Properties

Label 1120.2.k
Level $1120$
Weight $2$
Character orbit 1120.k
Rep. character $\chi_{1120}(671,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $2$
Sturm bound $384$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.k (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(384\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1120, [\chi])\).

Total New Old
Modular forms 208 32 176
Cusp forms 176 32 144
Eisenstein series 32 0 32

Trace form

\( 32 q + 32 q^{9} + 8 q^{21} - 32 q^{25} + 16 q^{29} + 32 q^{37} - 8 q^{49} + 32 q^{53} + 32 q^{57} + 16 q^{65} - 16 q^{77} + 80 q^{81} - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1120, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1120.2.k.a 1120.k 28.d $16$ $8.943$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1120.2.k.a \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{9}q^{3}+\beta _{4}q^{5}-\beta _{14}q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)
1120.2.k.b 1120.k 28.d $16$ $8.943$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1120.2.k.a \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{9}q^{3}+\beta _{4}q^{5}+\beta _{14}q^{7}+(1-\beta _{1}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1120, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1120, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(224, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(560, [\chi])\)\(^{\oplus 2}\)