Properties

Label 1122.2
Level 1122
Weight 2
Dimension 8433
Nonzero newspaces 20
Sturm bound 138240
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1122 = 2 \cdot 3 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(138240\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1122))\).

Total New Old
Modular forms 35840 8433 27407
Cusp forms 33281 8433 24848
Eisenstein series 2559 0 2559

Trace form

\( 8433 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 18 q^{5} + 7 q^{6} + 16 q^{7} - 3 q^{8} + 37 q^{9} + O(q^{10}) \) \( 8433 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 18 q^{5} + 7 q^{6} + 16 q^{7} - 3 q^{8} + 37 q^{9} + 38 q^{10} + 49 q^{11} + 33 q^{12} + 62 q^{13} + 80 q^{14} + 138 q^{15} + 13 q^{16} + 69 q^{17} + 71 q^{18} + 64 q^{19} - 2 q^{20} + 112 q^{21} + 9 q^{22} + 32 q^{23} + 3 q^{24} + 131 q^{25} - 26 q^{26} - 63 q^{27} - 24 q^{28} + 30 q^{29} - 78 q^{30} + 72 q^{31} - 3 q^{32} - 81 q^{33} - 35 q^{34} + 24 q^{35} - 13 q^{36} + 14 q^{37} - 60 q^{38} - 62 q^{39} - 18 q^{40} - 6 q^{41} - 140 q^{42} + 84 q^{43} + 17 q^{44} - 130 q^{45} + 8 q^{46} + 16 q^{47} - 3 q^{48} + 69 q^{49} - 13 q^{50} - 108 q^{51} + 38 q^{52} - 26 q^{53} - 95 q^{54} + 94 q^{55} - 24 q^{56} - 194 q^{57} + 70 q^{58} + 4 q^{59} - 42 q^{60} + 78 q^{61} + 24 q^{62} - 4 q^{63} - 3 q^{64} + 4 q^{65} + 89 q^{66} + 60 q^{67} + 21 q^{68} + 116 q^{69} + 144 q^{70} + 136 q^{71} + 53 q^{72} + 274 q^{73} + 110 q^{74} + 221 q^{75} - 20 q^{76} + 136 q^{77} + 166 q^{78} + 200 q^{79} + 86 q^{80} + 93 q^{81} + 166 q^{82} + 124 q^{83} + 40 q^{84} + 250 q^{85} + 116 q^{86} + 6 q^{87} + 81 q^{88} + 42 q^{89} - 22 q^{90} - 32 q^{91} - 8 q^{92} - 36 q^{93} + 32 q^{94} + 16 q^{95} - 3 q^{96} + 22 q^{97} - 27 q^{98} - 91 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1122))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1122.2.a \(\chi_{1122}(1, \cdot)\) 1122.2.a.a 1 1
1122.2.a.b 1
1122.2.a.c 1
1122.2.a.d 1
1122.2.a.e 1
1122.2.a.f 1
1122.2.a.g 1
1122.2.a.h 1
1122.2.a.i 1
1122.2.a.j 1
1122.2.a.k 1
1122.2.a.l 1
1122.2.a.m 1
1122.2.a.n 1
1122.2.a.o 2
1122.2.a.p 2
1122.2.a.q 2
1122.2.a.r 2
1122.2.a.s 3
1122.2.b \(\chi_{1122}(1055, \cdot)\) 1122.2.b.a 16 1
1122.2.b.b 16
1122.2.b.c 16
1122.2.b.d 16
1122.2.c \(\chi_{1122}(67, \cdot)\) 1122.2.c.a 2 1
1122.2.c.b 2
1122.2.c.c 2
1122.2.c.d 2
1122.2.c.e 4
1122.2.c.f 4
1122.2.c.g 6
1122.2.c.h 10
1122.2.h \(\chi_{1122}(1121, \cdot)\) 1122.2.h.a 2 1
1122.2.h.b 2
1122.2.h.c 2
1122.2.h.d 2
1122.2.h.e 4
1122.2.h.f 4
1122.2.h.g 28
1122.2.h.h 28
1122.2.j \(\chi_{1122}(395, \cdot)\) n/a 144 2
1122.2.l \(\chi_{1122}(463, \cdot)\) 1122.2.l.a 4 2
1122.2.l.b 4
1122.2.l.c 4
1122.2.l.d 4
1122.2.l.e 12
1122.2.l.f 16
1122.2.l.g 20
1122.2.m \(\chi_{1122}(103, \cdot)\) n/a 128 4
1122.2.o \(\chi_{1122}(331, \cdot)\) n/a 112 4
1122.2.q \(\chi_{1122}(263, \cdot)\) n/a 288 4
1122.2.r \(\chi_{1122}(101, \cdot)\) n/a 288 4
1122.2.w \(\chi_{1122}(169, \cdot)\) n/a 144 4
1122.2.x \(\chi_{1122}(35, \cdot)\) n/a 256 4
1122.2.y \(\chi_{1122}(23, \cdot)\) n/a 480 8
1122.2.z \(\chi_{1122}(109, \cdot)\) n/a 288 8
1122.2.bc \(\chi_{1122}(115, \cdot)\) n/a 288 8
1122.2.be \(\chi_{1122}(149, \cdot)\) n/a 576 8
1122.2.bg \(\chi_{1122}(83, \cdot)\) n/a 1152 16
1122.2.bi \(\chi_{1122}(25, \cdot)\) n/a 576 16
1122.2.bm \(\chi_{1122}(7, \cdot)\) n/a 1152 32
1122.2.bn \(\chi_{1122}(5, \cdot)\) n/a 2304 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1122))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1122)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(374))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(561))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1122))\)\(^{\oplus 1}\)