Properties

Label 1127.4.a.a.1.1
Level $1127$
Weight $4$
Character 1127.1
Self dual yes
Analytic conductor $66.495$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1127,4,Mod(1,1127)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1127, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1127.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1127 = 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1127.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.4951525765\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 23)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +5.00000 q^{3} -4.00000 q^{4} +6.00000 q^{5} -10.0000 q^{6} +24.0000 q^{8} -2.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} +5.00000 q^{3} -4.00000 q^{4} +6.00000 q^{5} -10.0000 q^{6} +24.0000 q^{8} -2.00000 q^{9} -12.0000 q^{10} +34.0000 q^{11} -20.0000 q^{12} +57.0000 q^{13} +30.0000 q^{15} -16.0000 q^{16} +80.0000 q^{17} +4.00000 q^{18} +70.0000 q^{19} -24.0000 q^{20} -68.0000 q^{22} +23.0000 q^{23} +120.000 q^{24} -89.0000 q^{25} -114.000 q^{26} -145.000 q^{27} +245.000 q^{29} -60.0000 q^{30} -103.000 q^{31} -160.000 q^{32} +170.000 q^{33} -160.000 q^{34} +8.00000 q^{36} -298.000 q^{37} -140.000 q^{38} +285.000 q^{39} +144.000 q^{40} -95.0000 q^{41} +88.0000 q^{43} -136.000 q^{44} -12.0000 q^{45} -46.0000 q^{46} +357.000 q^{47} -80.0000 q^{48} +178.000 q^{50} +400.000 q^{51} -228.000 q^{52} -414.000 q^{53} +290.000 q^{54} +204.000 q^{55} +350.000 q^{57} -490.000 q^{58} +408.000 q^{59} -120.000 q^{60} -822.000 q^{61} +206.000 q^{62} +448.000 q^{64} +342.000 q^{65} -340.000 q^{66} +926.000 q^{67} -320.000 q^{68} +115.000 q^{69} +335.000 q^{71} -48.0000 q^{72} +899.000 q^{73} +596.000 q^{74} -445.000 q^{75} -280.000 q^{76} -570.000 q^{78} -1322.00 q^{79} -96.0000 q^{80} -671.000 q^{81} +190.000 q^{82} +36.0000 q^{83} +480.000 q^{85} -176.000 q^{86} +1225.00 q^{87} +816.000 q^{88} +460.000 q^{89} +24.0000 q^{90} -92.0000 q^{92} -515.000 q^{93} -714.000 q^{94} +420.000 q^{95} -800.000 q^{96} +964.000 q^{97} -68.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 5.00000 0.962250 0.481125 0.876652i \(-0.340228\pi\)
0.481125 + 0.876652i \(0.340228\pi\)
\(4\) −4.00000 −0.500000
\(5\) 6.00000 0.536656 0.268328 0.963328i \(-0.413529\pi\)
0.268328 + 0.963328i \(0.413529\pi\)
\(6\) −10.0000 −0.680414
\(7\) 0 0
\(8\) 24.0000 1.06066
\(9\) −2.00000 −0.0740741
\(10\) −12.0000 −0.379473
\(11\) 34.0000 0.931944 0.465972 0.884799i \(-0.345705\pi\)
0.465972 + 0.884799i \(0.345705\pi\)
\(12\) −20.0000 −0.481125
\(13\) 57.0000 1.21607 0.608037 0.793909i \(-0.291957\pi\)
0.608037 + 0.793909i \(0.291957\pi\)
\(14\) 0 0
\(15\) 30.0000 0.516398
\(16\) −16.0000 −0.250000
\(17\) 80.0000 1.14134 0.570672 0.821178i \(-0.306683\pi\)
0.570672 + 0.821178i \(0.306683\pi\)
\(18\) 4.00000 0.0523783
\(19\) 70.0000 0.845216 0.422608 0.906313i \(-0.361115\pi\)
0.422608 + 0.906313i \(0.361115\pi\)
\(20\) −24.0000 −0.268328
\(21\) 0 0
\(22\) −68.0000 −0.658984
\(23\) 23.0000 0.208514
\(24\) 120.000 1.02062
\(25\) −89.0000 −0.712000
\(26\) −114.000 −0.859894
\(27\) −145.000 −1.03353
\(28\) 0 0
\(29\) 245.000 1.56881 0.784403 0.620252i \(-0.212970\pi\)
0.784403 + 0.620252i \(0.212970\pi\)
\(30\) −60.0000 −0.365148
\(31\) −103.000 −0.596753 −0.298377 0.954448i \(-0.596445\pi\)
−0.298377 + 0.954448i \(0.596445\pi\)
\(32\) −160.000 −0.883883
\(33\) 170.000 0.896764
\(34\) −160.000 −0.807052
\(35\) 0 0
\(36\) 8.00000 0.0370370
\(37\) −298.000 −1.32408 −0.662039 0.749469i \(-0.730309\pi\)
−0.662039 + 0.749469i \(0.730309\pi\)
\(38\) −140.000 −0.597658
\(39\) 285.000 1.17017
\(40\) 144.000 0.569210
\(41\) −95.0000 −0.361866 −0.180933 0.983495i \(-0.557912\pi\)
−0.180933 + 0.983495i \(0.557912\pi\)
\(42\) 0 0
\(43\) 88.0000 0.312090 0.156045 0.987750i \(-0.450125\pi\)
0.156045 + 0.987750i \(0.450125\pi\)
\(44\) −136.000 −0.465972
\(45\) −12.0000 −0.0397523
\(46\) −46.0000 −0.147442
\(47\) 357.000 1.10795 0.553977 0.832532i \(-0.313110\pi\)
0.553977 + 0.832532i \(0.313110\pi\)
\(48\) −80.0000 −0.240563
\(49\) 0 0
\(50\) 178.000 0.503460
\(51\) 400.000 1.09826
\(52\) −228.000 −0.608037
\(53\) −414.000 −1.07297 −0.536484 0.843911i \(-0.680248\pi\)
−0.536484 + 0.843911i \(0.680248\pi\)
\(54\) 290.000 0.730815
\(55\) 204.000 0.500134
\(56\) 0 0
\(57\) 350.000 0.813309
\(58\) −490.000 −1.10931
\(59\) 408.000 0.900289 0.450145 0.892956i \(-0.351372\pi\)
0.450145 + 0.892956i \(0.351372\pi\)
\(60\) −120.000 −0.258199
\(61\) −822.000 −1.72535 −0.862675 0.505759i \(-0.831212\pi\)
−0.862675 + 0.505759i \(0.831212\pi\)
\(62\) 206.000 0.421968
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) 342.000 0.652614
\(66\) −340.000 −0.634108
\(67\) 926.000 1.68849 0.844246 0.535957i \(-0.180049\pi\)
0.844246 + 0.535957i \(0.180049\pi\)
\(68\) −320.000 −0.570672
\(69\) 115.000 0.200643
\(70\) 0 0
