77480 0.887400 0.461000i \(-0.152509\pi\)
0.887400 + 0.461000i \(0.152509\pi\)
\(858\) 0 0
\(859\) 51.1168 1.74408 0.872042 0.489431i \(-0.162795\pi\)
0.872042 + 0.489431i \(0.162795\pi\)
\(860\) −12.5109 −0.426617
\(861\) 0 0
\(862\) 29.4891 1.00440
\(863\) −18.8614 −0.642050 −0.321025 0.947071i \(-0.604027\pi\)
−0.321025 + 0.947071i \(0.604027\pi\)
\(864\) 0 0
\(865\) 8.23369 0.279954
\(866\) 2.88316 0.0979736
\(867\) 0 0
\(868\) 2.00000 0.0678844
\(869\) 52.9783 1.79716
\(870\) 0 0
\(871\) 30.2337 1.02443
\(872\) −14.0000 −0.474100
\(873\) 0 0
\(874\) 36.8614 1.24686
\(875\) 11.1386 0.376553
\(876\) 0 0
\(877\) 44.7011 1.50945 0.754724 0.656043i \(-0.227771\pi\)
0.754724 + 0.656043i \(0.227771\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) −6.00000 −0.202260
\(881\) 14.2337 0.479545 0.239773 0.970829i \(-0.422927\pi\)
0.239773 + 0.970829i \(0.422927\pi\)
\(882\) 0 0
\(883\) 11.3505 0.381976 0.190988 0.981592i \(-0.438831\pi\)
0.190988 + 0.981592i \(0.438831\pi\)
\(884\) −8.74456 −0.294111
\(885\) 0 0
\(886\) 22.8832 0.768775
\(887\) −31.7228 −1.06515 −0.532574 0.846383i \(-0.678775\pi\)
−0.532574 + 0.846383i \(0.678775\pi\)
\(888\) 0 0
\(889\) −14.1168 −0.473464
\(890\) 4.46738 0.149747
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 0 0
\(894\) 0 0
\(895\) −20.2337 −0.676338
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −33.0000 −1.10122
\(899\) 5.48913 0.183073
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) −45.3505 −1.51001
\(903\) 0 0
\(904\) −1.37228 −0.0456414
\(905\) −24.8614 −0.826421
\(906\) 0 0
\(907\) −8.88316 −0.294960 −0.147480 0.989065i \(-0.547116\pi\)
−0.147480 + 0.989065i \(0.547116\pi\)
\(908\) −23.7446 −0.787991
\(909\) 0 0
\(910\) 2.74456 0.0909814
\(911\) −43.3723 −1.43699 −0.718494 0.695533i \(-0.755168\pi\)
−0.718494 + 0.695533i \(0.755168\pi\)
\(912\) 0 0
\(913\) −24.0000 −0.794284
\(914\) −33.4674 −1.10700
\(915\) 0 0
\(916\) −20.1168 −0.664679
\(917\) −7.37228 −0.243454
\(918\) 0 0
\(919\) −29.8832 −0.985754 −0.492877 0.870099i \(-0.664055\pi\)
−0.492877 + 0.870099i \(0.664055\pi\)
\(920\) −10.1168 −0.333542
\(921\) 0 0
\(922\) −30.8614 −1.01637
\(923\) 20.2337 0.666000
\(924\) 0 0
\(925\) −6.23369 −0.204962
\(926\) 5.88316 0.193333
\(927\) 0 0
\(928\) −2.74456 −0.0900947
\(929\) 9.76631 0.320422 0.160211 0.987083i \(-0.448782\pi\)
0.160211 + 0.987083i \(0.448782\pi\)
\(930\) 0 0
\(931\) 5.00000 0.163868
\(932\) −11.7446 −0.384706
\(933\) 0 0
\(934\) 30.0951 0.984742
\(935\) 26.2337 0.857933
\(936\) 0 0
\(937\) −38.4674 −1.25667 −0.628337 0.777941i \(-0.716264\pi\)
−0.628337 + 0.777941i \(0.716264\pi\)
\(938\) −15.1168 −0.493582
\(939\) 0 0
\(940\) 0 0
\(941\) 1.88316 0.0613891 0.0306946 0.999529i \(-0.490228\pi\)
0.0306946 + 0.999529i \(0.490228\pi\)
\(942\) 0 0
\(943\) −76.4674 −2.49012
\(944\) 7.11684 0.231634
\(945\) 0 0
\(946\) −39.8614 −1.29601
\(947\) 16.8832 0.548629 0.274314 0.961640i \(-0.411549\pi\)
0.274314 + 0.961640i \(0.411549\pi\)
\(948\) 0 0
\(949\) −10.2337 −0.332200
\(950\) 15.5842 0.505619
\(951\) 0 0
\(952\) 4.37228 0.141706
\(953\) 10.8832 0.352540 0.176270 0.984342i \(-0.443597\pi\)
0.176270 + 0.984342i \(0.443597\pi\)
\(954\) 0 0
\(955\) 2.58422 0.0836234
\(956\) −18.8614 −0.610021
\(957\) 0 0
\(958\) −21.2554 −0.686732
\(959\) 16.3723 0.528689
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −4.00000 −0.128965
