Properties

Label 1120.2.l.a.1009.18
Level $1120$
Weight $2$
Character 1120.1009
Analytic conductor $8.943$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(1009,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.1009"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1009.18
Character \(\chi\) \(=\) 1120.1009
Dual form 1120.2.l.a.1009.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.319826 q^{3} +(1.20181 - 1.88564i) q^{5} +1.00000i q^{7} -2.89771 q^{9} +4.31560i q^{11} +2.16506 q^{13} +(-0.384372 + 0.603077i) q^{15} +3.19581i q^{17} +5.38650i q^{19} -0.319826i q^{21} -0.947361i q^{23} +(-2.11128 - 4.53238i) q^{25} +1.88624 q^{27} +7.55412i q^{29} +1.97567 q^{31} -1.38024i q^{33} +(1.88564 + 1.20181i) q^{35} +9.35534 q^{37} -0.692441 q^{39} +8.13282 q^{41} -2.27658 q^{43} +(-3.48251 + 5.46404i) q^{45} -6.88315i q^{47} -1.00000 q^{49} -1.02210i q^{51} +6.12756 q^{53} +(8.13766 + 5.18654i) q^{55} -1.72274i q^{57} +4.30565i q^{59} -0.0705077i q^{61} -2.89771i q^{63} +(2.60200 - 4.08252i) q^{65} -10.1964 q^{67} +0.302991i q^{69} -5.61315 q^{71} +2.18227i q^{73} +(0.675244 + 1.44957i) q^{75} -4.31560 q^{77} -10.0202 q^{79} +8.08986 q^{81} +16.4283 q^{83} +(6.02615 + 3.84077i) q^{85} -2.41600i q^{87} -13.4992 q^{89} +2.16506i q^{91} -0.631870 q^{93} +(10.1570 + 6.47357i) q^{95} +11.4733i q^{97} -12.5053i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 36 q^{9} + 4 q^{25} + 16 q^{31} + 32 q^{39} - 8 q^{41} - 36 q^{49} + 32 q^{55} - 24 q^{65} - 56 q^{71} - 24 q^{79} + 36 q^{81} - 40 q^{89} - 40 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.319826 −0.184652 −0.0923258 0.995729i \(-0.529430\pi\)
−0.0923258 + 0.995729i \(0.529430\pi\)
\(4\) 0 0
\(5\) 1.20181 1.88564i 0.537468 0.843284i
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) −2.89771 −0.965904
\(10\) 0 0
\(11\) 4.31560i 1.30120i 0.759420 + 0.650600i \(0.225483\pi\)
−0.759420 + 0.650600i \(0.774517\pi\)
\(12\) 0 0
\(13\) 2.16506 0.600478 0.300239 0.953864i \(-0.402933\pi\)
0.300239 + 0.953864i \(0.402933\pi\)
\(14\) 0 0
\(15\) −0.384372 + 0.603077i −0.0992443 + 0.155714i
\(16\) 0 0
\(17\) 3.19581i 0.775097i 0.921849 + 0.387549i \(0.126678\pi\)
−0.921849 + 0.387549i \(0.873322\pi\)
\(18\) 0 0
\(19\) 5.38650i 1.23575i 0.786278 + 0.617873i \(0.212006\pi\)
−0.786278 + 0.617873i \(0.787994\pi\)
\(20\) 0 0
\(21\) 0.319826i 0.0697918i
\(22\) 0 0
\(23\) 0.947361i 0.197538i −0.995110 0.0987692i \(-0.968509\pi\)
0.995110 0.0987692i \(-0.0314906\pi\)
\(24\) 0 0
\(25\) −2.11128 4.53238i −0.422257 0.906476i
\(26\) 0 0
\(27\) 1.88624 0.363007
\(28\) 0 0
\(29\) 7.55412i 1.40276i 0.712785 + 0.701382i \(0.247433\pi\)
−0.712785 + 0.701382i \(0.752567\pi\)
\(30\) 0 0
\(31\) 1.97567 0.354840 0.177420 0.984135i \(-0.443225\pi\)
0.177420 + 0.984135i \(0.443225\pi\)
\(32\) 0 0
\(33\) 1.38024i 0.240269i
\(34\) 0 0
\(35\) 1.88564 + 1.20181i 0.318732 + 0.203144i
\(36\) 0 0
\(37\) 9.35534 1.53801 0.769004 0.639244i \(-0.220753\pi\)
0.769004 + 0.639244i \(0.220753\pi\)
\(38\) 0 0
\(39\) −0.692441 −0.110879
\(40\) 0 0
\(41\) 8.13282 1.27013 0.635067 0.772457i \(-0.280973\pi\)
0.635067 + 0.772457i \(0.280973\pi\)
\(42\) 0 0
\(43\) −2.27658 −0.347175 −0.173587 0.984818i \(-0.555536\pi\)
−0.173587 + 0.984818i \(0.555536\pi\)
\(44\) 0 0
\(45\) −3.48251 + 5.46404i −0.519142 + 0.814532i
\(46\) 0 0
\(47\) 6.88315i 1.00401i −0.864864 0.502006i \(-0.832596\pi\)
0.864864 0.502006i \(-0.167404\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 1.02210i 0.143123i
\(52\) 0 0
\(53\) 6.12756 0.841685 0.420843 0.907134i \(-0.361734\pi\)
0.420843 + 0.907134i \(0.361734\pi\)
\(54\) 0 0
\(55\) 8.13766 + 5.18654i 1.09728 + 0.699353i
\(56\) 0 0
\(57\) 1.72274i 0.228183i
\(58\) 0 0
\(59\) 4.30565i 0.560548i 0.959920 + 0.280274i \(0.0904253\pi\)
−0.959920 + 0.280274i \(0.909575\pi\)
\(60\) 0 0
\(61\) 0.0705077i 0.00902759i −0.999990 0.00451380i \(-0.998563\pi\)
0.999990 0.00451380i \(-0.00143679\pi\)
\(62\) 0 0
\(63\) 2.89771i 0.365077i
\(64\) 0 0
\(65\) 2.60200 4.08252i 0.322738 0.506374i
\(66\) 0 0
\(67\) −10.1964 −1.24569 −0.622845 0.782346i \(-0.714023\pi\)
−0.622845 + 0.782346i \(0.714023\pi\)
\(68\) 0 0
\(69\) 0.302991i 0.0364758i
\(70\) 0 0
\(71\) −5.61315 −0.666159 −0.333079 0.942899i \(-0.608088\pi\)
−0.333079 + 0.942899i \(0.608088\pi\)
\(72\) 0 0
\(73\) 2.18227i 0.255415i 0.991812 + 0.127708i \(0.0407619\pi\)
−0.991812 + 0.127708i \(0.959238\pi\)
\(74\) 0 0
\(75\) 0.675244 + 1.44957i 0.0779704 + 0.167382i
\(76\) 0 0
\(77\) −4.31560 −0.491808
