Properties

Label 1134.2.a.i
Level $1134$
Weight $2$
Character orbit 1134.a
Self dual yes
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
Defining polynomial: \(x^{2} - 6\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + ( -1 + \beta ) q^{5} - q^{7} - q^{8} +O(q^{10})\) \( q - q^{2} + q^{4} + ( -1 + \beta ) q^{5} - q^{7} - q^{8} + ( 1 - \beta ) q^{10} -2 q^{11} + 2 \beta q^{13} + q^{14} + q^{16} -2 q^{17} + ( 5 - \beta ) q^{19} + ( -1 + \beta ) q^{20} + 2 q^{22} + q^{23} + ( 2 - 2 \beta ) q^{25} -2 \beta q^{26} - q^{28} + ( 2 + 2 \beta ) q^{29} + 6 q^{31} - q^{32} + 2 q^{34} + ( 1 - \beta ) q^{35} + ( 2 + 4 \beta ) q^{37} + ( -5 + \beta ) q^{38} + ( 1 - \beta ) q^{40} -4 \beta q^{41} + ( 2 + 2 \beta ) q^{43} -2 q^{44} - q^{46} -4 \beta q^{47} + q^{49} + ( -2 + 2 \beta ) q^{50} + 2 \beta q^{52} + ( 6 + 2 \beta ) q^{53} + ( 2 - 2 \beta ) q^{55} + q^{56} + ( -2 - 2 \beta ) q^{58} + 2 q^{59} + ( 9 - \beta ) q^{61} -6 q^{62} + q^{64} + ( 12 - 2 \beta ) q^{65} + ( -8 - 2 \beta ) q^{67} -2 q^{68} + ( -1 + \beta ) q^{70} + ( -5 + 2 \beta ) q^{71} + ( -2 - 2 \beta ) q^{73} + ( -2 - 4 \beta ) q^{74} + ( 5 - \beta ) q^{76} + 2 q^{77} + ( 3 - 2 \beta ) q^{79} + ( -1 + \beta ) q^{80} + 4 \beta q^{82} -2 q^{83} + ( 2 - 2 \beta ) q^{85} + ( -2 - 2 \beta ) q^{86} + 2 q^{88} + ( 12 + 2 \beta ) q^{89} -2 \beta q^{91} + q^{92} + 4 \beta q^{94} + ( -11 + 6 \beta ) q^{95} + ( -2 + 2 \beta ) q^{97} - q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} + 2q^{4} - 2q^{5} - 2q^{7} - 2q^{8} + O(q^{10}) \) \( 2q - 2q^{2} + 2q^{4} - 2q^{5} - 2q^{7} - 2q^{8} + 2q^{10} - 4q^{11} + 2q^{14} + 2q^{16} - 4q^{17} + 10q^{19} - 2q^{20} + 4q^{22} + 2q^{23} + 4q^{25} - 2q^{28} + 4q^{29} + 12q^{31} - 2q^{32} + 4q^{34} + 2q^{35} + 4q^{37} - 10q^{38} + 2q^{40} + 4q^{43} - 4q^{44} - 2q^{46} + 2q^{49} - 4q^{50} + 12q^{53} + 4q^{55} + 2q^{56} - 4q^{58} + 4q^{59} + 18q^{61} - 12q^{62} + 2q^{64} + 24q^{65} - 16q^{67} - 4q^{68} - 2q^{70} - 10q^{71} - 4q^{73} - 4q^{74} + 10q^{76} + 4q^{77} + 6q^{79} - 2q^{80} - 4q^{83} + 4q^{85} - 4q^{86} + 4q^{88} + 24q^{89} + 2q^{92} - 22q^{95} - 4q^{97} - 2q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.44949
2.44949
−1.00000 0 1.00000 −3.44949 0 −1.00000 −1.00000 0 3.44949
1.2 −1.00000 0 1.00000 1.44949 0 −1.00000 −1.00000 0 −1.44949
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.a.i 2
3.b odd 2 1 1134.2.a.p 2
