Properties

Label 112.8.i.a.65.2
Level $112$
Weight $8$
Character 112.65
Analytic conductor $34.987$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9871228542\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{2389})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 598x^{2} + 597x + 356409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.2
Root \(-11.9693 - 20.7315i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.8.i.a.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(10.4387 + 18.0804i) q^{3} +(108.377 - 187.715i) q^{5} +(-726.284 + 544.110i) q^{7} +(875.567 - 1516.53i) q^{9} +(1290.93 + 2235.95i) q^{11} -8921.97 q^{13} +4525.28 q^{15} +(5556.44 + 9624.03i) q^{17} +(-4323.40 + 7488.34i) q^{19} +(-17419.1 - 7451.67i) q^{21} +(-33028.6 + 57207.2i) q^{23} +(15571.2 + 26970.1i) q^{25} +82218.0 q^{27} +128836. q^{29} +(-102048. - 176752. i) q^{31} +(-26951.2 + 46680.9i) q^{33} +(23424.9 + 195304. i) q^{35} +(-245856. + 425834. i) q^{37} +(-93133.8 - 161312. i) q^{39} -623293. q^{41} -422919. q^{43} +(-189783. - 328714. i) q^{45} +(-602714. + 1.04393e6i) q^{47} +(231433. - 790356. i) q^{49} +(-116004. + 200925. i) q^{51} +(636483. + 1.10242e6i) q^{53} +559630. q^{55} -180523. q^{57} +(840430. + 1.45567e6i) q^{59} +(-1.06128e6 + 1.83818e6i) q^{61} +(189247. + 1.57783e6i) q^{63} +(-966940. + 1.67479e6i) q^{65} +(-1.67466e6 - 2.90060e6i) q^{67} -1.37910e6 q^{69} -2.49257e6 q^{71} +(1.63676e6 + 2.83496e6i) q^{73} +(-325086. + 563065. i) q^{75} +(-2.15418e6 - 921530. i) q^{77} +(-2.09920e6 + 3.63591e6i) q^{79} +(-1.05662e6 - 1.83011e6i) q^{81} -3.35527e6 q^{83} +2.40877e6 q^{85} +(1.34488e6 + 2.32939e6i) q^{87} +(-1.19979e6 + 2.07810e6i) q^{89} +(6.47988e6 - 4.85453e6i) q^{91} +(2.13049e6 - 3.69011e6i) q^{93} +(937117. + 1.62313e6i) q^{95} +4.51506e6 q^{97} +4.52118e6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{3} + 238 q^{5} - 168 q^{7} - 1972 q^{9} + 5848 q^{11} + 2632 q^{13} + 5784 q^{15} + 47642 q^{17} - 41048 q^{19} - 169582 q^{21} - 49316 q^{23} + 108816 q^{25} + 400624 q^{27} + 345640 q^{29}+ \cdots - 15278208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.4387 + 18.0804i 0.223214 + 0.386618i 0.955782 0.294075i \(-0.0950117\pi\)
−0.732568 + 0.680694i \(0.761678\pi\)
\(4\) 0 0
\(5\) 108.377 187.715i 0.387743 0.671590i −0.604403 0.796679i \(-0.706588\pi\)
0.992146 + 0.125089i \(0.0399216\pi\)
\(6\) 0 0
\(7\) −726.284 + 544.110i −0.800319 + 0.599575i