\(78\) 0 0
\(79\) −10.0202 −1.12737 −0.563683 0.825991i \(-0.690616\pi\)
−0.563683 + 0.825991i \(0.690616\pi\)
\(80\) 0 0
\(81\) 8.08986 0.898874
\(82\) 0 0
\(83\) 16.4283 1.80324 0.901620 0.432530i \(-0.142379\pi\)
0.901620 + 0.432530i \(0.142379\pi\)
\(84\) 0 0
\(85\) 6.02615 + 3.84077i 0.653627 + 0.416590i
\(86\) 0 0
\(87\) 2.41600i 0.259023i
\(88\) 0 0
\(89\) −13.4992 −1.43091 −0.715455 0.698659i \(-0.753781\pi\)
−0.715455 + 0.698659i \(0.753781\pi\)
\(90\) 0 0
\(91\) 2.16506i 0.226960i
\(92\) 0 0
\(93\) −0.631870 −0.0655218
\(94\) 0 0
\(95\) 10.1570 + 6.47357i 1.04209 + 0.664174i
\(96\) 0 0
\(97\) 11.4733i 1.16494i 0.812853 + 0.582469i \(0.197913\pi\)
−0.812853 + 0.582469i \(0.802087\pi\)
\(98\) 0 0
\(99\) 12.5053i 1.25683i
\(100\) 0 0
\(101\) 10.0737i 1.00237i 0.865341 + 0.501184i \(0.167102\pi\)
−0.865341 + 0.501184i \(0.832898\pi\)
\(102\) 0 0
\(103\) 9.84605i 0.970160i 0.874470 + 0.485080i \(0.161210\pi\)
−0.874470 + 0.485080i \(0.838790\pi\)
\(104\) 0 0
\(105\) −0.603077 0.384372i −0.0588543 0.0375108i
\(106\) 0 0
\(107\) 18.8737 1.82459 0.912297 0.409530i \(-0.134307\pi\)
0.912297 + 0.409530i \(0.134307\pi\)
\(108\) 0 0
\(109\) 2.69541i 0.258174i 0.991633 + 0.129087i \(0.0412046\pi\)
−0.991633 + 0.129087i \(0.958795\pi\)
\(110\) 0 0
\(111\) −2.99208 −0.283996
\(112\) 0 0
\(113\) 5.00235i 0.470581i −0.971925 0.235291i \(-0.924396\pi\)
0.971925 0.235291i \(-0.0756042\pi\)
\(114\) 0 0
\(115\) −1.78638 1.13855i −0.166581 0.106171i
\(116\) 0 0
\(117\) −6.27371 −0.580004
\(118\) 0 0
\(119\) −3.19581 −0.292959
\(120\) 0 0
\(121\) −7.62436 −0.693124
\(122\) 0 0
\(123\) −2.60109 −0.234532
\(124\) 0 0
\(125\) −11.0838 1.46596i −0.991367 0.131119i
\(126\) 0 0
\(127\) 6.20713i 0.550794i −0.961331 0.275397i \(-0.911191\pi\)
0.961331 0.275397i \(-0.0888093\pi\)
\(128\) 0 0
\(129\) 0.728108 0.0641064
\(130\) 0 0
\(131\) 13.6430i 1.19199i 0.802987 + 0.595997i \(0.203243\pi\)
−0.802987 + 0.595997i \(0.796757\pi\)
\(132\) 0 0
\(133\) −5.38650 −0.467068
\(134\) 0 0
\(135\) 2.26691 3.55677i 0.195105 0.306118i
\(136\) 0 0
\(137\) 16.3488i 1.39677i 0.715723 + 0.698384i \(0.246097\pi\)
−0.715723 + 0.698384i \(0.753903\pi\)
\(138\) 0 0
\(139\) 1.91419i 0.162359i −0.996699 0.0811796i \(-0.974131\pi\)
0.996699 0.0811796i \(-0.0258687\pi\)
\(140\) 0 0
\(141\) 2.20141i 0.185392i
\(142\) 0 0
\(143\) 9.34350i 0.781343i
\(144\) 0 0
\(145\) 14.2444 + 9.07865i 1.18293 + 0.753941i
\(146\) 0 0
\(147\) 0.319826 0.0263788
\(148\) 0 0
\(149\) 14.9281i 1.22296i −0.791260 0.611480i \(-0.790575\pi\)
0.791260 0.611480i \(-0.209425\pi\)
\(150\) 0 0
\(151\) −0.106712 −0.00868413 −0.00434207 0.999991i \(-0.501382\pi\)
−0.00434207 + 0.999991i \(0.501382\pi\)
\(152\) 0 0
\(153\) 9.26053i 0.748669i
\(154\) 0 0
\(155\) 2.37438 3.72540i 0.190715 0.299231i
\(156\) 0 0
\(157\) −10.7375 −0.856946 −0.428473 0.903555i \(-0.640948\pi\)
−0.428473 + 0.903555i \(0.640948\pi\)
\(158\) 0 0
\(159\) −1.95975 −0.155419
\(160\) 0 0
\(161\) 0.947361 0.0746625
\(162\) 0 0
\(163\) 3.76600 0.294976 0.147488 0.989064i \(-0.452881\pi\)
0.147488 + 0.989064i \(0.452881\pi\)
\(164\) 0 0
\(165\) −2.60264 1.65879i −0.202615 0.129137i
\(166\) 0 0
\(167\) 24.5491i 1.89967i −0.312754 0.949834i \(-0.601252\pi\)
0.312754 0.949834i \(-0.398748\pi\)
\(168\) 0 0
\(169\) −8.31253 −0.639426
\(170\) 0 0
\(171\) 15.6085i 1.19361i
\(172\) 0 0
\(173\) −18.9785 −1.44291 −0.721453 0.692464i \(-0.756525\pi\)
−0.721453 + 0.692464i \(0.756525\pi\)
\(174\) 0 0
\(175\) 4.53238 2.11128i 0.342616 0.159598i
\(176\) 0 0
\(177\) 1.37706i 0.103506i
\(178\) 0 0
\(179\) 1.39807i 0.104497i 0.998634 + 0.0522483i \(0.0166387\pi\)
−0.998634 + 0.0522483i \(0.983361\pi\)
\(180\) 0 0
\(181\) 19.9912i 1.48593i −0.669329 0.742966i \(-0.733418\pi\)
0.669329 0.742966i \(-0.266582\pi\)
\(182\) 0 0
\(183\) 0.0225502i 0.00166696i
\(184\) 0 0
\(185\) 11.2434 17.6408i 0.826630 1.29698i
\(186\) 0 0
\(187\) −13.7918 −1.00856
\(188\) 0 0
\(189\) 1.88624i 0.137204i
\(190\) 0 0
\(191\) 16.1124 1.16585 0.582925 0.812526i \(-0.301908\pi\)
0.582925 + 0.812526i \(0.301908\pi\)
\(192\) 0 0
\(193\) 12.9801i 0.934329i −0.884170 0.467165i \(-0.845276\pi\)
0.884170 0.467165i \(-0.154724\pi\)
\(194\) 0 0
\(195\) −0.832186 + 1.30570i −0.0595941 + 0.0935028i
\(196\) 0 0
\(197\) 16.5028 1.17577 0.587887 0.808943i \(-0.299960\pi\)
0.587887 + 0.808943i \(0.299960\pi\)
\(198\) 0 0
\(199\) −21.6505 −1.53477 −0.767383 0.641189i \(-0.778441\pi\)
−0.767383 + 0.641189i \(0.778441\pi\)
\(200\) 0 0
\(201\) 3.26108 0.230019