\(71\) 335.000 0.559960 0.279980 0.960006i \(-0.409672\pi\)
0.279980 + 0.960006i \(0.409672\pi\)
\(72\) −48.0000 −0.0785674
\(73\) 899.000 1.44137 0.720685 0.693263i \(-0.243827\pi\)
0.720685 + 0.693263i \(0.243827\pi\)
\(74\) 596.000 0.936265
\(75\) −445.000 −0.685122
\(76\) −280.000 −0.422608
\(77\) 0 0
\(78\) −570.000 −0.827433
\(79\) −1322.00 −1.88274 −0.941371 0.337373i \(-0.890462\pi\)
−0.941371 + 0.337373i \(0.890462\pi\)
\(80\) −96.0000 −0.134164
\(81\) −671.000 −0.920439
\(82\) 190.000 0.255878
\(83\) 36.0000 0.0476086 0.0238043 0.999717i \(-0.492422\pi\)
0.0238043 + 0.999717i \(0.492422\pi\)
\(84\) 0 0
\(85\) 480.000 0.612510
\(86\) −176.000 −0.220681
\(87\) 1225.00 1.50958
\(88\) 816.000 0.988476
\(89\) 460.000 0.547864 0.273932 0.961749i \(-0.411676\pi\)
0.273932 + 0.961749i \(0.411676\pi\)
\(90\) 24.0000 0.0281091
\(91\) 0 0
\(92\) −92.0000 −0.104257
\(93\) −515.000 −0.574226
\(94\) −714.000 −0.783441
\(95\) 420.000 0.453590
\(96\) −800.000 −0.850517
\(97\) 964.000 1.00907 0.504533 0.863393i \(-0.331665\pi\)
0.504533 + 0.863393i \(0.331665\pi\)
\(98\) 0 0
\(99\) −68.0000 −0.0690329
\(100\) 356.000 0.356000
\(101\) 310.000 0.305407 0.152704 0.988272i \(-0.451202\pi\)
0.152704 + 0.988272i \(0.451202\pi\)
\(102\) −800.000 −0.776586
\(103\) −1044.00 −0.998722 −0.499361 0.866394i \(-0.666432\pi\)
−0.499361 + 0.866394i \(0.666432\pi\)
\(104\) 1368.00 1.28984
\(105\) 0 0
\(106\) 828.000 0.758703
\(107\) 414.000 0.374046 0.187023 0.982356i \(-0.440116\pi\)
0.187023 + 0.982356i \(0.440116\pi\)
\(108\) 580.000 0.516764
\(109\) 704.000 0.618633 0.309316 0.950959i \(-0.399900\pi\)
0.309316 + 0.950959i \(0.399900\pi\)
\(110\) −408.000 −0.353648
\(111\) −1490.00 −1.27409
\(112\) 0 0
\(113\) 952.000 0.792537 0.396268 0.918135i \(-0.370305\pi\)
0.396268 + 0.918135i \(0.370305\pi\)
\(114\) −700.000 −0.575097
\(115\) 138.000 0.111901
\(116\) −980.000 −0.784403
\(117\) −114.000 −0.0900795
\(118\) −816.000 −0.636601
\(119\) 0 0
\(120\) 720.000 0.547723
\(121\) −175.000 −0.131480
\(122\) 1644.00 1.22001
\(123\) −475.000 −0.348206
\(124\) 412.000 0.298377
\(125\) −1284.00 −0.918756
\(126\) 0 0
\(127\) 261.000 0.182362 0.0911811 0.995834i \(-0.470936\pi\)
0.0911811 + 0.995834i \(0.470936\pi\)
\(128\) 384.000 0.265165
\(129\) 440.000 0.300309
\(130\) −684.000 −0.461467
\(131\) 1441.00 0.961074 0.480537 0.876974i \(-0.340442\pi\)
0.480537 + 0.876974i \(0.340442\pi\)
\(132\) −680.000 −0.448382
\(133\) 0 0
\(134\) −1852.00 −1.19394
\(135\) −870.000 −0.554649
\(136\) 1920.00 1.21058
\(137\) 1556.00 0.970351 0.485175 0.874417i \(-0.338756\pi\)
0.485175 + 0.874417i \(0.338756\pi\)
\(138\) −230.000 −0.141876
\(139\) −25.0000 −0.0152552 −0.00762760 0.999971i \(-0.502428\pi\)
−0.00762760 + 0.999971i \(0.502428\pi\)
\(140\) 0 0
\(141\) 1785.00 1.06613
\(142\) −670.000 −0.395952
\(143\) 1938.00 1.13331
\(144\) 32.0000 0.0185185
\(145\) 1470.00 0.841909
\(146\) −1798.00 −1.01920
\(147\) 0 0
\(148\) 1192.00 0.662039
\(149\) 822.000 0.451952 0.225976 0.974133i \(-0.427443\pi\)
0.225976 + 0.974133i \(0.427443\pi\)
\(150\) 890.000 0.484455
\(151\) −1489.00 −0.802471 −0.401235 0.915975i \(-0.631419\pi\)
−0.401235 + 0.915975i \(0.631419\pi\)
\(152\) 1680.00 0.896487
\(153\) −160.000 −0.0845440
\(154\) 0 0
\(155\) −618.000 −0.320251
\(156\) −1140.00 −0.585084
\(157\) 632.000 0.321268 0.160634 0.987014i \(-0.448646\pi\)
0.160634 + 0.987014i \(0.448646\pi\)
\(158\) 2644.00 1.33130
\(159\) −2070.00 −1.03246
\(160\) −960.000 −0.474342
\(161\) 0 0
\(162\) 1342.00 0.650849
\(163\) −3043.00 −1.46225 −0.731123 0.682245i \(-0.761004\pi\)
−0.731123 + 0.682245i \(0.761004\pi\)
\(164\) 380.000 0.180933
\(165\) 1020.00 0.481254
\(166\) −72.0000 −0.0336644
\(167\) 2224.00 1.03053 0.515264 0.857031i \(-0.327694\pi\)
0.515264 + 0.857031i \(0.327694\pi\)
\(168\) 0 0
\(169\) 1052.00 0.478835
\(170\) −960.000 −0.433110
\(171\) −140.000 −0.0626086
\(172\) −352.000 −0.156045
\(173\) −3230.00 −1.41949 −0.709747 0.704457i \(-0.751191\pi\)
−0.709747 + 0.704457i \(0.751191\pi\)
\(174\) −2450.00 −1.06744
\(175\) 0 0
\(176\) −544.000 −0.232986
\(177\) 2040.00 0.866304
\(178\) −920.000 −0.387398
\(179\) 369.000 0.154080 0.0770401 0.997028i \(-0.475453\pi\)
0.0770401 + 0.997028i \(0.475453\pi\)
\(180\) 48.0000 0.0198762
\(181\) 1370.00 0.562604 0.281302 0.959619i \(-0.409234\pi\)
0.281302 + 0.959619i \(0.409234\pi\)
\(182\) 0 0
\(183\) −4110.00 −1.66022
\(184\) 552.000 0.221163
\(185\) −1788.00 −0.710575
\(186\) 1030.00 0.406039
\(187\) 2720.00 1.06367
\(188\) −1428.00 −0.553977
\(189\) 0 0
\(190\) −840.000 −0.320737
\(191\) 4410.00 1.67066 0.835331 0.549747i \(-0.185276\pi\)
0.835331 + 0.549747i \(0.185276\pi\)
\(192\) 2240.00 0.841969
\(193\) −135.000 −0.0503498 −0.0251749 0.999683i \(-0.508014\pi\)
−0.0251749 + 0.999683i \(0.508014\pi\)
\(194\) −1928.00 −0.713517
\(195\) 1710.00 0.627978
\(196\) 0 0
\(197\) 1221.00 0.441587 0.220794 0.975321i \(-0.429135\pi\)