\(8\) 0 0
\(9\) 875.567 1516.53i 0.400351 0.693428i
\(10\) 0 0
\(11\) 1290.93 + 2235.95i 0.292434 + 0.506511i 0.974385 0.224887i \(-0.0722015\pi\)
−0.681951 + 0.731398i \(0.738868\pi\)
\(12\) 0 0
\(13\) −8921.97 −1.12631 −0.563156 0.826350i \(-0.690413\pi\)
−0.563156 + 0.826350i \(0.690413\pi\)
\(14\) 0 0
\(15\) 4525.28 0.346199
\(16\) 0 0
\(17\) 5556.44 + 9624.03i 0.274300 + 0.475101i 0.969958 0.243272i \(-0.0782207\pi\)
−0.695659 + 0.718373i \(0.744887\pi\)
\(18\) 0 0
\(19\) −4323.40 + 7488.34i −0.144606 + 0.250466i −0.929226 0.369512i \(-0.879525\pi\)
0.784620 + 0.619977i \(0.212858\pi\)
\(20\) 0 0
\(21\) −17419.1 7451.67i −0.410449 0.175584i
\(22\) 0 0
\(23\) −33028.6 + 57207.2i −0.566034 + 0.980399i 0.430919 + 0.902391i \(0.358190\pi\)
−0.996953 + 0.0780088i \(0.975144\pi\)
\(24\) 0 0
\(25\) 15571.2 + 26970.1i 0.199311 + 0.345217i
\(26\) 0 0
\(27\) 82218.0 0.803885
\(28\) 0 0
\(29\) 128836. 0.980941 0.490470 0.871458i \(-0.336825\pi\)
0.490470 + 0.871458i \(0.336825\pi\)
\(30\) 0 0
\(31\) −102048. 176752.i −0.615229 1.06561i −0.990344 0.138630i \(-0.955730\pi\)
0.375115 0.926978i \(-0.377603\pi\)
\(32\) 0 0
\(33\) −26951.2 + 46680.9i −0.130551 + 0.226121i
\(34\) 0 0
\(35\) 23424.9 + 195304.i 0.0923505 + 0.769967i
\(36\) 0 0
\(37\) −245856. + 425834.i −0.797947 + 1.38208i 0.123004 + 0.992406i \(0.460747\pi\)
−0.920951 + 0.389678i \(0.872586\pi\)
\(38\) 0 0
\(39\) −93133.8 161312.i −0.251409 0.435453i
\(40\) 0 0
\(41\) −623293. −1.41237 −0.706185 0.708027i \(-0.749585\pi\)
−0.706185 + 0.708027i \(0.749585\pi\)
\(42\) 0 0
\(43\) −422919. −0.811181 −0.405591 0.914055i \(-0.632934\pi\)
−0.405591 + 0.914055i \(0.632934\pi\)
\(44\) 0 0
\(45\) −189783. 328714.i −0.310466 0.537743i
\(46\) 0 0
\(47\) −602714. + 1.04393e6i −0.846777 + 1.46666i 0.0372922 + 0.999304i \(0.488127\pi\)
−0.884069 + 0.467356i \(0.845207\pi\)
\(48\) 0 0
\(49\) 231433. 790356.i 0.281021 0.959702i
\(50\) 0 0
\(51\) −116004. + 200925.i −0.122455 + 0.212099i
\(52\) 0 0
\(53\) 636483. + 1.10242e6i 0.587247 + 1.01714i 0.994591 + 0.103867i \(0.0331217\pi\)
−0.407344 + 0.913275i \(0.633545\pi\)
\(54\) 0 0
\(55\) 559630. 0.453557
\(56\) 0 0
\(57\) −180523. −0.129113
\(58\) 0 0
\(59\) 840430. + 1.45567e6i 0.532745 + 0.922741i 0.999269 + 0.0382328i \(0.0121729\pi\)
−0.466524 + 0.884509i \(0.654494\pi\)
\(60\) 0 0
\(61\) −1.06128e6 + 1.83818e6i −0.598651 + 1.03689i 0.394370 + 0.918952i \(0.370963\pi\)