\(202\) 0 0
\(203\) −7.55412 −0.530195
\(204\) 0 0
\(205\) 9.77414 15.3356i 0.682656 1.07108i
\(206\) 0 0
\(207\) 2.74518i 0.190803i
\(208\) 0 0
\(209\) −23.2459 −1.60795
\(210\) 0 0
\(211\) 24.5315i 1.68882i −0.535698 0.844409i \(-0.679952\pi\)
0.535698 0.844409i \(-0.320048\pi\)
\(212\) 0 0
\(213\) 1.79523 0.123007
\(214\) 0 0
\(215\) −2.73602 + 4.29280i −0.186595 + 0.292767i
\(216\) 0 0
\(217\) 1.97567i 0.134117i
\(218\) 0 0
\(219\) 0.697946i 0.0471628i
\(220\) 0 0
\(221\) 6.91910i 0.465429i
\(222\) 0 0
\(223\) 7.24853i 0.485398i 0.970102 + 0.242699i \(0.0780327\pi\)
−0.970102 + 0.242699i \(0.921967\pi\)
\(224\) 0 0
\(225\) 6.11789 + 13.1335i 0.407860 + 0.875569i
\(226\) 0 0
\(227\) −24.2854 −1.61188 −0.805939 0.591998i \(-0.798339\pi\)
−0.805939 + 0.591998i \(0.798339\pi\)
\(228\) 0 0
\(229\) 6.92485i 0.457607i −0.973473 0.228803i \(-0.926519\pi\)
0.973473 0.228803i \(-0.0734813\pi\)
\(230\) 0 0
\(231\) 1.38024 0.0908131
\(232\) 0 0
\(233\) 10.1782i 0.666796i 0.942786 + 0.333398i \(0.108195\pi\)
−0.942786 + 0.333398i \(0.891805\pi\)
\(234\) 0 0
\(235\) −12.9792 8.27227i −0.846667 0.539624i
\(236\) 0 0
\(237\) 3.20473 0.208170
\(238\) 0 0
\(239\) −0.483092 −0.0312487 −0.0156243 0.999878i \(-0.504974\pi\)
−0.0156243 + 0.999878i \(0.504974\pi\)
\(240\) 0 0
\(241\) −14.0241 −0.903369 −0.451685 0.892178i \(-0.649177\pi\)
−0.451685 + 0.892178i \(0.649177\pi\)
\(242\) 0 0
\(243\) −8.24607 −0.528986
\(244\) 0 0
\(245\) −1.20181 + 1.88564i −0.0767811 + 0.120469i
\(246\) 0 0
\(247\) 11.6621i 0.742039i
\(248\) 0 0
\(249\) −5.25420 −0.332971
\(250\) 0 0
\(251\) 4.58585i 0.289456i 0.989471 + 0.144728i \(0.0462308\pi\)
−0.989471 + 0.144728i \(0.953769\pi\)
\(252\) 0 0
\(253\) 4.08843 0.257037
\(254\) 0 0
\(255\) −1.92732 1.22838i −0.120693 0.0769240i
\(256\) 0 0
\(257\) 19.6305i 1.22452i −0.790657 0.612260i \(-0.790261\pi\)
0.790657 0.612260i \(-0.209739\pi\)
\(258\) 0 0
\(259\) 9.35534i 0.581312i
\(260\) 0 0
\(261\) 21.8897i 1.35494i
\(262\) 0 0
\(263\) 13.7976i 0.850796i −0.905006 0.425398i \(-0.860134\pi\)
0.905006 0.425398i \(-0.139866\pi\)
\(264\) 0 0
\(265\) 7.36419 11.5544i 0.452379 0.709780i
\(266\) 0 0
\(267\) 4.31739 0.264220
\(268\) 0 0
\(269\) 16.3189i 0.994981i 0.867469 + 0.497491i \(0.165745\pi\)
−0.867469 + 0.497491i \(0.834255\pi\)
\(270\) 0 0
\(271\) 12.5470 0.762176 0.381088 0.924539i \(-0.375549\pi\)
0.381088 + 0.924539i \(0.375549\pi\)
\(272\) 0 0
\(273\) 0.692441i 0.0419085i
\(274\) 0 0
\(275\) 19.5599 9.11145i 1.17951 0.549441i
\(276\) 0 0
\(277\) −1.71783 −0.103214 −0.0516071 0.998667i \(-0.516434\pi\)
−0.0516071 + 0.998667i \(0.516434\pi\)
\(278\) 0 0
\(279\) −5.72491 −0.342741
\(280\) 0 0
\(281\) 20.0452 1.19579 0.597897 0.801573i \(-0.296003\pi\)
0.597897 + 0.801573i \(0.296003\pi\)
\(282\) 0 0
\(283\) −16.3366 −0.971108 −0.485554 0.874207i \(-0.661382\pi\)
−0.485554 + 0.874207i \(0.661382\pi\)
\(284\) 0 0
\(285\) −3.24847 2.07042i −0.192423 0.122641i
\(286\) 0 0
\(287\) 8.13282i 0.480065i
\(288\) 0 0
\(289\) 6.78681 0.399224
\(290\) 0 0
\(291\) 3.66946i 0.215108i
\(292\) 0 0
\(293\) 18.2850 1.06822 0.534109 0.845415i \(-0.320647\pi\)
0.534109 + 0.845415i \(0.320647\pi\)
\(294\) 0 0
\(295\) 8.11891 + 5.17459i 0.472701 + 0.301277i
\(296\) 0 0
\(297\) 8.14026i 0.472346i
\(298\) 0 0
\(299\) 2.05109i 0.118618i
\(300\) 0 0
\(301\) 2.27658i 0.131220i
\(302\) 0 0
\(303\) 3.22182i 0.185089i
\(304\) 0 0
\(305\) −0.132952 0.0847372i −0.00761283 0.00485204i
\(306\) 0 0
\(307\) −0.296292 −0.0169103 −0.00845513 0.999964i \(-0.502691\pi\)
−0.00845513 + 0.999964i \(0.502691\pi\)
\(308\) 0 0
\(309\) 3.14902i 0.179142i
\(310\) 0 0
\(311\) 25.9792 1.47315 0.736573 0.676358i \(-0.236443\pi\)
0.736573 + 0.676358i \(0.236443\pi\)
\(312\) 0 0
\(313\) 19.2606i 1.08867i 0.838867 + 0.544336i \(0.183218\pi\)
−0.838867 + 0.544336i \(0.816782\pi\)
\(314\) 0 0
\(315\) −5.46404 3.48251i −0.307864 0.196217i
\(316\) 0 0
\(317\) 1.29196 0.0725638 0.0362819 0.999342i \(-0.488449\pi\)
0.0362819 + 0.999342i \(0.488449\pi\)
\(318\) 0 0
\(319\) −32.6005 −1.82528
\(320\) 0 0
\(321\) −6.03631 −0.336914
\(322\) 0 0
\(323\) −17.2142 −0.957824
\(324\) 0 0
\(325\) −4.57105 9.81286i −0.253556 0.544319i
\(326\) 0 0
\(327\) 0.862063i 0.0476722i
\(328\) 0 0
\(329\) 6.88315 0.379481
\(330\) 0 0
\(331\) 14.5727i 0.800986i −0.916300 0.400493i \(-0.868839\pi\)
0.916300 0.400493i \(-0.131161\pi\)
\(332\) 0 0
\(333\) −27.1091 −1.48557
\(334\) 0 0
\(335\) −12.2542 + 19.2268i −0.669518 + 1.05047i
\(336\) 0 0
