Properties

Label 1134.2.a.c
Level 1134
Weight 2
Character orbit 1134.a
Self dual yes
Analytic conductor 9.055
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.05503558921\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + 2q^{5} - q^{7} - q^{8} + O(q^{10}) \) \( q - q^{2} + q^{4} + 2q^{5} - q^{7} - q^{8} - 2q^{10} + q^{11} - 6q^{13} + q^{14} + q^{16} - 5q^{17} - 7q^{19} + 2q^{20} - q^{22} + 4q^{23} - q^{25} + 6q^{26} - q^{28} - 4q^{29} - 6q^{31} - q^{32} + 5q^{34} - 2q^{35} + 2q^{37} + 7q^{38} - 2q^{40} + 3q^{41} - q^{43} + q^{44} - 4q^{46} + q^{49} + q^{50} - 6q^{52} + 12q^{53} + 2q^{55} + q^{56} + 4q^{58} - 7q^{59} - 12q^{61} + 6q^{62} + q^{64} - 12q^{65} + 13q^{67} - 5q^{68} + 2q^{70} - 8q^{71} + q^{73} - 2q^{74} - 7q^{76} - q^{77} - 6q^{79} + 2q^{80} - 3q^{82} + 16q^{83} - 10q^{85} + q^{86} - q^{88} - 6q^{89} + 6q^{91} + 4q^{92} - 14q^{95} - 5q^{97} - q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1.00000 0 1.00000 2.00000 0 −1.00000 −1.00000 0 −2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1134.2.a.c 1
3.b odd 2 1 1134.2.a.f 1
4.b odd 2 1 9072.2.a.t 1
7.b odd 2 1 7938.2.a.e 1
9.c even 3 2 126.2.f.b 2
9.d odd 6 2 378.2.f.b 2
12.b even 2 1 9072.2.a.f 1
21.c even 2 1 7938.2.a.bb 1
36.f odd 6 2 1008.2.r.a 2
36.h even 6 2 3024.2.r.c 2
63.g even 3 2 882.2.h.h 2
63.h even 3 2 882.2.e.a 2
63.i even 6 2 2646.2.e.h 2
63.j odd 6 2 2646.2.e.i 2
63.k odd 6 2 882.2.h.g 2
63.l odd 6 2 882.2.f.f 2
63.n odd 6 2 2646.2.h.b 2
63.o even 6 2 2646.2.f.b 2
63.s even 6 2 2646.2.h.c 2
63.t odd 6 2 882.2.e.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.b 2 9.c even 3 2
378.2.f.b 2 9.d odd 6 2
882.2.e.a 2 63.h even 3 2
882.2.e.e 2 63.t odd 6 2
882.2.f.f 2 63.l odd 6 2
882.2.h.g 2 63.k odd 6 2
882.2.h.h 2 63.g even 3 2
1008.2.r.a 2 36.f odd 6 2
1134.2.a.c 1 1.a even 1 1 trivial
1134.2.a.f 1 3.b odd 2 1
2646.2.e.h 2 63.i even 6 2
2646.2.e.i 2 63.j odd 6 2
2646.2.f.b 2 63.o even 6 2
2646.2.h.b 2 63.n odd 6 2
2646.2.h.c 2 63.s even 6 2
3024.2.r.c 2 36.h even 6 2
7938.2.a.e 1 7.b odd 2 1
7938.2.a.bb 1 21.c even 2 1
9072.2.a.f 1 12.b even 2 1
9072.2.a.t 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1134))\):

\( T_{5} - 2 \)
\( T_{11} - 1 \)
\( T_{13} + 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T \)
$3$ 1
$5$ \( 1 - 2 T + 5 T^{2} \)
$7$ \( 1 + T \)
$11$ \( 1 - T + 11 T^{2} \)
$13$ \( 1 + 6 T + 13 T^{2} \)
$17$ \( 1 + 5 T + 17 T^{2} \)
$19$ \( 1 + 7 T + 19 T^{2} \)
$23$ \( 1 - 4 T + 23 T^{2} \)
$29$ \( 1 + 4 T + 29 T^{2} \)
$31$ \( 1 + 6 T + 31 T^{2} \)
$37$ \( 1 - 2 T + 37 T^{2} \)
$41$ \( 1 - 3 T + 41 T^{2} \)
$43$ \( 1 + T + 43 T^{2} \)
$47$ \( 1 + 47 T^{2} \)
$53$ \( 1 - 12 T + 53 T^{2} \)
$59$ \( 1 + 7 T + 59 T^{2} \)
$61$ \( 1 + 12 T + 61 T^{2} \)
$67$ \( 1 - 13 T + 67 T^{2} \)
$71$ \( 1 + 8 T + 71 T^{2} \)
$73$ \( 1 - T + 73 T^{2} \)
$79$ \( 1 + 6 T + 79 T^{2} \)
$83$ \( 1 - 16 T + 83 T^{2} \)
$89$ \( 1 + 6 T + 89 T^{2} \)
$97$ \( 1 + 5 T + 97 T^{2} \)
show more
show less