−0.993021 + 0.117942i \(0.962370\pi\)
\(62\) 0 0
\(63\) 189247. + 1.57783e6i 0.0953534 + 0.795004i
\(64\) 0 0
\(65\) −966940. + 1.67479e6i −0.436720 + 0.756421i
\(66\) 0 0
\(67\) −1.67466e6 2.90060e6i −0.680245 1.17822i −0.974906 0.222618i \(-0.928540\pi\)
0.294660 0.955602i \(-0.404793\pi\)
\(68\) 0 0
\(69\) −1.37910e6 −0.505387
\(70\) 0 0
\(71\) −2.49257e6 −0.826502 −0.413251 0.910617i \(-0.635607\pi\)
−0.413251 + 0.910617i \(0.635607\pi\)
\(72\) 0 0
\(73\) 1.63676e6 + 2.83496e6i 0.492443 + 0.852936i 0.999962 0.00870409i \(-0.00277063\pi\)
−0.507519 + 0.861641i \(0.669437\pi\)
\(74\) 0 0
\(75\) −325086. + 563065.i −0.0889782 + 0.154115i
\(76\) 0 0
\(77\) −2.15418e6 921530.i −0.537731 0.230034i
\(78\) 0 0
\(79\) −2.09920e6 + 3.63591e6i −0.479025 + 0.829695i −0.999711 0.0240529i \(-0.992343\pi\)
0.520686 + 0.853748i \(0.325676\pi\)
\(80\) 0 0
\(81\) −1.05662e6 1.83011e6i −0.220912 0.382631i
\(82\) 0 0
\(83\) −3.35527e6 −0.644102 −0.322051 0.946722i \(-0.604372\pi\)
−0.322051 + 0.946722i \(0.604372\pi\)
\(84\) 0 0
\(85\) 2.40877e6 0.425431
\(86\) 0 0
\(87\) 1.34488e6 + 2.32939e6i 0.218960 + 0.379250i
\(88\) 0 0
\(89\) −1.19979e6 + 2.07810e6i −0.180402 + 0.312466i −0.942018 0.335564i \(-0.891073\pi\)
0.761615 + 0.648029i \(0.224407\pi\)
\(90\) 0 0
\(91\) 6.47988e6 4.85453e6i 0.901409 0.675308i
\(92\) 0 0
\(93\) 2.13049e6 3.69011e6i 0.274656 0.475718i
\(94\) 0 0
\(95\) 937117. + 1.62313e6i 0.112140 + 0.194232i
\(96\) 0 0
\(97\) 4.51506e6 0.502299 0.251150 0.967948i \(-0.419191\pi\)
0.251150 + 0.967948i \(0.419191\pi\)
\(98\) 0 0
\(99\) 4.52118e6 0.468305
\(100\) 0 0
\(101\) −3.69997e6 6.40853e6i −0.357333 0.618919i 0.630181 0.776448i \(-0.282981\pi\)
−0.987514 + 0.157529i \(0.949647\pi\)
\(102\) 0 0
\(103\) 9.22855e6 1.59843e7i 0.832153 1.44133i −0.0641744 0.997939i \(-0.520441\pi\)
0.896327 0.443393i \(-0.146225\pi\)
\(104\) 0 0
\(105\) −3.28663e6 + 2.46225e6i −0.277070 + 0.207572i
\(106\) 0 0
\(107\) −2.49697e6 + 4.32488e6i −0.197047 + 0.341296i −0.947570 0.319549i \(-0.896469\pi\)
0.750523 + 0.660845i \(0.229802\pi\)
\(108\) 0 0
\(109\) −9.34351e6 1.61834e7i −0.691062 1.19695i −0.971490 0.237080i \(-0.923810\pi\)
0.280428 0.959875i \(-0.409524\pi\)
\(110\) 0 0
\(111\) −1.02656e7 −0.712452
\(112\) 0 0
\(113\) 2.49534e7 1.62688 0.813438 0.581651i \(-0.197593\pi\)
0.813438 + 0.581651i \(0.197593\pi\)
\(114\) 0 0
\(115\) 7.15910e6 + 1.23999e7i 0.438951 + 0.760286i