0.220794 + 0.975321i \(0.429135\pi\)
\(198\) 136.000 0.0488136
\(199\) 1098.00 0.391131 0.195566 0.980691i \(-0.437346\pi\)
0.195566 + 0.980691i \(0.437346\pi\)
\(200\) −2136.00 −0.755190
\(201\) 4630.00 1.62475
\(202\) −620.000 −0.215956
\(203\) 0 0
\(204\) −1600.00 −0.549129
\(205\) −570.000 −0.194198
\(206\) 2088.00 0.706203
\(207\) −46.0000 −0.0154455
\(208\) −912.000 −0.304018
\(209\) 2380.00 0.787694
\(210\) 0 0
\(211\) −3676.00 −1.19937 −0.599683 0.800238i \(-0.704707\pi\)
−0.599683 + 0.800238i \(0.704707\pi\)
\(212\) 1656.00 0.536484
\(213\) 1675.00 0.538822
\(214\) −828.000 −0.264490
\(215\) 528.000 0.167485
\(216\) −3480.00 −1.09622
\(217\) 0 0
\(218\) −1408.00 −0.437439
\(219\) 4495.00 1.38696
\(220\) −816.000 −0.250067
\(221\) 4560.00 1.38796
\(222\) 2980.00 0.900921
\(223\) −1656.00 −0.497282 −0.248641 0.968596i \(-0.579984\pi\)
−0.248641 + 0.968596i \(0.579984\pi\)
\(224\) 0 0
\(225\) 178.000 0.0527407
\(226\) −1904.00 −0.560408
\(227\) −2940.00 −0.859624 −0.429812 0.902918i \(-0.641420\pi\)
−0.429812 + 0.902918i \(0.641420\pi\)
\(228\) −1400.00 −0.406655
\(229\) −3612.00 −1.04230 −0.521152 0.853464i \(-0.674498\pi\)
−0.521152 + 0.853464i \(0.674498\pi\)
\(230\) −276.000 −0.0791257
\(231\) 0 0
\(232\) 5880.00 1.66397
\(233\) −4325.00 −1.21605 −0.608026 0.793917i \(-0.708038\pi\)
−0.608026 + 0.793917i \(0.708038\pi\)
\(234\) 228.000 0.0636958
\(235\) 2142.00 0.594590
\(236\) −1632.00 −0.450145
\(237\) −6610.00 −1.81167
\(238\) 0 0
\(239\) 2735.00 0.740219 0.370110 0.928988i \(-0.379320\pi\)
0.370110 + 0.928988i \(0.379320\pi\)
\(240\) −480.000 −0.129099
\(241\) 6710.00 1.79348 0.896741 0.442556i \(-0.145928\pi\)
0.896741 + 0.442556i \(0.145928\pi\)
\(242\) 350.000 0.0929705
\(243\) 560.000 0.147835
\(244\) 3288.00 0.862675
\(245\) 0 0
\(246\) 950.000 0.246219
\(247\) 3990.00 1.02784
\(248\) −2472.00 −0.632952
\(249\) 180.000 0.0458114
\(250\) 2568.00 0.649658
\(251\) 6948.00 1.74723 0.873613 0.486621i \(-0.161771\pi\)
0.873613 + 0.486621i \(0.161771\pi\)
\(252\) 0 0
\(253\) 782.000 0.194324
\(254\) −522.000 −0.128950
\(255\) 2400.00 0.589388
\(256\) −4352.00 −1.06250
\(257\) 4929.00 1.19635 0.598176 0.801365i \(-0.295892\pi\)
0.598176 + 0.801365i \(0.295892\pi\)
\(258\) −880.000 −0.212350
\(259\) 0 0
\(260\) −1368.00 −0.326307
\(261\) −490.000 −0.116208
\(262\) −2882.00 −0.679582
\(263\) 6138.00 1.43911 0.719554 0.694437i \(-0.244346\pi\)
0.719554 + 0.694437i \(0.244346\pi\)
\(264\) 4080.00 0.951162
\(265\) −2484.00 −0.575815
\(266\) 0 0
\(267\) 2300.00 0.527182
\(268\) −3704.00 −0.844246
\(269\) 2063.00 0.467596 0.233798 0.972285i \(-0.424885\pi\)
0.233798 + 0.972285i \(0.424885\pi\)
\(270\) 1740.00 0.392196
\(271\) 1064.00 0.238500 0.119250 0.992864i \(-0.461951\pi\)
0.119250 + 0.992864i \(0.461951\pi\)
\(272\) −1280.00 −0.285336
\(273\) 0 0
\(274\) −3112.00 −0.686142
\(275\) −3026.00 −0.663544
\(276\) −460.000 −0.100322
\(277\) 5729.00 1.24268 0.621340 0.783541i \(-0.286589\pi\)
0.621340 + 0.783541i \(0.286589\pi\)
\(278\) 50.0000 0.0107871
\(279\) 206.000 0.0442039
\(280\) 0 0
\(281\) −960.000 −0.203804 −0.101902 0.994794i \(-0.532493\pi\)
−0.101902 + 0.994794i \(0.532493\pi\)
\(282\) −3570.00 −0.753867
\(283\) 114.000 0.0239456 0.0119728 0.999928i \(-0.496189\pi\)
0.0119728 + 0.999928i \(0.496189\pi\)
\(284\) −1340.00 −0.279980
\(285\) 2100.00 0.436468
\(286\) −3876.00 −0.801373
\(287\) 0 0
\(288\) 320.000 0.0654729
\(289\) 1487.00 0.302666
\(290\) −2940.00 −0.595320
\(291\) 4820.00 0.970974
\(292\) −3596.00 −0.720685
\(293\) 7048.00 1.40529 0.702643 0.711543i \(-0.252003\pi\)
0.702643 + 0.711543i \(0.252003\pi\)
\(294\) 0 0
\(295\) 2448.00 0.483146
\(296\) −7152.00 −1.40440
\(297\) −4930.00 −0.963191
\(298\) −1644.00 −0.319578
\(299\) 1311.00 0.253569
\(300\) 1780.00 0.342561
\(301\) 0 0
\(302\) 2978.00 0.567433
\(303\) 1550.00 0.293878
\(304\) −1120.00 −0.211304
\(305\) −4932.00 −0.925920
\(306\) 320.000 0.0597816
\(307\) −3872.00 −0.719826 −0.359913 0.932986i \(-0.617194\pi\)
−0.359913 + 0.932986i \(0.617194\pi\)
\(308\) 0 0
\(309\) −5220.00 −0.961021
\(310\) 1236.00 0.226452
\(311\) 4977.00 0.907459 0.453730 0.891139i \(-0.350093\pi\)
0.453730 + 0.891139i \(0.350093\pi\)
\(312\) 6840.00 1.24115
\(313\) 2536.00 0.457965 0.228983 0.973430i \(-0.426460\pi\)
0.228983 + 0.973430i \(0.426460\pi\)
\(314\) −1264.00 −0.227171
\(315\) 0 0
\(316\) 5288.00 0.941371
\(317\) 1434.00 0.254074 0.127037 0.991898i \(-0.459453\pi\)
0.127037 + 0.991898i \(0.459453\pi\)
\(318\) 4140.00 0.730062
\(319\) 8330.00 1.46204
\(320\) 2688.00 0.469574
\(321\) 2070.00 0.359926
\(322\) 0 0
\(323\) 5600.00 0.964682
\(324\) 2684.00 0.460219
\(325\) −5073.00 −0.865844
\(326\) 6086.00 1.03396
\(327\) 3520.00 0.595280
\(328\) −2280.00 −0.383817
\(329\) 0 0
\(330\) −2040.00 −0.340298
\(331\) 5469.00 0.908167 0.454084 0.890959i \(-0.349967\pi\)