4.b odd 2 1 9072.2.a.bd 2
7.b odd 2 1 7938.2.a.bm 2
9.c even 3 2 378.2.f.d 4
9.d odd 6 2 126.2.f.c 4
12.b even 2 1 9072.2.a.bk 2
21.c even 2 1 7938.2.a.bn 2
36.f odd 6 2 3024.2.r.e 4
36.h even 6 2 1008.2.r.e 4
63.g even 3 2 2646.2.h.m 4
63.h even 3 2 2646.2.e.l 4
63.i even 6 2 882.2.e.n 4
63.j odd 6 2 882.2.e.m 4
63.k odd 6 2 2646.2.h.n 4
63.l odd 6 2 2646.2.f.k 4
63.n odd 6 2 882.2.h.k 4
63.o even 6 2 882.2.f.j 4
63.s even 6 2 882.2.h.l 4
63.t odd 6 2 2646.2.e.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.c 4 9.d odd 6 2
378.2.f.d 4 9.c even 3 2
882.2.e.m 4 63.j odd 6 2
882.2.e.n 4 63.i even 6 2
882.2.f.j 4 63.o even 6 2
882.2.h.k 4 63.n odd 6 2
882.2.h.l 4 63.s even 6 2
1008.2.r.e 4 36.h even 6 2
1134.2.a.i 2 1.a even 1 1 trivial
1134.2.a.p 2 3.b odd 2 1
2646.2.e.k 4 63.t odd 6 2
2646.2.e.l 4 63.h even 3 2
2646.2.f.k 4 63.l odd 6 2
2646.2.h.m 4 63.g even 3 2
2646.2.h.n 4 63.k odd 6 2
3024.2.r.e 4 36.f odd 6 2
7938.2.a.bm 2 7.b odd 2 1
7938.2.a.bn 2 21.c even 2 1
9072.2.a.bd 2 4.b odd 2 1
9072.2.a.bk 2 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1134))\):

\( T_{5}^{2} + 2 T_{5} - 5 \)
\( T_{11} + 2 \)
\( T_{13}^{2} - 24 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ 1
$5$ \( 1 + 2 T + 5 T^{2} + 10 T^{3} + 25 T^{4} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( ( 1 + 2 T + 11 T^{2} )^{2} \)
$13$ \( 1 + 2 T^{2} + 169 T^{4} \)
$17$ \( ( 1 + 2 T + 17 T^{2} )^{2} \)
$19$ \( 1 - 10 T + 57 T^{2} - 190 T^{3} + 361 T^{4} \)
$23$ \( ( 1 - T + 23 T^{2} )^{2} \)
$29$ \( 1 - 4 T + 38 T^{2} - 116 T^{3} + 841 T^{4} \)
$31$ \( ( 1 - 6 T + 31 T^{2} )^{2} \)
$37$ \( 1 - 4 T - 18 T^{2} - 148 T^{3} + 1369 T^{4} \)
$41$ \( 1 - 14 T^{2} + 1681 T^{4} \)
$43$ \( 1 - 4 T + 66 T^{2} - 172 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 2 T^{2} + 2209 T^{4} \)
$53$ \( 1 - 12 T + 118 T^{2} - 636 T^{3} + 2809 T^{4} \)
$59$ \( ( 1 - 2 T + 59 T^{2} )^{2} \)
$61$ \( 1 - 18 T + 197 T^{2} - 1098 T^{3} + 3721 T^{4} \)
$67$ \( 1 + 16 T + 174 T^{2} + 1072 T^{3} + 4489 T^{4} \)
$71$ \( 1 + 10 T + 143 T^{2} + 710 T^{3} + 5041 T^{4} \)
$73$ \( 1 + 4 T + 126 T^{2} + 292 T^{3} + 5329 T^{4} \)
$79$ \( 1 - 6 T + 143 T^{2} - 474 T^{3} + 6241 T^{4} \)
$83$ \( ( 1 + 2 T + 83 T^{2} )^{2} \)
$89$ \( 1 - 24 T + 298 T^{2} - 2136 T^{3} + 7921 T^{4} \)
$97$ \( 1 + 4 T + 174 T^{2} + 388 T^{3} + 9409 T^{4} \)
show more
show less