Properties

Label 113.2.a.c
Level $113$
Weight $2$
Character orbit 113.a
Self dual yes
Analytic conductor $0.902$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [113,2,Mod(1,113)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("113.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(113, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 113 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 113.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.902309542840\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + (\beta_{2} - \beta_1 - 1) q^{3} + (\beta_{2} + \beta_1) q^{4} + (2 \beta_1 - 1) q^{5} + (2 \beta_{2} + 1) q^{6} + ( - \beta_1 - 3) q^{7} + (\beta_{2} - 2 \beta_1) q^{8} + ( - 4 \beta_{2} + 3 \beta_1 - 1) q^{9}+ \cdots + (\beta_{2} + 5 \beta_1 - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 5 q^{3} - q^{5} + q^{6} - 10 q^{7} - 3 q^{8} + 4 q^{9} - 4 q^{10} + 2 q^{11} - 8 q^{13} + 9 q^{14} - 3 q^{15} + 2 q^{16} - 2 q^{17} + 9 q^{18} - 4 q^{19} + 14 q^{20} + 19 q^{21} + q^{22}+ \cdots - 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{14} + \zeta_{14}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.80194
−1.24698
0.445042
−2.24698 −1.55496 3.04892 2.60388 3.49396 −4.80194 −2.35690 −0.582105 −5.85086
1.2 −0.554958 −0.198062 −1.69202 −3.49396 0.109916 −1.75302 2.04892 −2.96077 1.93900
1.3 0.801938 −3.24698 −1.35690 −0.109916 −2.60388 −3.44504 −2.69202 7.54288 −0.0881460
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(113\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 113.2.a.c 3
3.b odd 2 1 1017.2.a.q 3
4.b odd 2 1 1808.2.a.i 3
5.b even 2 1 2825.2.a.e 3
7.b odd 2 1 5537.2.a.g 3
8.b even 2 1 7232.2.a.t 3
8.d odd 2 1 7232.2.a.o 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
113.2.a.c 3 1.a even 1 1 trivial
1017.2.a.q 3 3.b odd 2 1
1808.2.a.i 3 4.b odd 2 1
2825.2.a.e 3 5.b even 2 1
5537.2.a.g 3 7.b odd 2 1
7232.2.a.o 3 8.d odd 2 1
7232.2.a.t 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 2T_{2}^{2} - T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(113))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2T^{2} - T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} + 5 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 9T - 1 \) Copy content Toggle raw display
$7$ \( T^{3} + 10 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} + \cdots - 13 \) Copy content Toggle raw display
$13$ \( T^{3} + 8 T^{2} + \cdots - 43 \) Copy content Toggle raw display
$17$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$19$ \( T^{3} + 4 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$23$ \( T^{3} + 6 T^{2} + \cdots - 27 \) Copy content Toggle raw display
$29$ \( T^{3} - 5 T^{2} + \cdots + 97 \) Copy content Toggle raw display
$31$ \( T^{3} + 15 T^{2} + \cdots - 211 \) Copy content Toggle raw display
$37$ \( T^{3} + 2 T^{2} + \cdots - 113 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots + 29 \) Copy content Toggle raw display
$43$ \( T^{3} + 2 T^{2} + \cdots + 13 \) Copy content Toggle raw display
$47$ \( T^{3} + 7 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$53$ \( T^{3} + 5 T^{2} + \cdots + 29 \) Copy content Toggle raw display
$59$ \( T^{3} - 15 T^{2} + \cdots + 169 \) Copy content Toggle raw display
$61$ \( T^{3} + 21 T^{2} + \cdots + 301 \) Copy content Toggle raw display
$67$ \( T^{3} - 5 T^{2} + \cdots - 43 \) Copy content Toggle raw display
$71$ \( T^{3} - 14T^{2} + 392 \) Copy content Toggle raw display
$73$ \( T^{3} + 11 T^{2} + \cdots + 41 \) Copy content Toggle raw display
$79$ \( T^{3} + 5 T^{2} + \cdots - 125 \) Copy content Toggle raw display
$83$ \( T^{3} - 14 T^{2} + \cdots - 91 \) Copy content Toggle raw display
$89$ \( T^{3} + 16 T^{2} + \cdots - 841 \) Copy content Toggle raw display
$97$ \( T^{3} - 217T + 1183 \) Copy content Toggle raw display
show more
show less