0.454084 + 0.890959i \(0.349967\pi\)
\(332\) −144.000 −0.0238043
\(333\) 596.000 0.0980799
\(334\) −4448.00 −0.728694
\(335\) 5556.00 0.906139
\(336\) 0 0
\(337\) −7796.00 −1.26016 −0.630082 0.776529i \(-0.716979\pi\)
−0.630082 + 0.776529i \(0.716979\pi\)
\(338\) −2104.00 −0.338587
\(339\) 4760.00 0.762619
\(340\) −1920.00 −0.306255
\(341\) −3502.00 −0.556141
\(342\) 280.000 0.0442710
\(343\) 0 0
\(344\) 2112.00 0.331022
\(345\) 690.000 0.107676
\(346\) 6460.00 1.00373
\(347\) −10068.0 −1.55758 −0.778788 0.627288i \(-0.784165\pi\)
−0.778788 + 0.627288i \(0.784165\pi\)
\(348\) −4900.00 −0.754792
\(349\) 7495.00 1.14956 0.574782 0.818306i \(-0.305087\pi\)
0.574782 + 0.818306i \(0.305087\pi\)
\(350\) 0 0
\(351\) −8265.00 −1.25685
\(352\) −5440.00 −0.823730
\(353\) −10617.0 −1.60081 −0.800405 0.599460i \(-0.795382\pi\)
−0.800405 + 0.599460i \(0.795382\pi\)
\(354\) −4080.00 −0.612569
\(355\) 2010.00 0.300506
\(356\) −1840.00 −0.273932
\(357\) 0 0
\(358\) −738.000 −0.108951
\(359\) 2522.00 0.370769 0.185384 0.982666i \(-0.440647\pi\)
0.185384 + 0.982666i \(0.440647\pi\)
\(360\) −288.000 −0.0421637
\(361\) −1959.00 −0.285610
\(362\) −2740.00 −0.397821
\(363\) −875.000 −0.126517
\(364\) 0 0
\(365\) 5394.00 0.773520
\(366\) 8220.00 1.17395
\(367\) −7204.00 −1.02465 −0.512324 0.858792i \(-0.671215\pi\)
−0.512324 + 0.858792i \(0.671215\pi\)
\(368\) −368.000 −0.0521286
\(369\) 190.000 0.0268049
\(370\) 3576.00 0.502452
\(371\) 0 0
\(372\) 2060.00 0.287113
\(373\) −13310.0 −1.84763 −0.923815 0.382840i \(-0.874946\pi\)
−0.923815 + 0.382840i \(0.874946\pi\)
\(374\) −5440.00 −0.752128
\(375\) −6420.00 −0.884073
\(376\) 8568.00 1.17516
\(377\) 13965.0 1.90778
\(378\) 0 0
\(379\) 12952.0 1.75541 0.877704 0.479203i \(-0.159074\pi\)
0.877704 + 0.479203i \(0.159074\pi\)
\(380\) −1680.00 −0.226795
\(381\) 1305.00 0.175478
\(382\) −8820.00 −1.18134
\(383\) 2812.00 0.375161 0.187580 0.982249i \(-0.439936\pi\)
0.187580 + 0.982249i \(0.439936\pi\)
\(384\) 1920.00 0.255155
\(385\) 0 0
\(386\) 270.000 0.0356027
\(387\) −176.000 −0.0231178
\(388\) −3856.00 −0.504533
\(389\) 1264.00 0.164749 0.0823745 0.996601i \(-0.473750\pi\)
0.0823745 + 0.996601i \(0.473750\pi\)
\(390\) −3420.00 −0.444047
\(391\) 1840.00 0.237987
\(392\) 0 0
\(393\) 7205.00 0.924794
\(394\) −2442.00 −0.312249
\(395\) −7932.00 −1.01039
\(396\) 272.000 0.0345165
\(397\) −7119.00 −0.899981 −0.449990 0.893033i \(-0.648573\pi\)
−0.449990 + 0.893033i \(0.648573\pi\)
\(398\) −2196.00 −0.276572
\(399\) 0 0
\(400\) 1424.00 0.178000
\(401\) 4262.00 0.530758 0.265379 0.964144i \(-0.414503\pi\)
0.265379 + 0.964144i \(0.414503\pi\)
\(402\) −9260.00 −1.14887
\(403\) −5871.00 −0.725696
\(404\) −1240.00 −0.152704
\(405\) −4026.00 −0.493959
\(406\) 0 0
\(407\) −10132.0 −1.23397
\(408\) 9600.00 1.16488
\(409\) −229.000 −0.0276854 −0.0138427 0.999904i \(-0.504406\pi\)
−0.0138427 + 0.999904i \(0.504406\pi\)
\(410\) 1140.00 0.137319
\(411\) 7780.00 0.933720
\(412\) 4176.00 0.499361
\(413\) 0 0
\(414\) 92.0000 0.0109216
\(415\) 216.000 0.0255495
\(416\) −9120.00 −1.07487
\(417\) −125.000 −0.0146793
\(418\) −4760.00 −0.556984
\(419\) −15776.0 −1.83940 −0.919699 0.392623i \(-0.871568\pi\)
−0.919699 + 0.392623i \(0.871568\pi\)
\(420\) 0 0
\(421\) −8728.00 −1.01040 −0.505198 0.863003i \(-0.668581\pi\)
−0.505198 + 0.863003i \(0.668581\pi\)
\(422\) 7352.00 0.848080
\(423\) −714.000 −0.0820706
\(424\) −9936.00 −1.13805
\(425\) −7120.00 −0.812637
\(426\) −3350.00 −0.381005
\(427\) 0 0
\(428\) −1656.00 −0.187023
\(429\) 9690.00 1.09053
\(430\) −1056.00 −0.118430
\(431\) −2928.00 −0.327232 −0.163616 0.986524i \(-0.552316\pi\)
−0.163616 + 0.986524i \(0.552316\pi\)
\(432\) 2320.00 0.258382
\(433\) 5314.00 0.589780 0.294890 0.955531i \(-0.404717\pi\)
0.294890 + 0.955531i \(0.404717\pi\)
\(434\) 0 0
\(435\) 7350.00 0.810128
\(436\) −2816.00 −0.309316
\(437\) 1610.00 0.176240
\(438\) −8990.00 −0.980728
\(439\) −2585.00 −0.281037 −0.140519 0.990078i \(-0.544877\pi\)
−0.140519 + 0.990078i \(0.544877\pi\)
\(440\) 4896.00 0.530472
\(441\) 0 0
\(442\) −9120.00 −0.981435
\(443\) −2997.00 −0.321426 −0.160713 0.987001i \(-0.551379\pi\)
−0.160713 + 0.987001i \(0.551379\pi\)
\(444\) 5960.00 0.637047
\(445\) 2760.00 0.294015
\(446\) 3312.00 0.351632
\(447\) 4110.00 0.434891
\(448\) 0 0
\(449\) −16562.0 −1.74078 −0.870389 0.492365i \(-0.836132\pi\)
−0.870389 + 0.492365i \(0.836132\pi\)
\(450\) −356.000 −0.0372933
\(451\) −3230.00 −0.337239
\(452\) −3808.00 −0.396268
\(453\) −7445.00 −0.772178
\(454\) 5880.00 0.607846
\(455\) 0 0
\(456\) 8400.00 0.862645
\(457\) 3924.00 0.401656 0.200828 0.979626i \(-0.435637\pi\)
0.200828 + 0.979626i \(0.435637\pi\)
\(458\) 7224.00 0.737020
\(459\) −11600.0 −1.17961
\(460\) −552.000 −0.0559503
\(461\) 4543.00 0.458977 0.229489 0.973311i \(-0.426295\pi\)
0.229489 + 0.973311i \(0.426295\pi\)
\(462\) 0 0
\(463\) 9616.00 0.965213 0.482606 0.875837i \(-0.339690\pi\)