\(116\) 0 0
\(117\) −7.81178e6 + 1.35304e7i −0.450920 + 0.781017i
\(118\) 0 0
\(119\) −9.27208e6 3.96647e6i −0.504386 0.215769i
\(120\) 0 0
\(121\) 6.41059e6 1.11035e7i 0.328965 0.569783i
\(122\) 0 0
\(123\) −6.50636e6 1.12694e7i −0.315261 0.546048i
\(124\) 0 0
\(125\) 2.36842e7 1.08461
\(126\) 0 0
\(127\) 1.72080e7 0.745449 0.372724 0.927942i \(-0.378424\pi\)
0.372724 + 0.927942i \(0.378424\pi\)
\(128\) 0 0
\(129\) −4.41473e6 7.64653e6i −0.181067 0.313618i
\(130\) 0 0
\(131\) 1.34633e7 2.33191e7i 0.523242 0.906281i −0.476392 0.879233i \(-0.658056\pi\)
0.999634 0.0270484i \(-0.00861082\pi\)
\(132\) 0 0
\(133\) −934467. 7.79106e6i −0.0344416 0.287155i
\(134\) 0 0
\(135\) 8.91057e6 1.54336e7i 0.311700 0.539881i
\(136\) 0 0
\(137\) 1.36301e7 + 2.36080e7i 0.452873 + 0.784399i 0.998563 0.0535877i \(-0.0170657\pi\)
−0.545690 + 0.837987i \(0.683732\pi\)
\(138\) 0 0
\(139\) 1.36813e7 0.432092 0.216046 0.976383i \(-0.430684\pi\)
0.216046 + 0.976383i \(0.430684\pi\)
\(140\) 0 0
\(141\) −2.51662e7 −0.756051
\(142\) 0 0
\(143\) −1.15176e7 1.99491e7i −0.329372 0.570489i
\(144\) 0 0
\(145\) 1.39629e7 2.41844e7i 0.380353 0.658790i
\(146\) 0 0
\(147\) 1.67058e7 4.06590e6i 0.433766 0.105571i
\(148\) 0 0
\(149\) −1.21944e7 + 2.11214e7i −0.302002 + 0.523083i −0.976589 0.215112i \(-0.930988\pi\)
0.674587 + 0.738195i \(0.264322\pi\)
\(150\) 0 0
\(151\) 1.69013e7 + 2.92740e7i 0.399486 + 0.691930i 0.993663 0.112405i \(-0.0358553\pi\)
−0.594177 + 0.804335i \(0.702522\pi\)
\(152\) 0 0
\(153\) 1.94601e7 0.439264
\(154\) 0 0
\(155\) −4.42386e7 −0.954202
\(156\) 0 0
\(157\) −3.97833e6 6.89067e6i −0.0820450 0.142106i 0.822083 0.569367i \(-0.192812\pi\)
−0.904128 + 0.427261i \(0.859478\pi\)
\(158\) 0 0
\(159\) −1.32881e7 + 2.30157e7i −0.262164 + 0.454081i
\(160\) 0 0
\(161\) −7.13886e6 5.95198e7i −0.134815 1.12401i
\(162\) 0 0
\(163\) −2.68214e7 + 4.64560e7i −0.485093 + 0.840205i −0.999853 0.0171289i \(-0.994547\pi\)
0.514761 + 0.857334i \(0.327881\pi\)
\(164\) 0 0
\(165\) 5.84181e6 + 1.01183e7i 0.101240 + 0.175353i
\(166\) 0 0
\(167\) 8.20253e7 1.36283 0.681413 0.731899i \(-0.261366\pi\)
0.681413 + 0.731899i \(0.261366\pi\)
\(168\) 0 0
\(169\) 1.68530e7 0.268581
\(170\) 0 0
\(171\) 7.57085e6 + 1.31131e7i 0.115787 + 0.200548i
\(172\) 0 0
\(173\) 3.39592e7 5.88190e7i 0.498650 0.863687i −0.501349 0.865245i \(-0.667163\pi\)
0.999999 + 0.00155811i \(0.000495962\pi\)
\(174\) 0 0