\(337\) 14.6600i 0.798580i −0.916825 0.399290i \(-0.869257\pi\)
0.916825 0.399290i \(-0.130743\pi\)
\(338\) 0 0
\(339\) 1.59988i 0.0868936i
\(340\) 0 0
\(341\) 8.52618i 0.461718i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0.571332 + 0.364139i 0.0307595 + 0.0196046i
\(346\) 0 0
\(347\) 2.43803 0.130880 0.0654400 0.997857i \(-0.479155\pi\)
0.0654400 + 0.997857i \(0.479155\pi\)
\(348\) 0 0
\(349\) 22.0454i 1.18007i −0.807379 0.590033i \(-0.799115\pi\)
0.807379 0.590033i \(-0.200885\pi\)
\(350\) 0 0
\(351\) 4.08382 0.217978
\(352\) 0 0
\(353\) 21.9292i 1.16717i 0.812050 + 0.583587i \(0.198351\pi\)
−0.812050 + 0.583587i \(0.801649\pi\)
\(354\) 0 0
\(355\) −6.74597 + 10.5844i −0.358039 + 0.561761i
\(356\) 0 0
\(357\) 1.02210 0.0540954
\(358\) 0 0
\(359\) −25.8696 −1.36535 −0.682674 0.730724i \(-0.739183\pi\)
−0.682674 + 0.730724i \(0.739183\pi\)
\(360\) 0 0
\(361\) −10.0143 −0.527070
\(362\) 0 0
\(363\) 2.43847 0.127986
\(364\) 0 0
\(365\) 4.11497 + 2.62268i 0.215388 + 0.137277i
\(366\) 0 0
\(367\) 8.32030i 0.434316i −0.976136 0.217158i \(-0.930321\pi\)
0.976136 0.217158i \(-0.0696787\pi\)
\(368\) 0 0
\(369\) −23.5666 −1.22683
\(370\) 0 0
\(371\) 6.12756i 0.318127i
\(372\) 0 0
\(373\) 31.1510 1.61294 0.806468 0.591277i \(-0.201376\pi\)
0.806468 + 0.591277i \(0.201376\pi\)
\(374\) 0 0
\(375\) 3.54489 + 0.468851i 0.183057 + 0.0242114i
\(376\) 0 0
\(377\) 16.3551i 0.842330i
\(378\) 0 0
\(379\) 6.70705i 0.344518i 0.985052 + 0.172259i \(0.0551066\pi\)
−0.985052 + 0.172259i \(0.944893\pi\)
\(380\) 0 0
\(381\) 1.98520i 0.101705i
\(382\) 0 0
\(383\) 9.09458i 0.464711i −0.972631 0.232356i \(-0.925357\pi\)
0.972631 0.232356i \(-0.0746433\pi\)
\(384\) 0 0
\(385\) −5.18654 + 8.13766i −0.264331 + 0.414734i
\(386\) 0 0
\(387\) 6.59686 0.335337
\(388\) 0 0
\(389\) 3.44036i 0.174433i 0.996189 + 0.0872167i \(0.0277973\pi\)
−0.996189 + 0.0872167i \(0.972203\pi\)
\(390\) 0 0
\(391\) 3.02758 0.153111
\(392\) 0 0
\(393\) 4.36338i 0.220104i
\(394\) 0 0
\(395\) −12.0425 + 18.8946i −0.605922 + 0.950689i
\(396\) 0 0
\(397\) −22.8353 −1.14607 −0.573035 0.819531i \(-0.694234\pi\)
−0.573035 + 0.819531i \(0.694234\pi\)
\(398\) 0 0
\(399\) 1.72274 0.0862449
\(400\) 0 0
\(401\) 2.13911 0.106822 0.0534111 0.998573i \(-0.482991\pi\)
0.0534111 + 0.998573i \(0.482991\pi\)
\(402\) 0 0
\(403\) 4.27743 0.213074
\(404\) 0 0
\(405\) 9.72252 15.2546i 0.483116 0.758006i
\(406\) 0 0
\(407\) 40.3739i 2.00126i
\(408\) 0 0
\(409\) 4.74000 0.234378 0.117189 0.993110i \(-0.462612\pi\)
0.117189 + 0.993110i \(0.462612\pi\)
\(410\) 0 0
\(411\) 5.22876i 0.257916i
\(412\) 0 0
\(413\) −4.30565 −0.211867
\(414\) 0 0
\(415\) 19.7438 30.9779i 0.969183 1.52064i
\(416\) 0 0
\(417\) 0.612207i 0.0299799i
\(418\) 0 0
\(419\) 1.06086i 0.0518265i 0.999664 + 0.0259133i \(0.00824937\pi\)
−0.999664 + 0.0259133i \(0.991751\pi\)
\(420\) 0 0
\(421\) 11.4474i 0.557912i −0.960304 0.278956i \(-0.910012\pi\)
0.960304 0.278956i \(-0.0899884\pi\)
\(422\) 0 0
\(423\) 19.9454i 0.969778i
\(424\) 0 0
\(425\) 14.4846 6.74726i 0.702607 0.327290i
\(426\) 0 0
\(427\) 0.0705077 0.00341211
\(428\) 0 0
\(429\) 2.98830i 0.144276i
\(430\) 0 0
\(431\) 2.17956 0.104986 0.0524929 0.998621i \(-0.483283\pi\)
0.0524929 + 0.998621i \(0.483283\pi\)
\(432\) 0 0
\(433\) 19.2652i 0.925827i −0.886403 0.462914i \(-0.846804\pi\)
0.886403 0.462914i \(-0.153196\pi\)
\(434\) 0 0
\(435\) −4.55572 2.90359i −0.218430 0.139216i
\(436\) 0 0
\(437\) 5.10295 0.244107
\(438\) 0 0
\(439\) 36.2154 1.72847 0.864233 0.503091i \(-0.167804\pi\)
0.864233 + 0.503091i \(0.167804\pi\)
\(440\) 0 0
\(441\) 2.89771 0.137986
\(442\) 0 0
\(443\) 36.5965 1.73875 0.869377 0.494150i \(-0.164521\pi\)
0.869377 + 0.494150i \(0.164521\pi\)
\(444\) 0 0
\(445\) −16.2235 + 25.4546i −0.769068 + 1.20666i
\(446\) 0 0
\(447\) 4.77440i 0.225821i
\(448\) 0 0
\(449\) −30.2438 −1.42729 −0.713647 0.700506i \(-0.752958\pi\)
−0.713647 + 0.700506i \(0.752958\pi\)
\(450\) 0 0
\(451\) 35.0980i 1.65270i
\(452\) 0 0
\(453\) 0.0341294 0.00160354
\(454\) 0 0
\(455\) 4.08252 + 2.60200i 0.191391 + 0.121983i
\(456\) 0 0
\(457\) 19.8067i 0.926517i −0.886223 0.463258i \(-0.846680\pi\)
0.886223 0.463258i \(-0.153320\pi\)
\(458\) 0 0
\(459\) 6.02807i 0.281366i
\(460\) 0 0
\(461\) 24.5182i 1.14193i 0.820976 + 0.570963i \(0.193430\pi\)
−0.820976 + 0.570963i \(0.806570\pi\)
\(462\) 0 0
\(463\) 29.3342i 1.36328i −0.731689 0.681638i \(-0.761268\pi\)
0.731689 0.681638i \(-0.238732\pi\)
\(464\) 0 0
\(465\) −0.759390 + 1.19148i −0.0352159 + 0.0552535i
\(466\) 0 0