0.482606 + 0.875837i \(0.339690\pi\)
\(464\) −3920.00 −0.392201
\(465\) −3090.00 −0.308162
\(466\) 8650.00 0.859879
\(467\) −7826.00 −0.775469 −0.387735 0.921771i \(-0.626742\pi\)
−0.387735 + 0.921771i \(0.626742\pi\)
\(468\) 456.000 0.0450398
\(469\) 0 0
\(470\) −4284.00 −0.420439
\(471\) 3160.00 0.309140
\(472\) 9792.00 0.954901
\(473\) 2992.00 0.290851
\(474\) 13220.0 1.28104
\(475\) −6230.00 −0.601794
\(476\) 0 0
\(477\) 828.000 0.0794791
\(478\) −5470.00 −0.523414
\(479\) −11404.0 −1.08781 −0.543906 0.839146i \(-0.683055\pi\)
−0.543906 + 0.839146i \(0.683055\pi\)
\(480\) −4800.00 −0.456435
\(481\) −16986.0 −1.61018
\(482\) −13420.0 −1.26818
\(483\) 0 0
\(484\) 700.000 0.0657400
\(485\) 5784.00 0.541521
\(486\) −1120.00 −0.104535
\(487\) −9267.00 −0.862275 −0.431137 0.902286i \(-0.641888\pi\)
−0.431137 + 0.902286i \(0.641888\pi\)
\(488\) −19728.0 −1.83001
\(489\) −15215.0 −1.40705
\(490\) 0 0
\(491\) −18191.0 −1.67199 −0.835996 0.548735i \(-0.815110\pi\)
−0.835996 + 0.548735i \(0.815110\pi\)
\(492\) 1900.00 0.174103
\(493\) 19600.0 1.79055
\(494\) −7980.00 −0.726796
\(495\) −408.000 −0.0370469
\(496\) 1648.00 0.149188
\(497\) 0 0
\(498\) −360.000 −0.0323935
\(499\) 19315.0 1.73278 0.866391 0.499366i \(-0.166434\pi\)
0.866391 + 0.499366i \(0.166434\pi\)
\(500\) 5136.00 0.459378
\(501\) 11120.0 0.991627
\(502\) −13896.0 −1.23548
\(503\) −8422.00 −0.746557 −0.373279 0.927719i \(-0.621766\pi\)
−0.373279 + 0.927719i \(0.621766\pi\)
\(504\) 0 0
\(505\) 1860.00 0.163899
\(506\) −1564.00 −0.137408
\(507\) 5260.00 0.460759
\(508\) −1044.00 −0.0911811
\(509\) 863.000 0.0751509 0.0375754 0.999294i \(-0.488037\pi\)
0.0375754 + 0.999294i \(0.488037\pi\)
\(510\) −4800.00 −0.416760
\(511\) 0 0
\(512\) 5632.00 0.486136
\(513\) −10150.0 −0.873554
\(514\) −9858.00 −0.845949
\(515\) −6264.00 −0.535971
\(516\) −1760.00 −0.150154
\(517\) 12138.0 1.03255
\(518\) 0 0
\(519\) −16150.0 −1.36591
\(520\) 8208.00 0.692201
\(521\) −19260.0 −1.61957 −0.809785 0.586727i \(-0.800416\pi\)
−0.809785 + 0.586727i \(0.800416\pi\)
\(522\) 980.000 0.0821713
\(523\) 11740.0 0.981557 0.490779 0.871284i \(-0.336712\pi\)
0.490779 + 0.871284i \(0.336712\pi\)
\(524\) −5764.00 −0.480537
\(525\) 0 0
\(526\) −12276.0 −1.01760
\(527\) −8240.00 −0.681101
\(528\) −2720.00 −0.224191
\(529\) 529.000 0.0434783
\(530\) 4968.00 0.407163
\(531\) −816.000 −0.0666881
\(532\) 0 0
\(533\) −5415.00 −0.440056
\(534\) −4600.00 −0.372774
\(535\) 2484.00 0.200734
\(536\) 22224.0 1.79092
\(537\) 1845.00 0.148264
\(538\) −4126.00 −0.330640
\(539\) 0 0
\(540\) 3480.00 0.277325
\(541\) 17741.0 1.40988 0.704940 0.709267i \(-0.250974\pi\)
0.704940 + 0.709267i \(0.250974\pi\)
\(542\) −2128.00 −0.168645
\(543\) 6850.00 0.541366
\(544\) −12800.0 −1.00882
\(545\) 4224.00 0.331993
\(546\) 0 0
\(547\) −6571.00 −0.513630 −0.256815 0.966461i \(-0.582673\pi\)
−0.256815 + 0.966461i \(0.582673\pi\)
\(548\) −6224.00 −0.485175
\(549\) 1644.00 0.127804
\(550\) 6052.00 0.469197
\(551\) 17150.0 1.32598
\(552\) 2760.00 0.212814
\(553\) 0 0
\(554\) −11458.0 −0.878707
\(555\) −8940.00 −0.683751
\(556\) 100.000 0.00762760
\(557\) −1372.00 −0.104369 −0.0521845 0.998637i \(-0.516618\pi\)
−0.0521845 + 0.998637i \(0.516618\pi\)
\(558\) −412.000 −0.0312569
\(559\) 5016.00 0.379524
\(560\) 0 0
\(561\) 13600.0 1.02352
\(562\) 1920.00 0.144111
\(563\) −4332.00 −0.324284 −0.162142 0.986767i \(-0.551840\pi\)
−0.162142 + 0.986767i \(0.551840\pi\)
\(564\) −7140.00 −0.533064
\(565\) 5712.00 0.425320
\(566\) −228.000 −0.0169321
\(567\) 0 0
\(568\) 8040.00 0.593928
\(569\) −3546.00 −0.261258 −0.130629 0.991431i \(-0.541700\pi\)
−0.130629 + 0.991431i \(0.541700\pi\)
\(570\) −4200.00 −0.308629
\(571\) −6160.00 −0.451468 −0.225734 0.974189i \(-0.572478\pi\)
−0.225734 + 0.974189i \(0.572478\pi\)
\(572\) −7752.00 −0.566656
\(573\) 22050.0 1.60760
\(574\) 0 0
\(575\) −2047.00 −0.148462
\(576\) −896.000 −0.0648148
\(577\) −2953.00 −0.213059 −0.106529 0.994310i \(-0.533974\pi\)
−0.106529 + 0.994310i \(0.533974\pi\)
\(578\) −2974.00 −0.214017
\(579\) −675.000 −0.0484491
\(580\) −5880.00 −0.420955
\(581\) 0 0
\(582\) −9640.00 −0.686582
\(583\) −14076.0 −0.999946
\(584\) 21576.0 1.52880
\(585\) −684.000 −0.0483417
\(586\) −14096.0 −0.993687
\(587\) 2949.00 0.207356 0.103678 0.994611i \(-0.466939\pi\)
0.103678 + 0.994611i \(0.466939\pi\)
\(588\) 0 0
\(589\) −7210.00 −0.504385
\(590\) −4896.00 −0.341636
\(591\) 6105.00 0.424917
\(592\) 4768.00 0.331020
\(593\) −16390.0 −1.13500 −0.567501 0.823372i \(-0.692090\pi\)
−0.567501 + 0.823372i \(0.692090\pi\)
\(594\) 9860.00 0.681079
\(595\) 0 0
\(596\) −3288.00 −0.225976
\(597\) 5490.00 0.376366
\(598\) −2622.00 −0.179300
\(599\) −12920.0 −0.881297 −0.440648 0.897680i \(-0.645251\pi\)
−0.440648 + 0.897680i \(0.645251\pi\)
\(600\) −10680.0 −0.726682
\(601\) 13835.0 0.939004 0.469502 0.882931i \(-0.344433\pi\)
