Properties

Label 1127.4.a.d
Level $1127$
Weight $4$
Character orbit 1127.a
Self dual yes
Analytic conductor $66.495$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1127,4,Mod(1,1127)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1127, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1127.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-4,11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 18x^{3} - 4x^{2} + 44x + 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + (\beta_{4} + 2) q^{3} + \beta_{2} q^{4} + ( - \beta_{4} + \beta_{2} + 1) q^{5} + ( - 2 \beta_{4} + \beta_{3} + 4 \beta_1) q^{6} + (2 \beta_{3} - 2 \beta_{2} - 3 \beta_1 + 5) q^{8}+ \cdots + ( - 28 \beta_{4} - 4 \beta_{3} + \cdots - 217) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} + 11 q^{3} + 4 q^{5} + 18 q^{8} + 14 q^{9} - 26 q^{10} - 36 q^{11} + 28 q^{12} + 69 q^{13} - 88 q^{15} - 124 q^{16} + 42 q^{17} - 94 q^{18} + 140 q^{19} + 168 q^{20} - 346 q^{22} - 115 q^{23}+ \cdots - 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 18x^{3} - 4x^{2} + 44x + 24 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} - \nu^{2} - 14\nu - 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 2\nu^{3} - 15\nu^{2} + 10\nu + 24 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} + \beta_{2} + 16\beta _1 + 11 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{4} + 4\beta_{3} + 17\beta_{2} + 52\beta _1 + 103 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.14816
−1.59849
−0.594859
1.74375
4.59776
−4.14816 4.24155 9.20723 7.96567 −17.5946 0 −5.00776 −9.00922 −33.0429
1.2 −2.59849 −5.80739 −1.24784 7.55955 15.0904 0 24.0304 6.72576 −19.6434
1.3 −1.59486 8.64488 −5.45643 −11.1013 −13.7874 0 21.4611 47.7340 17.7050
1.4 0.743749 −0.765559 −7.44684 −3.68128 −0.569384 0 −11.4886 −26.4139 −2.73795
1.5 3.59776 4.68651 4.94388 3.25737 16.8609 0 −10.9952 −5.03662 11.7192
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1127.4.a.d 5
7.b odd 2 1 161.4.a.a 5
21.c even 2 1 1449.4.a.e 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.4.a.a 5 7.b odd 2 1
1127.4.a.d 5 1.a even 1 1 trivial
1449.4.a.e 5 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1127))\):

\( T_{2}^{5} + 4T_{2}^{4} - 12T_{2}^{3} - 54T_{2}^{2} - 17T_{2} + 46 \) Copy content Toggle raw display
\( T_{3}^{5} - 11T_{3}^{4} - 14T_{3}^{3} + 388T_{3}^{2} - 698T_{3} - 764 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 4 T^{4} + \cdots + 46 \) Copy content Toggle raw display
$3$ \( T^{5} - 11 T^{4} + \cdots - 764 \) Copy content Toggle raw display
$5$ \( T^{5} - 4 T^{4} + \cdots - 8016 \) Copy content Toggle raw display
$7$ \( T^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 36 T^{4} + \cdots - 2036752 \) Copy content Toggle raw display
$13$ \( T^{5} - 69 T^{4} + \cdots + 142624 \) Copy content Toggle raw display
$17$ \( T^{5} - 42 T^{4} + \cdots - 69249152 \) Copy content Toggle raw display
$19$ \( T^{5} - 140 T^{4} + \cdots - 5938176 \) Copy content Toggle raw display
$23$ \( (T + 23)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 4712427144 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 1002629384 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots + 433525518848 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 341026572752 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots + 215123486848 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 533217618272 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots - 22043277353472 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots - 3783080243952 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 16114431705048 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots + 91664243429376 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 109108067649024 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots - 32974565300272 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 26006513682944 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 3541881302016 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 7355431797264 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots + 80961807928968 \) Copy content Toggle raw display
show more
show less