\(467\) 34.1899 1.58212 0.791060 0.611738i \(-0.209530\pi\)
0.791060 + 0.611738i \(0.209530\pi\)
\(468\) 0 0
\(469\) 10.1964i 0.470826i
\(470\) 0 0
\(471\) 3.43413 0.158237
\(472\) 0 0
\(473\) 9.82478i 0.451744i
\(474\) 0 0
\(475\) 24.4136 11.3724i 1.12018 0.521803i
\(476\) 0 0
\(477\) −17.7559 −0.812987
\(478\) 0 0
\(479\) −8.33951 −0.381042 −0.190521 0.981683i \(-0.561018\pi\)
−0.190521 + 0.981683i \(0.561018\pi\)
\(480\) 0 0
\(481\) 20.2548 0.923541
\(482\) 0 0
\(483\) −0.302991 −0.0137866
\(484\) 0 0
\(485\) 21.6345 + 13.7888i 0.982373 + 0.626116i
\(486\) 0 0
\(487\) 11.4033i 0.516731i −0.966047 0.258366i \(-0.916816\pi\)
0.966047 0.258366i \(-0.0831840\pi\)
\(488\) 0 0
\(489\) −1.20447 −0.0544678
\(490\) 0 0
\(491\) 29.0913i 1.31287i 0.754381 + 0.656437i \(0.227937\pi\)
−0.754381 + 0.656437i \(0.772063\pi\)
\(492\) 0 0
\(493\) −24.1415 −1.08728
\(494\) 0 0
\(495\) −23.5806 15.0291i −1.05987 0.675508i
\(496\) 0 0
\(497\) 5.61315i 0.251784i
\(498\) 0 0
\(499\) 35.8988i 1.60705i −0.595270 0.803526i \(-0.702955\pi\)
0.595270 0.803526i \(-0.297045\pi\)
\(500\) 0 0
\(501\) 7.85145i 0.350777i
\(502\) 0 0
\(503\) 24.3630i 1.08629i −0.839639 0.543145i \(-0.817233\pi\)
0.839639 0.543145i \(-0.182767\pi\)
\(504\) 0 0
\(505\) 18.9953 + 12.1067i 0.845281 + 0.538741i
\(506\) 0 0
\(507\) 2.65856 0.118071
\(508\) 0 0
\(509\) 42.2864i 1.87431i 0.348911 + 0.937156i \(0.386551\pi\)
−0.348911 + 0.937156i \(0.613449\pi\)
\(510\) 0 0
\(511\) −2.18227 −0.0965378
\(512\) 0 0
\(513\) 10.1602i 0.448585i
\(514\) 0 0
\(515\) 18.5661 + 11.8331i 0.818121 + 0.521430i
\(516\) 0 0
\(517\) 29.7049 1.30642
\(518\) 0 0
\(519\) 6.06981 0.266435
\(520\) 0 0
\(521\) −4.28566 −0.187758 −0.0938790 0.995584i \(-0.529927\pi\)
−0.0938790 + 0.995584i \(0.529927\pi\)
\(522\) 0 0
\(523\) −4.71705 −0.206262 −0.103131 0.994668i \(-0.532886\pi\)
−0.103131 + 0.994668i \(0.532886\pi\)
\(524\) 0 0
\(525\) −1.44957 + 0.675244i −0.0632646 + 0.0294701i
\(526\) 0 0
\(527\) 6.31385i 0.275036i
\(528\) 0 0
\(529\) 22.1025 0.960979
\(530\) 0 0
\(531\) 12.4765i 0.541436i
\(532\) 0 0
\(533\) 17.6080 0.762688
\(534\) 0 0
\(535\) 22.6827 35.5891i 0.980660 1.53865i
\(536\) 0 0
\(537\) 0.447139i 0.0192955i
\(538\) 0 0
\(539\) 4.31560i 0.185886i
\(540\) 0 0
\(541\) 25.9673i 1.11642i 0.829700 + 0.558210i \(0.188512\pi\)
−0.829700 + 0.558210i \(0.811488\pi\)
\(542\) 0 0
\(543\) 6.39370i 0.274380i
\(544\) 0 0
\(545\) 5.08258 + 3.23938i 0.217714 + 0.138760i
\(546\) 0 0
\(547\) 5.39594 0.230714 0.115357 0.993324i \(-0.463199\pi\)
0.115357 + 0.993324i \(0.463199\pi\)
\(548\) 0 0
\(549\) 0.204311i 0.00871978i
\(550\) 0 0
\(551\) −40.6902 −1.73346
\(552\) 0 0
\(553\) 10.0202i 0.426104i
\(554\) 0 0
\(555\) −3.59593 + 5.64199i −0.152639 + 0.239489i
\(556\) 0 0
\(557\) −5.03653 −0.213405 −0.106702 0.994291i \(-0.534029\pi\)
−0.106702 + 0.994291i \(0.534029\pi\)
\(558\) 0 0
\(559\) −4.92891 −0.208471
\(560\) 0 0
\(561\) 4.41098 0.186232
\(562\) 0 0
\(563\) 0.717513 0.0302396 0.0151198 0.999886i \(-0.495187\pi\)
0.0151198 + 0.999886i \(0.495187\pi\)
\(564\) 0 0
\(565\) −9.43263 6.01189i −0.396834 0.252922i
\(566\) 0 0
\(567\) 8.08986i 0.339742i
\(568\) 0 0
\(569\) 16.4900 0.691296 0.345648 0.938364i \(-0.387659\pi\)
0.345648 + 0.938364i \(0.387659\pi\)
\(570\) 0 0
\(571\) 1.12858i 0.0472298i −0.999721 0.0236149i \(-0.992482\pi\)
0.999721 0.0236149i \(-0.00751755\pi\)
\(572\) 0 0
\(573\) −5.15315 −0.215276
\(574\) 0 0
\(575\) −4.29380 + 2.00015i −0.179064 + 0.0834119i
\(576\) 0 0
\(577\) 36.2807i 1.51039i −0.655503 0.755193i \(-0.727543\pi\)
0.655503 0.755193i \(-0.272457\pi\)
\(578\) 0 0
\(579\) 4.15138i 0.172525i
\(580\) 0 0
\(581\) 16.4283i 0.681560i
\(582\) 0 0
\(583\) 26.4441i 1.09520i
\(584\) 0 0
\(585\) −7.53983 + 11.8300i −0.311734 + 0.489109i
\(586\) 0 0
\(587\) 0.344317 0.0142115 0.00710573 0.999975i \(-0.497738\pi\)
0.00710573 + 0.999975i \(0.497738\pi\)
\(588\) 0 0
\(589\) 10.6419i 0.438493i
\(590\) 0 0
\(591\) −5.27802 −0.217109
\(592\) 0 0
\(593\) 22.9480i 0.942362i 0.882036 + 0.471181i \(0.156172\pi\)
−0.882036 + 0.471181i \(0.843828\pi\)
\(594\) 0 0
\(595\) −3.84077 + 6.02615i −0.157456 + 0.247048i
\(596\) 0 0
\(597\) 6.92440 0.283397
\(598\) 0 0
\(599\) −3.90767 −0.159663 −0.0798315 0.996808i \(-0.525438\pi\)
−0.0798315 + 0.996808i \(0.525438\pi\)
\(600\) 0 0
\(601\) −13.2081 −0.538769 −0.269384 0.963033i \(-0.586820\pi\)
−0.269384 + 0.963033i \(0.586820\pi\)
\(602\) 0 0
\(603\) 29.5462 1.20322
\(604\) 0 0
\(605\) −9.16307 + 14.3768i −0.372532 + 0.584500i