0.469502 + 0.882931i \(0.344433\pi\)
\(602\) 0 0
\(603\) −1852.00 −0.125073
\(604\) 5956.00 0.401235
\(605\) −1050.00 −0.0705596
\(606\) −3100.00 −0.207803
\(607\) −6004.00 −0.401474 −0.200737 0.979645i \(-0.564334\pi\)
−0.200737 + 0.979645i \(0.564334\pi\)
\(608\) −11200.0 −0.747072
\(609\) 0 0
\(610\) 9864.00 0.654724
\(611\) 20349.0 1.34735
\(612\) 640.000 0.0422720
\(613\) −16416.0 −1.08162 −0.540812 0.841143i \(-0.681883\pi\)
−0.540812 + 0.841143i \(0.681883\pi\)
\(614\) 7744.00 0.508994
\(615\) −2850.00 −0.186867
\(616\) 0 0
\(617\) 3786.00 0.247032 0.123516 0.992343i \(-0.460583\pi\)
0.123516 + 0.992343i \(0.460583\pi\)
\(618\) 10440.0 0.679544
\(619\) −15824.0 −1.02750 −0.513748 0.857941i \(-0.671743\pi\)
−0.513748 + 0.857941i \(0.671743\pi\)
\(620\) 2472.00 0.160126
\(621\) −3335.00 −0.215506
\(622\) −9954.00 −0.641670
\(623\) 0 0
\(624\) −4560.00 −0.292542
\(625\) 3421.00 0.218944
\(626\) −5072.00 −0.323830
\(627\) 11900.0 0.757959
\(628\) −2528.00 −0.160634
\(629\) −23840.0 −1.51123
\(630\) 0 0
\(631\) 17852.0 1.12627 0.563135 0.826365i \(-0.309595\pi\)
0.563135 + 0.826365i \(0.309595\pi\)
\(632\) −31728.0 −1.99695
\(633\) −18380.0 −1.15409
\(634\) −2868.00 −0.179657
\(635\) 1566.00 0.0978658
\(636\) 8280.00 0.516232
\(637\) 0 0
\(638\) −16660.0 −1.03382
\(639\) −670.000 −0.0414785
\(640\) 2304.00 0.142302
\(641\) 10324.0 0.636152 0.318076 0.948065i \(-0.396963\pi\)
0.318076 + 0.948065i \(0.396963\pi\)
\(642\) −4140.00 −0.254506
\(643\) 14702.0 0.901696 0.450848 0.892601i \(-0.351122\pi\)
0.450848 + 0.892601i \(0.351122\pi\)
\(644\) 0 0
\(645\) 2640.00 0.161163
\(646\) −11200.0 −0.682133
\(647\) −11939.0 −0.725457 −0.362728 0.931895i \(-0.618155\pi\)
−0.362728 + 0.931895i \(0.618155\pi\)
\(648\) −16104.0 −0.976273
\(649\) 13872.0 0.839019
\(650\) 10146.0 0.612244
\(651\) 0 0
\(652\) 12172.0 0.731123
\(653\) 6159.00 0.369097 0.184548 0.982823i \(-0.440918\pi\)
0.184548 + 0.982823i \(0.440918\pi\)
\(654\) −7040.00 −0.420926
\(655\) 8646.00 0.515767
\(656\) 1520.00 0.0904665
\(657\) −1798.00 −0.106768
\(658\) 0 0
\(659\) −21692.0 −1.28225 −0.641123 0.767438i \(-0.721531\pi\)
−0.641123 + 0.767438i \(0.721531\pi\)
\(660\) −4080.00 −0.240627
\(661\) −16502.0 −0.971034 −0.485517 0.874227i \(-0.661369\pi\)
−0.485517 + 0.874227i \(0.661369\pi\)
\(662\) −10938.0 −0.642171
\(663\) 22800.0 1.33556
\(664\) 864.000 0.0504965
\(665\) 0 0
\(666\) −1192.00 −0.0693529
\(667\) 5635.00 0.327119
\(668\) −8896.00 −0.515264
\(669\) −8280.00 −0.478510
\(670\) −11112.0 −0.640737
\(671\) −27948.0 −1.60793
\(672\) 0 0
\(673\) −27733.0 −1.58845 −0.794226 0.607622i \(-0.792124\pi\)
−0.794226 + 0.607622i \(0.792124\pi\)
\(674\) 15592.0 0.891070
\(675\) 12905.0 0.735872
\(676\) −4208.00 −0.239417
\(677\) 8814.00 0.500369 0.250184 0.968198i \(-0.419509\pi\)
0.250184 + 0.968198i \(0.419509\pi\)
\(678\) −9520.00 −0.539253
\(679\) 0 0
\(680\) 11520.0 0.649664
\(681\) −14700.0 −0.827174
\(682\) 7004.00 0.393251
\(683\) −22999.0 −1.28848 −0.644240 0.764823i \(-0.722826\pi\)
−0.644240 + 0.764823i \(0.722826\pi\)
\(684\) 560.000 0.0313043
\(685\) 9336.00 0.520745
\(686\) 0 0
\(687\) −18060.0 −1.00296
\(688\) −1408.00 −0.0780225
\(689\) −23598.0 −1.30481
\(690\) −1380.00 −0.0761387
\(691\) 12140.0 0.668346 0.334173 0.942512i \(-0.391543\pi\)
0.334173 + 0.942512i \(0.391543\pi\)
\(692\) 12920.0 0.709747
\(693\) 0 0
\(694\) 20136.0 1.10137
\(695\) −150.000 −0.00818680
\(696\) 29400.0 1.60116
\(697\) −7600.00 −0.413014
\(698\) −14990.0 −0.812865
\(699\) −21625.0 −1.17015
\(700\) 0 0
\(701\) −20024.0 −1.07888 −0.539441 0.842024i \(-0.681364\pi\)
−0.539441 + 0.842024i \(0.681364\pi\)
\(702\) 16530.0 0.888725
\(703\) −20860.0 −1.11913
\(704\) 15232.0 0.815451
\(705\) 10710.0 0.572145
\(706\) 21234.0 1.13194
\(707\) 0 0
\(708\) −8160.00 −0.433152
\(709\) −4956.00 −0.262520 −0.131260 0.991348i \(-0.541902\pi\)
−0.131260 + 0.991348i \(0.541902\pi\)
\(710\) −4020.00 −0.212490
\(711\) 2644.00 0.139462
\(712\) 11040.0 0.581098
\(713\) −2369.00 −0.124432
\(714\) 0 0
\(715\) 11628.0 0.608199
\(716\) −1476.00 −0.0770401
\(717\) 13675.0 0.712276
\(718\) −5044.00 −0.262173
\(719\) −2760.00 −0.143158 −0.0715790 0.997435i \(-0.522804\pi\)
−0.0715790 + 0.997435i \(0.522804\pi\)
\(720\) 192.000 0.00993808
\(721\) 0 0
\(722\) 3918.00 0.201957
\(723\) 33550.0 1.72578
\(724\) −5480.00 −0.281302
\(725\) −21805.0 −1.11699
\(726\) 1750.00 0.0894609
\(727\) −7746.00 −0.395163 −0.197581 0.980287i \(-0.563309\pi\)
−0.197581 + 0.980287i \(0.563309\pi\)
\(728\) 0 0
\(729\) 20917.0 1.06269
\(730\) −10788.0 −0.546961
\(731\) 7040.00 0.356202
\(732\) 16440.0 0.830109
\(733\) 11976.0 0.603470 0.301735 0.953392i \(-0.402434\pi\)
0.301735 + 0.953392i \(0.402434\pi\)
\(734\) 14408.0 0.724535
\(735\) 0 0
\(736\) −3680.00 −0.184302
\(737\) 31484.0 1.57358
\(738\) −380.000 −0.0189539
\(739\) 15057.0 0.749500 0.374750 0.927126i \(-0.377728\pi\)