\(963\) 0 0
\(964\) 0.883156 0.0284445
\(965\) 9.60597 0.309227
\(966\) 0 0
\(967\) 48.1168 1.54733 0.773667 0.633593i \(-0.218421\pi\)
0.773667 + 0.633593i \(0.218421\pi\)
\(968\) −8.11684 −0.260885
\(969\) 0 0
\(970\) 12.5109 0.401700
\(971\) 7.37228 0.236588 0.118294 0.992979i \(-0.462258\pi\)
0.118294 + 0.992979i \(0.462258\pi\)
\(972\) 0 0
\(973\) −21.2337 −0.680721
\(974\) 16.3505 0.523905
\(975\) 0 0
\(976\) −14.1168 −0.451869
\(977\) 22.8832 0.732097 0.366049 0.930596i \(-0.380710\pi\)
0.366049 + 0.930596i \(0.380710\pi\)
\(978\) 0 0
\(979\) 14.2337 0.454911
\(980\) −1.37228 −0.0438359
\(981\) 0 0
\(982\) 19.6277 0.626346
\(983\) −50.7446 −1.61850 −0.809250 0.587464i \(-0.800126\pi\)
−0.809250 + 0.587464i \(0.800126\pi\)
\(984\) 0 0
\(985\) 8.23369 0.262347
\(986\) 12.0000 0.382158
\(987\) 0 0
\(988\) 10.0000 0.318142
\(989\) −67.2119 −2.13722
\(990\) 0 0
\(991\) −20.4674 −0.650168 −0.325084 0.945685i \(-0.605393\pi\)
−0.325084 + 0.945685i \(0.605393\pi\)
\(992\) −2.00000 −0.0635001
\(993\) 0 0
\(994\) −10.1168 −0.320887
\(995\) 13.7228 0.435042
\(996\) 0 0
\(997\) 12.1168 0.383744 0.191872 0.981420i \(-0.438544\pi\)
0.191872 + 0.981420i \(0.438544\pi\)
\(998\) −0.883156 −0.0279558
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.a.k.1.1 2
3.2 odd 2 1134.2.a.n.1.2 2
4.3 odd 2 9072.2.a.bm.1.1 2
7.6 odd 2 7938.2.a.bh.1.2 2
9.2 odd 6 378.2.f.c.253.1 4
9.4 even 3 126.2.f.d.43.2 4
9.5 odd 6 378.2.f.c.127.1 4
9.7 even 3 126.2.f.d.85.2 yes 4
12.11 even 2 9072.2.a.bb.1.2 2
21.20 even 2 7938.2.a.bs.1.1 2
36.7 odd 6 1008.2.r.f.337.1 4
36.11 even 6 3024.2.r.f.1009.1 4
36.23 even 6 3024.2.r.f.2017.1 4
36.31 odd 6 1008.2.r.f.673.1 4
63.2 odd 6 2646.2.h.k.361.2 4
63.4 even 3 882.2.h.m.79.1 4
63.5 even 6 2646.2.e.m.2125.2 4
63.11 odd 6 2646.2.e.n.1549.1 4
63.13 odd 6 882.2.f.k.295.1 4
63.16 even 3 882.2.h.m.67.1 4
63.20 even 6 2646.2.f.j.1765.2 4
63.23 odd 6 2646.2.e.n.2125.1 4
63.25 even 3 882.2.e.l.373.1 4
63.31 odd 6 882.2.h.n.79.2 4
63.32 odd 6 2646.2.h.k.667.2 4
63.34 odd 6 882.2.f.k.589.1 4
63.38 even 6 2646.2.e.m.1549.2 4
63.40 odd 6 882.2.e.k.655.1 4
63.41 even 6 2646.2.f.j.883.2 4
63.47 even 6 2646.2.h.l.361.1 4
63.52 odd 6 882.2.e.k.373.2 4
63.58 even 3 882.2.e.l.655.2 4
63.59 even 6 2646.2.h.l.667.1 4
63.61 odd 6 882.2.h.n.67.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.d.43.2 4 9.4 even 3
126.2.f.d.85.2 yes 4 9.7 even 3
378.2.f.c.127.1 4 9.5 odd 6
378.2.f.c.253.1 4 9.2 odd 6
882.2.e.k.373.2 4 63.52 odd 6
882.2.e.k.655.1 4 63.40 odd 6
882.2.e.l.373.1 4 63.25 even 3
882.2.e.l.655.2 4 63.58 even 3
882.2.f.k.295.1 4 63.13 odd 6
882.2.f.k.589.1 4 63.34 odd 6
882.2.h.m.67.1 4 63.16 even 3
882.2.h.m.79.1 4 63.4 even 3
882.2.h.n.67.2 4 63.61 odd 6
882.2.h.n.79.2 4 63.31 odd 6
1008.2.r.f.337.1 4 36.7 odd 6
1008.2.r.f.673.1 4 36.31 odd 6
1134.2.a.k.1.1 2 1.1 even 1 trivial
1134.2.a.n.1.2 2 3.2 odd 2
2646.2.e.m.1549.2 4 63.38 even 6
2646.2.e.m.2125.2 4 63.5 even 6
2646.2.e.n.1549.1 4 63.11 odd 6
2646.2.e.n.2125.1 4 63.23 odd 6
2646.2.f.j.883.2 4 63.41 even 6
2646.2.f.j.1765.2 4 63.20 even 6
2646.2.h.k.361.2 4 63.2 odd 6
2646.2.h.k.667.2 4 63.32 odd 6
2646.2.h.l.361.1 4 63.47 even 6
2646.2.h.l.667.1 4 63.59 even 6
3024.2.r.f.1009.1 4 36.11 even 6
3024.2.r.f.2017.1 4 36.23 even 6
7938.2.a.bh.1.2 2 7.6 odd 2
7938.2.a.bs.1.1 2 21.20 even 2
9072.2.a.bb.1.2 2 12.11 even 2
9072.2.a.bm.1.1 2 4.3 odd 2