\(606\) 0 0
\(607\) 31.9342i 1.29617i 0.761568 + 0.648085i \(0.224430\pi\)
−0.761568 + 0.648085i \(0.775570\pi\)
\(608\) 0 0
\(609\) 2.41600 0.0979014
\(610\) 0 0
\(611\) 14.9024i 0.602887i
\(612\) 0 0
\(613\) −20.5483 −0.829937 −0.414969 0.909836i \(-0.636207\pi\)
−0.414969 + 0.909836i \(0.636207\pi\)
\(614\) 0 0
\(615\) −3.12603 + 4.90472i −0.126054 + 0.197777i
\(616\) 0 0
\(617\) 0.543748i 0.0218905i 0.999940 + 0.0109452i \(0.00348405\pi\)
−0.999940 + 0.0109452i \(0.996516\pi\)
\(618\) 0 0
\(619\) 14.5163i 0.583460i 0.956501 + 0.291730i \(0.0942308\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(620\) 0 0
\(621\) 1.78695i 0.0717079i
\(622\) 0 0
\(623\) 13.4992i 0.540833i
\(624\) 0 0
\(625\) −16.0850 + 19.1383i −0.643398 + 0.765532i
\(626\) 0 0
\(627\) 7.43465 0.296912
\(628\) 0 0
\(629\) 29.8979i 1.19211i
\(630\) 0 0
\(631\) −23.5413 −0.937165 −0.468582 0.883420i \(-0.655235\pi\)
−0.468582 + 0.883420i \(0.655235\pi\)
\(632\) 0 0
\(633\) 7.84582i 0.311843i
\(634\) 0 0
\(635\) −11.7044 7.45982i −0.464476 0.296034i
\(636\) 0 0
\(637\) −2.16506 −0.0857826
\(638\) 0 0
\(639\) 16.2653 0.643445
\(640\) 0 0
\(641\) −7.64593 −0.301996 −0.150998 0.988534i \(-0.548249\pi\)
−0.150998 + 0.988534i \(0.548249\pi\)
\(642\) 0 0
\(643\) −26.9759 −1.06383 −0.531914 0.846799i \(-0.678527\pi\)
−0.531914 + 0.846799i \(0.678527\pi\)
\(644\) 0 0
\(645\) 0.875051 1.37295i 0.0344551 0.0540599i
\(646\) 0 0
\(647\) 10.6009i 0.416763i −0.978048 0.208382i \(-0.933180\pi\)
0.978048 0.208382i \(-0.0668196\pi\)
\(648\) 0 0
\(649\) −18.5815 −0.729386
\(650\) 0 0
\(651\) 0.631870i 0.0247649i
\(652\) 0 0
\(653\) 13.6159 0.532831 0.266416 0.963858i \(-0.414161\pi\)
0.266416 + 0.963858i \(0.414161\pi\)
\(654\) 0 0
\(655\) 25.7258 + 16.3963i 1.00519 + 0.640658i
\(656\) 0 0
\(657\) 6.32358i 0.246706i
\(658\) 0 0
\(659\) 15.6129i 0.608193i 0.952641 + 0.304096i \(0.0983545\pi\)
−0.952641 + 0.304096i \(0.901646\pi\)
\(660\) 0 0
\(661\) 5.45451i 0.212156i −0.994358 0.106078i \(-0.966171\pi\)
0.994358 0.106078i \(-0.0338293\pi\)
\(662\) 0 0
\(663\) 2.21291i 0.0859423i
\(664\) 0 0
\(665\) −6.47357 + 10.1570i −0.251034 + 0.393871i
\(666\) 0 0
\(667\) 7.15648 0.277100
\(668\) 0 0
\(669\) 2.31827i 0.0896295i
\(670\) 0 0
\(671\) 0.304283 0.0117467
\(672\) 0 0
\(673\) 1.98399i 0.0764773i −0.999269 0.0382386i \(-0.987825\pi\)
0.999269 0.0382386i \(-0.0121747\pi\)
\(674\) 0 0
\(675\) −3.98239 8.54917i −0.153282 0.329058i
\(676\) 0 0
\(677\) 19.7354 0.758495 0.379247 0.925295i \(-0.376183\pi\)
0.379247 + 0.925295i \(0.376183\pi\)
\(678\) 0 0
\(679\) −11.4733 −0.440305
\(680\) 0 0
\(681\) 7.76710 0.297636
\(682\) 0 0
\(683\) 2.75254 0.105323 0.0526615 0.998612i \(-0.483230\pi\)
0.0526615 + 0.998612i \(0.483230\pi\)
\(684\) 0 0
\(685\) 30.8279 + 19.6482i 1.17787 + 0.750718i
\(686\) 0 0
\(687\) 2.21475i 0.0844979i
\(688\) 0 0
\(689\) 13.2665 0.505414
\(690\) 0 0
\(691\) 17.8656i 0.679640i 0.940491 + 0.339820i \(0.110366\pi\)
−0.940491 + 0.339820i \(0.889634\pi\)
\(692\) 0 0
\(693\) 12.5053 0.475039
\(694\) 0 0
\(695\) −3.60947 2.30050i −0.136915 0.0872629i
\(696\) 0 0
\(697\) 25.9909i 0.984477i
\(698\) 0 0
\(699\) 3.25525i 0.123125i
\(700\) 0 0
\(701\) 21.3058i 0.804710i −0.915484 0.402355i \(-0.868192\pi\)
0.915484 0.402355i \(-0.131808\pi\)
\(702\) 0 0
\(703\) 50.3925i 1.90059i
\(704\) 0 0
\(705\) 4.15107 + 2.64569i 0.156338 + 0.0996424i
\(706\) 0 0
\(707\) −10.0737 −0.378860
\(708\) 0 0
\(709\) 3.57791i 0.134371i −0.997740 0.0671857i \(-0.978598\pi\)
0.997740 0.0671857i \(-0.0214020\pi\)
\(710\) 0 0
\(711\) 29.0358 1.08893
\(712\) 0 0
\(713\) 1.87167i 0.0700945i
\(714\) 0 0
\(715\) 17.6185 + 11.2292i 0.658894 + 0.419947i
\(716\) 0 0
\(717\) 0.154506 0.00577012
\(718\) 0 0
\(719\) 31.1438 1.16147 0.580735 0.814093i \(-0.302765\pi\)
0.580735 + 0.814093i \(0.302765\pi\)
\(720\) 0 0
\(721\) −9.84605 −0.366686
\(722\) 0 0
\(723\) 4.48526 0.166809
\(724\) 0 0
\(725\) 34.2381 15.9489i 1.27157 0.592327i
\(726\) 0 0
\(727\) 5.71789i 0.212065i −0.994363 0.106032i \(-0.966185\pi\)
0.994363 0.106032i \(-0.0338147\pi\)
\(728\) 0 0
\(729\) −21.6323 −0.801196
\(730\) 0 0
\(731\) 7.27550i 0.269094i
\(732\) 0 0
\(733\) 22.7095 0.838795 0.419398 0.907803i \(-0.362241\pi\)
0.419398 + 0.907803i \(0.362241\pi\)
\(734\) 0 0
\(735\) 0.384372 0.603077i 0.0141778 0.0222448i
\(736\) 0 0
\(737\) 44.0036i 1.62089i
\(738\) 0 0
\(739\) 28.1649i 1.03606i 0.855362 + 0.518031i \(0.173335\pi\)
−0.855362 + 0.518031i \(0.826665\pi\)
\(740\) 0 0