0.374750 + 0.927126i \(0.377728\pi\)
\(740\) 7152.00 0.355287
\(741\) 19950.0 0.989044
\(742\) 0 0
\(743\) 18532.0 0.915038 0.457519 0.889200i \(-0.348738\pi\)
0.457519 + 0.889200i \(0.348738\pi\)
\(744\) −12360.0 −0.609059
\(745\) 4932.00 0.242543
\(746\) 26620.0 1.30647
\(747\) −72.0000 −0.00352656
\(748\) −10880.0 −0.531834
\(749\) 0 0
\(750\) 12840.0 0.625134
\(751\) −192.000 −0.00932913 −0.00466457 0.999989i \(-0.501485\pi\)
−0.00466457 + 0.999989i \(0.501485\pi\)
\(752\) −5712.00 −0.276988
\(753\) 34740.0 1.68127
\(754\) −27930.0 −1.34901
\(755\) −8934.00 −0.430651
\(756\) 0 0
\(757\) −9830.00 −0.471965 −0.235982 0.971757i \(-0.575831\pi\)
−0.235982 + 0.971757i \(0.575831\pi\)
\(758\) −25904.0 −1.24126
\(759\) 3910.00 0.186988
\(760\) 10080.0 0.481105
\(761\) 30219.0 1.43947 0.719736 0.694248i \(-0.244263\pi\)
0.719736 + 0.694248i \(0.244263\pi\)
\(762\) −2610.00 −0.124082
\(763\) 0 0
\(764\) −17640.0 −0.835331
\(765\) −960.000 −0.0453711
\(766\) −5624.00 −0.265279
\(767\) 23256.0 1.09482
\(768\) −21760.0 −1.02239
\(769\) −1122.00 −0.0526142 −0.0263071 0.999654i \(-0.508375\pi\)
−0.0263071 + 0.999654i \(0.508375\pi\)
\(770\) 0 0
\(771\) 24645.0 1.15119
\(772\) 540.000 0.0251749
\(773\) −19300.0 −0.898024 −0.449012 0.893526i \(-0.648224\pi\)
−0.449012 + 0.893526i \(0.648224\pi\)
\(774\) 352.000 0.0163467
\(775\) 9167.00 0.424888
\(776\) 23136.0 1.07028
\(777\) 0 0
\(778\) −2528.00 −0.116495
\(779\) −6650.00 −0.305855
\(780\) −6840.00 −0.313989
\(781\) 11390.0 0.521852
\(782\) −3680.00 −0.168282
\(783\) −35525.0 −1.62140
\(784\) 0 0
\(785\) 3792.00 0.172411
\(786\) −14410.0 −0.653928
\(787\) 19396.0 0.878517 0.439258 0.898361i \(-0.355241\pi\)
0.439258 + 0.898361i \(0.355241\pi\)
\(788\) −4884.00 −0.220794
\(789\) 30690.0 1.38478
\(790\) 15864.0 0.714450
\(791\) 0 0
\(792\) −1632.00 −0.0732204
\(793\) −46854.0 −2.09815
\(794\) 14238.0 0.636383
\(795\) −12420.0 −0.554078
\(796\) −4392.00 −0.195566
\(797\) 39034.0 1.73482 0.867412 0.497590i \(-0.165782\pi\)
0.867412 + 0.497590i \(0.165782\pi\)
\(798\) 0 0
\(799\) 28560.0 1.26456
\(800\) 14240.0 0.629325
\(801\) −920.000 −0.0405825
\(802\) −8524.00 −0.375303
\(803\) 30566.0 1.34328
\(804\) −18520.0 −0.812376
\(805\) 0 0
\(806\) 11742.0 0.513144
\(807\) 10315.0 0.449944
\(808\) 7440.00 0.323934
\(809\) −10310.0 −0.448060 −0.224030 0.974582i \(-0.571921\pi\)
−0.224030 + 0.974582i \(0.571921\pi\)
\(810\) 8052.00 0.349282
\(811\) 40693.0 1.76193 0.880965 0.473182i \(-0.156895\pi\)
0.880965 + 0.473182i \(0.156895\pi\)
\(812\) 0 0
\(813\) 5320.00 0.229496
\(814\) 20264.0 0.872546
\(815\) −18258.0 −0.784724
\(816\) −6400.00 −0.274565
\(817\) 6160.00 0.263784
\(818\) 458.000 0.0195765
\(819\) 0 0
\(820\) 2280.00 0.0970988
\(821\) −13934.0 −0.592326 −0.296163 0.955137i \(-0.595707\pi\)
−0.296163 + 0.955137i \(0.595707\pi\)
\(822\) −15560.0 −0.660240
\(823\) 6175.00 0.261539 0.130770 0.991413i \(-0.458255\pi\)
0.130770 + 0.991413i \(0.458255\pi\)
\(824\) −25056.0 −1.05930
\(825\) −15130.0 −0.638496
\(826\) 0 0
\(827\) 28664.0 1.20525 0.602627 0.798023i \(-0.294121\pi\)
0.602627 + 0.798023i \(0.294121\pi\)
\(828\) 184.000 0.00772276
\(829\) 39590.0 1.65865 0.829323 0.558770i \(-0.188726\pi\)
0.829323 + 0.558770i \(0.188726\pi\)
\(830\) −432.000 −0.0180662
\(831\) 28645.0 1.19577
\(832\) 25536.0 1.06406
\(833\) 0 0
\(834\) 250.000 0.0103798
\(835\) 13344.0 0.553040
\(836\) −9520.00 −0.393847
\(837\) 14935.0 0.616761
\(838\) 31552.0 1.30065
\(839\) 14316.0 0.589086 0.294543 0.955638i \(-0.404833\pi\)
0.294543 + 0.955638i \(0.404833\pi\)
\(840\) 0 0
\(841\) 35636.0 1.46115
\(842\) 17456.0 0.714458
\(843\) −4800.00 −0.196110
\(844\) 14704.0 0.599683
\(845\) 6312.00 0.256970
\(846\) 1428.00 0.0580327
\(847\) 0 0
\(848\) 6624.00 0.268242
\(849\) 570.000 0.0230416
\(850\) 14240.0 0.574621
\(851\) −6854.00 −0.276089
\(852\) −6700.00 −0.269411
\(853\) −28366.0 −1.13861 −0.569304 0.822127i \(-0.692787\pi\)
−0.569304 + 0.822127i \(0.692787\pi\)
\(854\) 0 0
\(855\) −840.000 −0.0335993
\(856\) 9936.00 0.396735
\(857\) −19283.0 −0.768605 −0.384303 0.923207i \(-0.625558\pi\)
−0.384303 + 0.923207i \(0.625558\pi\)
\(858\) −19380.0 −0.771122
\(859\) 26101.0 1.03673 0.518367 0.855158i \(-0.326540\pi\)
0.518367 + 0.855158i \(0.326540\pi\)
\(860\) −2112.00 −0.0837426
\(861\) 0 0
\(862\) 5856.00 0.231388
\(863\) 973.000 0.0383793 0.0191896 0.999816i \(-0.493891\pi\)
0.0191896 + 0.999816i \(0.493891\pi\)
\(864\) 23200.0 0.913519
\(865\) −19380.0 −0.761780
\(866\) −10628.0 −0.417037
\(867\) 7435.00 0.291241
\(868\) 0 0
\(869\) −44948.0 −1.75461
\(870\) −14700.0 −0.572847
\(871\) 52782.0 2.05333
\(872\) 16896.0 0.656159
\(873\) −1928.00 −0.0747456
\(874\) −3220.00 −0.124620
\(875\) 0 0
\(876\) −17980.0 −0.693479
\(877\) 5694.00 0.219239 0.109620 0.993974i \(-0.465037\pi\)
0.109620 + 0.993974i \(0.465037\pi\)
