Properties

Label 1122.2
Level 1122
Weight 2
Dimension 8433
Nonzero newspaces 20
Sturm bound 138240
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1122 = 2 \cdot 3 \cdot 11 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(138240\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1122))\).

Total New Old
Modular forms 35840 8433 27407
Cusp forms 33281 8433 24848
Eisenstein series 2559 0 2559

Trace form

\( 8433 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 18 q^{5} + 7 q^{6} + 16 q^{7} - 3 q^{8} + 37 q^{9} + 38 q^{10} + 49 q^{11} + 33 q^{12} + 62 q^{13} + 80 q^{14} + 138 q^{15} + 13 q^{16} + 69 q^{17} + 71 q^{18} + 64 q^{19}+ \cdots - 91 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1122))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1122.2.a \(\chi_{1122}(1, \cdot)\) 1122.2.a.a 1 1
1122.2.a.b 1
1122.2.a.c 1
1122.2.a.d 1
1122.2.a.e 1
1122.2.a.f 1
1122.2.a.g 1
1122.2.a.h 1
1122.2.a.i 1
1122.2.a.j 1
1122.2.a.k 1
1122.2.a.l 1
1122.2.a.m 1
1122.2.a.n 1
1122.2.a.o 2
1122.2.a.p 2
1122.2.a.q 2
1122.2.a.r 2
1122.2.a.s 3
1122.2.b \(\chi_{1122}(1055, \cdot)\) 1122.2.b.a 16 1
1122.2.b.b 16
1122.2.b.c 16
1122.2.b.d 16
1122.2.c \(\chi_{1122}(67, \cdot)\) 1122.2.c.a 2 1
1122.2.c.b 2
1122.2.c.c 2
1122.2.c.d 2
1122.2.c.e 4
1122.2.c.f 4
1122.2.c.g 6
1122.2.c.h 10
1122.2.h \(\chi_{1122}(1121, \cdot)\) 1122.2.h.a 2 1
1122.2.h.b 2
1122.2.h.c 2
1122.2.h.d 2
1122.2.h.e 4
1122.2.h.f 4
1122.2.h.g 28
1122.2.h.h 28
1122.2.j \(\chi_{1122}(395, \cdot)\) n/a 144 2
1122.2.l \(\chi_{1122}(463, \cdot)\) 1122.2.l.a 4 2
1122.2.l.b 4
1122.2.l.c 4
1122.2.l.d 4
1122.2.l.e 12
1122.2.l.f 16
1122.2.l.g 20
1122.2.m \(\chi_{1122}(103, \cdot)\) n/a 128 4
1122.2.o \(\chi_{1122}(331, \cdot)\) n/a 112 4
1122.2.q \(\chi_{1122}(263, \cdot)\) n/a 288 4
1122.2.r \(\chi_{1122}(101, \cdot)\) n/a 288 4
1122.2.w \(\chi_{1122}(169, \cdot)\) n/a 144 4
1122.2.x \(\chi_{1122}(35, \cdot)\) n/a 256 4
1122.2.y \(\chi_{1122}(23, \cdot)\) n/a 480 8
1122.2.z \(\chi_{1122}(109, \cdot)\) n/a 288 8
1122.2.bc \(\chi_{1122}(115, \cdot)\) n/a 288 8
1122.2.be \(\chi_{1122}(149, \cdot)\) n/a 576 8
1122.2.bg \(\chi_{1122}(83, \cdot)\) n/a 1152 16
1122.2.bi \(\chi_{1122}(25, \cdot)\) n/a 576 16
1122.2.bm \(\chi_{1122}(7, \cdot)\) n/a 1152 32
1122.2.bn \(\chi_{1122}(5, \cdot)\) n/a 2304 32

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1122))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1122)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(102))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(187))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(374))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(561))\)\(^{\oplus 2}\)