\(741\) 3.72983i 0.137019i
\(742\) 0 0
\(743\) 41.3914i 1.51850i −0.650797 0.759252i \(-0.725565\pi\)
0.650797 0.759252i \(-0.274435\pi\)
\(744\) 0 0
\(745\) −28.1491 17.9408i −1.03130 0.657301i
\(746\) 0 0
\(747\) −47.6044 −1.74176
\(748\) 0 0
\(749\) 18.8737i 0.689631i
\(750\) 0 0
\(751\) −46.0020 −1.67864 −0.839318 0.543641i \(-0.817045\pi\)
−0.839318 + 0.543641i \(0.817045\pi\)
\(752\) 0 0
\(753\) 1.46668i 0.0534486i
\(754\) 0 0
\(755\) −0.128248 + 0.201221i −0.00466744 + 0.00732319i
\(756\) 0 0
\(757\) −17.9355 −0.651877 −0.325938 0.945391i \(-0.605680\pi\)
−0.325938 + 0.945391i \(0.605680\pi\)
\(758\) 0 0
\(759\) −1.30759 −0.0474623
\(760\) 0 0
\(761\) 13.0061 0.471471 0.235736 0.971817i \(-0.424250\pi\)
0.235736 + 0.971817i \(0.424250\pi\)
\(762\) 0 0
\(763\) −2.69541 −0.0975804
\(764\) 0 0
\(765\) −17.4620 11.1294i −0.631341 0.402386i
\(766\) 0 0
\(767\) 9.32198i 0.336597i
\(768\) 0 0
\(769\) 33.2033 1.19734 0.598671 0.800995i \(-0.295696\pi\)
0.598671 + 0.800995i \(0.295696\pi\)
\(770\) 0 0
\(771\) 6.27836i 0.226110i
\(772\) 0 0
\(773\) 3.75488 0.135053 0.0675267 0.997717i \(-0.478489\pi\)
0.0675267 + 0.997717i \(0.478489\pi\)
\(774\) 0 0
\(775\) −4.17119 8.95447i −0.149834 0.321654i
\(776\) 0 0
\(777\) 2.99208i 0.107340i
\(778\) 0 0
\(779\) 43.8074i 1.56956i
\(780\) 0 0
\(781\) 24.2241i 0.866807i
\(782\) 0 0
\(783\) 14.2489i 0.509214i
\(784\) 0 0
\(785\) −12.9045 + 20.2471i −0.460581 + 0.722649i
\(786\) 0 0
\(787\) 42.6751 1.52120 0.760602 0.649218i \(-0.224904\pi\)
0.760602 + 0.649218i \(0.224904\pi\)
\(788\) 0 0
\(789\) 4.41283i 0.157101i
\(790\) 0 0
\(791\) 5.00235 0.177863
\(792\) 0 0
\(793\) 0.152653i 0.00542087i
\(794\) 0 0
\(795\) −2.35526 + 3.69539i −0.0835325 + 0.131062i
\(796\) 0 0
\(797\) −6.50695 −0.230488 −0.115244 0.993337i \(-0.536765\pi\)
−0.115244 + 0.993337i \(0.536765\pi\)
\(798\) 0 0
\(799\) 21.9972 0.778206
\(800\) 0 0
\(801\) 39.1167 1.38212
\(802\) 0 0
\(803\) −9.41778 −0.332346
\(804\) 0 0
\(805\) 1.13855 1.78638i 0.0401287 0.0629617i
\(806\) 0 0
\(807\) 5.21921i 0.183725i
\(808\) 0 0
\(809\) 31.1366 1.09470 0.547352 0.836903i \(-0.315636\pi\)
0.547352 + 0.836903i \(0.315636\pi\)
\(810\) 0 0
\(811\) 13.3805i 0.469854i 0.972013 + 0.234927i \(0.0754851\pi\)
−0.972013 + 0.234927i \(0.924515\pi\)
\(812\) 0 0
\(813\) −4.01286 −0.140737
\(814\) 0 0
\(815\) 4.52603 7.10133i 0.158540 0.248749i
\(816\) 0 0
\(817\) 12.2628i 0.429020i
\(818\) 0 0
\(819\) 6.27371i 0.219221i
\(820\) 0 0
\(821\) 20.9626i 0.731600i −0.930693 0.365800i \(-0.880795\pi\)
0.930693 0.365800i \(-0.119205\pi\)
\(822\) 0 0
\(823\) 13.8301i 0.482086i −0.970514 0.241043i \(-0.922510\pi\)
0.970514 0.241043i \(-0.0774896\pi\)
\(824\) 0 0
\(825\) −6.25577 + 2.91408i −0.217798 + 0.101455i
\(826\) 0 0
\(827\) 12.1584 0.422790 0.211395 0.977401i \(-0.432199\pi\)
0.211395 + 0.977401i \(0.432199\pi\)
\(828\) 0 0
\(829\) 35.0277i 1.21656i −0.793722 0.608281i \(-0.791859\pi\)
0.793722 0.608281i \(-0.208141\pi\)
\(830\) 0 0
\(831\) 0.549406 0.0190587
\(832\) 0 0
\(833\) 3.19581i 0.110728i
\(834\) 0 0
\(835\) −46.2908 29.5035i −1.60196 1.02101i
\(836\) 0 0
\(837\) 3.72658 0.128810
\(838\) 0 0
\(839\) 54.0162 1.86485 0.932423 0.361367i \(-0.117690\pi\)
0.932423 + 0.361367i \(0.117690\pi\)
\(840\) 0 0
\(841\) −28.0647 −0.967748
\(842\) 0 0
\(843\) −6.41097 −0.220805
\(844\) 0 0
\(845\) −9.99012 + 15.6745i −0.343671 + 0.539218i
\(846\) 0 0
\(847\) 7.62436i 0.261976i
\(848\) 0 0
\(849\) 5.22486 0.179317
\(850\) 0 0
\(851\) 8.86288i 0.303816i
\(852\) 0 0
\(853\) −32.8962 −1.12634 −0.563171 0.826340i \(-0.690419\pi\)
−0.563171 + 0.826340i \(0.690419\pi\)
\(854\) 0 0
\(855\) −29.4320 18.7585i −1.00655 0.641528i
\(856\) 0 0
\(857\) 10.8426i 0.370375i −0.982703 0.185187i \(-0.940711\pi\)
0.982703 0.185187i \(-0.0592892\pi\)
\(858\) 0 0
\(859\) 30.4434i 1.03872i −0.854557 0.519358i \(-0.826171\pi\)
0.854557 0.519358i \(-0.173829\pi\)
\(860\) 0 0
\(861\) 2.60109i 0.0886449i
\(862\) 0 0
\(863\) 6.17946i 0.210351i −0.994454 0.105176i \(-0.966460\pi\)
0.994454 0.105176i \(-0.0335405\pi\)
\(864\) 0 0
\(865\) −22.8086 + 35.7866i −0.775515 + 1.21678i
\(866\) 0 0
\(867\) −2.17060 −0.0737174
\(868\) 0 0
\(869\) 43.2433i 1.46693i
\(870\) 0 0
\(871\) −22.0758 −0.748009
\(872\) 0 0
\(873\) 33.2463i 1.12522i
\(874\) 0 0
\(875\) 1.46596 11.0838i 0.0495583 0.374701i
\(876\) 0 0
\(877\) 5.84128 0.197246 0.0986229 0.995125i \(-0.468556\pi\)
0.0986229 + 0.995125i \(0.468556\pi\)
\(878\) 0 0
\(879\) −5.84801 −0.197248
\(880\) 0 0