\(878\) 5170.00 0.198723
\(879\) 35240.0 1.35224
\(880\) −3264.00 −0.125033
\(881\) −45960.0 −1.75758 −0.878792 0.477205i \(-0.841650\pi\)
−0.878792 + 0.477205i \(0.841650\pi\)
\(882\) 0 0
\(883\) 17188.0 0.655065 0.327532 0.944840i \(-0.393783\pi\)
0.327532 + 0.944840i \(0.393783\pi\)
\(884\) −18240.0 −0.693979
\(885\) 12240.0 0.464907
\(886\) 5994.00 0.227283
\(887\) −8451.00 −0.319906 −0.159953 0.987125i \(-0.551134\pi\)
−0.159953 + 0.987125i \(0.551134\pi\)
\(888\) −35760.0 −1.35138
\(889\) 0 0
\(890\) −5520.00 −0.207900
\(891\) −22814.0 −0.857798
\(892\) 6624.00 0.248641
\(893\) 24990.0 0.936460
\(894\) −8220.00 −0.307514
\(895\) 2214.00 0.0826881
\(896\) 0 0
\(897\) 6555.00 0.243997
\(898\) 33124.0 1.23092
\(899\) −25235.0 −0.936190
\(900\) −712.000 −0.0263704
\(901\) −33120.0 −1.22463
\(902\) 6460.00 0.238464
\(903\) 0 0
\(904\) 22848.0 0.840612
\(905\) 8220.00 0.301925
\(906\) 14890.0 0.546012
\(907\) 32774.0 1.19983 0.599913 0.800065i \(-0.295202\pi\)
0.599913 + 0.800065i \(0.295202\pi\)
\(908\) 11760.0 0.429812
\(909\) −620.000 −0.0226228
\(910\) 0 0
\(911\) −23690.0 −0.861564 −0.430782 0.902456i \(-0.641762\pi\)
−0.430782 + 0.902456i \(0.641762\pi\)
\(912\) −5600.00 −0.203327
\(913\) 1224.00 0.0443686
\(914\) −7848.00 −0.284014
\(915\) −24660.0 −0.890967
\(916\) 14448.0 0.521152
\(917\) 0 0
\(918\) 23200.0 0.834111
\(919\) −30044.0 −1.07841 −0.539206 0.842174i \(-0.681275\pi\)
−0.539206 + 0.842174i \(0.681275\pi\)
\(920\) 3312.00 0.118688
\(921\) −19360.0 −0.692653
\(922\) −9086.00 −0.324546
\(923\) 19095.0 0.680953
\(924\) 0 0
\(925\) 26522.0 0.942744
\(926\) −19232.0 −0.682508
\(927\) 2088.00 0.0739794
\(928\) −39200.0 −1.38664
\(929\) 39705.0 1.40224 0.701119 0.713044i \(-0.252684\pi\)
0.701119 + 0.713044i \(0.252684\pi\)
\(930\) 6180.00 0.217903
\(931\) 0 0
\(932\) 17300.0 0.608026
\(933\) 24885.0 0.873203
\(934\) 15652.0 0.548339
\(935\) 16320.0 0.570825
\(936\) −2736.00 −0.0955438
\(937\) −17422.0 −0.607419 −0.303710 0.952765i \(-0.598225\pi\)
−0.303710 + 0.952765i \(0.598225\pi\)
\(938\) 0 0
\(939\) 12680.0 0.440677
\(940\) −8568.00 −0.297295
\(941\) 25292.0 0.876191 0.438095 0.898928i \(-0.355653\pi\)
0.438095 + 0.898928i \(0.355653\pi\)
\(942\) −6320.00 −0.218595
\(943\) −2185.00 −0.0754543
\(944\) −6528.00 −0.225072
\(945\) 0 0
\(946\) −5984.00 −0.205662
\(947\) 33211.0 1.13961 0.569806 0.821779i \(-0.307018\pi\)
0.569806 + 0.821779i \(0.307018\pi\)
\(948\) 26440.0 0.905835
\(949\) 51243.0 1.75281
\(950\) 12460.0 0.425532
\(951\) 7170.00 0.244483
\(952\) 0 0
\(953\) −14154.0 −0.481105 −0.240552 0.970636i \(-0.577329\pi\)
−0.240552 + 0.970636i \(0.577329\pi\)
\(954\) −1656.00 −0.0562002
\(955\) 26460.0 0.896571
\(956\) −10940.0 −0.370110
\(957\) 41650.0 1.40685
\(958\) 22808.0 0.769199
\(959\) 0 0
\(960\) 13440.0 0.451848
\(961\) −19182.0 −0.643886
\(962\) 33972.0 1.13857
\(963\) −828.000 −0.0277071
\(964\) −26840.0 −0.896741
\(965\) −810.000 −0.0270205
\(966\) 0 0
\(967\) −46343.0 −1.54115 −0.770574 0.637350i \(-0.780030\pi\)
−0.770574 + 0.637350i \(0.780030\pi\)
\(968\) −4200.00 −0.139456
\(969\) 28000.0 0.928266
\(970\) −11568.0 −0.382914
\(971\) −11710.0 −0.387015 −0.193508 0.981099i \(-0.561986\pi\)
−0.193508 + 0.981099i \(0.561986\pi\)
\(972\) −2240.00 −0.0739177
\(973\) 0 0
\(974\) 18534.0 0.609720
\(975\) −25365.0 −0.833159
\(976\) 13152.0 0.431337
\(977\) 47854.0 1.56703 0.783513 0.621375i \(-0.213426\pi\)
0.783513 + 0.621375i \(0.213426\pi\)
\(978\) 30430.0 0.994933
\(979\) 15640.0 0.510579
\(980\) 0 0
\(981\) −1408.00 −0.0458246
\(982\) 36382.0 1.18228
\(983\) 22078.0 0.716357 0.358178 0.933653i \(-0.383398\pi\)
0.358178 + 0.933653i \(0.383398\pi\)
\(984\) −11400.0 −0.369328
\(985\) 7326.00 0.236980
\(986\) −39200.0 −1.26611
\(987\) 0 0
\(988\) −15960.0 −0.513922
\(989\) 2024.00 0.0650753
\(990\) 816.000 0.0261961
\(991\) −4288.00 −0.137450 −0.0687249 0.997636i \(-0.521893\pi\)
−0.0687249 + 0.997636i \(0.521893\pi\)
\(992\) 16480.0 0.527460
\(993\) 27345.0 0.873885
\(994\) 0 0
\(995\) 6588.00 0.209903
\(996\) −720.000 −0.0229057
\(997\) −28966.0 −0.920123 −0.460061 0.887887i \(-0.652173\pi\)
−0.460061 + 0.887887i \(0.652173\pi\)
\(998\) −38630.0 −1.22526
\(999\) 43210.0 1.36847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1127.4.a.a.1.1 1
7.6 odd 2 23.4.a.a.1.1 1
21.20 even 2 207.4.a.a.1.1 1
28.27 even 2 368.4.a.d.1.1 1
35.13 even 4 575.4.b.b.24.2 2
35.27 even 4 575.4.b.b.24.1 2
35.34 odd 2 575.4.a.g.1.1 1
56.13 odd 2 1472.4.a.h.1.1 1
56.27 even 2 1472.4.a.c.1.1 1
161.160 even 2 529.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
23.4.a.a.1.1 1 7.6 odd 2
207.4.a.a.1.1 1 21.20 even 2
368.4.a.d.1.1 1 28.27 even 2
529.4.a.a.1.1 1 161.160 even 2
575.4.a.g.1.1 1 35.34 odd 2
575.4.b.b.24.1 2 35.27 even 4
575.4.b.b.24.2 2 35.13 even 4
1127.4.a.a.1.1 1 1.1 even 1 trivial
1472.4.a.c.1.1 1 56.27 even 2
1472.4.a.h.1.1 1 56.13 odd 2