\(881\) 42.6160 1.43577 0.717886 0.696161i \(-0.245110\pi\)
0.717886 + 0.696161i \(0.245110\pi\)
\(882\) 0 0
\(883\) 34.4349 1.15883 0.579413 0.815034i \(-0.303282\pi\)
0.579413 + 0.815034i \(0.303282\pi\)
\(884\) 0 0
\(885\) −2.59664 1.65497i −0.0872851 0.0556312i
\(886\) 0 0
\(887\) 15.0372i 0.504899i 0.967610 + 0.252450i \(0.0812362\pi\)
−0.967610 + 0.252450i \(0.918764\pi\)
\(888\) 0 0
\(889\) 6.20713 0.208180
\(890\) 0 0
\(891\) 34.9126i 1.16962i
\(892\) 0 0
\(893\) 37.0761 1.24070
\(894\) 0 0
\(895\) 2.63626 + 1.68022i 0.0881204 + 0.0561636i
\(896\) 0 0
\(897\) 0.655992i 0.0219029i
\(898\) 0 0
\(899\) 14.9244i 0.497757i
\(900\) 0 0
\(901\) 19.5825i 0.652388i
\(902\) 0 0
\(903\) 0.728108i 0.0242299i
\(904\) 0 0
\(905\) −37.6962 24.0257i −1.25306 0.798641i
\(906\) 0 0
\(907\) −24.7673 −0.822384 −0.411192 0.911549i \(-0.634887\pi\)
−0.411192 + 0.911549i \(0.634887\pi\)
\(908\) 0 0
\(909\) 29.1906i 0.968191i
\(910\) 0 0
\(911\) 17.6510 0.584804 0.292402 0.956295i \(-0.405545\pi\)
0.292402 + 0.956295i \(0.405545\pi\)
\(912\) 0 0
\(913\) 70.8979i 2.34638i
\(914\) 0 0
\(915\) 0.0425216 + 0.0271012i 0.00140572 + 0.000895937i
\(916\) 0 0
\(917\) −13.6430 −0.450531
\(918\) 0 0
\(919\) −21.1056 −0.696211 −0.348105 0.937455i \(-0.613175\pi\)
−0.348105 + 0.937455i \(0.613175\pi\)
\(920\) 0 0
\(921\) 0.0947618 0.00312251
\(922\) 0 0
\(923\) −12.1528 −0.400014
\(924\) 0 0
\(925\) −19.7518 42.4020i −0.649435 1.39417i
\(926\) 0 0
\(927\) 28.5310i 0.937081i
\(928\) 0 0
\(929\) −29.7053 −0.974601 −0.487300 0.873234i \(-0.662018\pi\)
−0.487300 + 0.873234i \(0.662018\pi\)
\(930\) 0 0
\(931\) 5.38650i 0.176535i
\(932\) 0 0
\(933\) −8.30883 −0.272019
\(934\) 0 0
\(935\) −16.5752 + 26.0064i −0.542067 + 0.850501i
\(936\) 0 0
\(937\) 53.4101i 1.74483i 0.488765 + 0.872415i \(0.337447\pi\)
−0.488765 + 0.872415i \(0.662553\pi\)
\(938\) 0 0
\(939\) 6.16003i 0.201025i
\(940\) 0 0
\(941\) 5.54752i 0.180844i −0.995904 0.0904220i \(-0.971178\pi\)
0.995904 0.0904220i \(-0.0288216\pi\)
\(942\) 0 0
\(943\) 7.70472i 0.250900i
\(944\) 0 0
\(945\) 3.55677 + 2.26691i 0.115702 + 0.0737427i
\(946\) 0 0
\(947\) −19.2133 −0.624350 −0.312175 0.950025i \(-0.601057\pi\)
−0.312175 + 0.950025i \(0.601057\pi\)
\(948\) 0 0
\(949\) 4.72473i 0.153371i
\(950\) 0 0
\(951\) −0.413203 −0.0133990
\(952\) 0 0
\(953\) 36.8866i 1.19488i −0.801915 0.597438i \(-0.796186\pi\)
0.801915 0.597438i \(-0.203814\pi\)
\(954\) 0 0
\(955\) 19.3641 30.3821i 0.626606 0.983142i
\(956\) 0 0
\(957\) 10.4265 0.337041
\(958\) 0 0
\(959\) −16.3488 −0.527929
\(960\) 0 0
\(961\) −27.0967 −0.874088
\(962\) 0 0
\(963\) −54.6906 −1.76238
\(964\) 0 0
\(965\) −24.4758 15.5997i −0.787905 0.502172i
\(966\) 0 0
\(967\) 23.1225i 0.743569i 0.928319 + 0.371785i \(0.121254\pi\)
−0.928319 + 0.371785i \(0.878746\pi\)
\(968\) 0 0
\(969\) 5.50555 0.176864
\(970\) 0 0
\(971\) 34.1621i 1.09632i −0.836375 0.548158i \(-0.815329\pi\)
0.836375 0.548158i \(-0.184671\pi\)
\(972\) 0 0
\(973\) 1.91419 0.0613660
\(974\) 0 0
\(975\) 1.46194 + 3.13841i 0.0468196 + 0.100509i
\(976\) 0 0
\(977\) 41.5157i 1.32820i −0.747642 0.664102i \(-0.768814\pi\)
0.747642 0.664102i \(-0.231186\pi\)
\(978\) 0 0
\(979\) 58.2570i 1.86190i
\(980\) 0 0
\(981\) 7.81052i 0.249371i
\(982\) 0 0
\(983\) 27.0085i 0.861438i 0.902486 + 0.430719i \(0.141740\pi\)
−0.902486 + 0.430719i \(0.858260\pi\)
\(984\) 0 0
\(985\) 19.8333 31.1183i 0.631941 0.991512i
\(986\) 0 0
\(987\) −2.20141 −0.0700717
\(988\) 0 0
\(989\) 2.15674i 0.0685803i
\(990\) 0 0
\(991\) −13.7895 −0.438037 −0.219019 0.975721i \(-0.570286\pi\)
−0.219019 + 0.975721i \(0.570286\pi\)
\(992\) 0 0
\(993\) 4.66072i 0.147903i
\(994\) 0 0
\(995\) −26.0199 + 40.8251i −0.824887 + 1.29424i
\(996\) 0 0
\(997\) −21.0429 −0.666435 −0.333217 0.942850i \(-0.608134\pi\)
−0.333217 + 0.942850i \(0.608134\pi\)
\(998\) 0 0
\(999\) 17.6464 0.558308
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.l.a.1009.18 36
4.3 odd 2 280.2.l.a.29.19 yes 36
5.4 even 2 inner 1120.2.l.a.1009.20 36
8.3 odd 2 280.2.l.a.29.17 36
8.5 even 2 inner 1120.2.l.a.1009.19 36
20.19 odd 2 280.2.l.a.29.18 yes 36
40.19 odd 2 280.2.l.a.29.20 yes 36
40.29 even 2 inner 1120.2.l.a.1009.17 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.l.a.29.17 36 8.3 odd 2
280.2.l.a.29.18 yes 36 20.19 odd 2
280.2.l.a.29.19 yes 36 4.3 odd 2
280.2.l.a.29.20 yes 36 40.19 odd 2
1120.2.l.a.1009.17 36 40.29 even 2 inner
1120.2.l.a.1009.18 36 1.1 even 1 trivial
1120.2.l.a.1009.19 36 8.5 even 2 inner
1120.2.l.a.1009.20 36 5.4 even 2 inner