\(175\) −2.59838e7 1.11155e7i −0.366496 0.156782i
\(176\) 0 0
\(177\) −1.75460e7 + 3.03905e7i −0.237833 + 0.411938i
\(178\) 0 0
\(179\) −3.04898e7 5.28098e7i −0.397346 0.688223i 0.596052 0.802946i \(-0.296735\pi\)
−0.993398 + 0.114723i \(0.963402\pi\)
\(180\) 0 0
\(181\) −1.53894e8 −1.92907 −0.964533 0.263963i \(-0.914970\pi\)
−0.964533 + 0.263963i \(0.914970\pi\)
\(182\) 0 0
\(183\) −4.43133e7 −0.534510
\(184\) 0 0
\(185\) 5.32904e7 + 9.23016e7i 0.618796 + 1.07179i
\(186\) 0 0
\(187\) −1.43459e7 + 2.48479e7i −0.160429 + 0.277871i
\(188\) 0 0
\(189\) −5.97136e7 + 4.47356e7i −0.643364 + 0.481989i
\(190\) 0 0
\(191\) 1.12603e7 1.95034e7i 0.116932 0.202532i −0.801618 0.597836i \(-0.796027\pi\)
0.918550 + 0.395304i \(0.129361\pi\)
\(192\) 0 0
\(193\) 6.76381e7 + 1.17153e8i 0.677237 + 1.17301i 0.975810 + 0.218622i \(0.0701563\pi\)
−0.298572 + 0.954387i \(0.596510\pi\)
\(194\) 0 0
\(195\) −4.03744e7 −0.389928
\(196\) 0 0
\(197\) −8.96233e7 −0.835197 −0.417598 0.908632i \(-0.637128\pi\)
−0.417598 + 0.908632i \(0.637128\pi\)
\(198\) 0 0
\(199\) −2.74707e7 4.75806e7i −0.247106 0.428000i 0.715616 0.698494i \(-0.246146\pi\)
−0.962722 + 0.270494i \(0.912813\pi\)
\(200\) 0 0
\(201\) 3.49626e7 6.05570e7i 0.303681 0.525991i
\(202\) 0 0
\(203\) −9.35712e7 + 7.01007e7i −0.785066 + 0.588147i
\(204\) 0 0
\(205\) −6.75508e7 + 1.17001e8i −0.547636 + 0.948534i
\(206\) 0 0
\(207\) 5.78375e7 + 1.00177e8i 0.453224 + 0.785007i
\(208\) 0 0
\(209\) −2.23248e7 −0.169151
\(210\) 0 0
\(211\) 1.24539e8 0.912677 0.456338 0.889806i \(-0.349161\pi\)
0.456338 + 0.889806i \(0.349161\pi\)
\(212\) 0 0
\(213\) −2.60192e7 4.50666e7i −0.184487 0.319541i
\(214\) 0 0
\(215\) −4.58349e7 + 7.93884e7i −0.314530 + 0.544781i
\(216\) 0 0
\(217\) 1.70288e8 + 7.28467e7i 1.13129 + 0.483950i
\(218\) 0 0
\(219\) −3.41714e7 + 5.91866e7i −0.219841 + 0.380775i
\(220\) 0 0
\(221\) −4.95744e7 8.58653e7i −0.308947 0.535112i
\(222\) 0 0
\(223\) −2.85464e8 −1.72379 −0.861895 0.507087i \(-0.830722\pi\)
−0.861895 + 0.507087i \(0.830722\pi\)
\(224\) 0 0
\(225\) 5.45345e7 0.319177
\(226\) 0 0
\(227\) 3.37141e7 + 5.83946e7i 0.191303 + 0.331346i 0.945682 0.325092i \(-0.105395\pi\)
−0.754379 + 0.656439i \(0.772062\pi\)
\(228\) 0 0
\(229\) −3.58459e7 + 6.20869e7i −0.197249 + 0.341646i −0.947636 0.319354i \(-0.896534\pi\)
0.750386 + 0.660999i \(0.229867\pi\)
\(230\) 0 0
\(231\) −5.82529e6 4.85680e7i −0.0310939 0.259244i
\(232\) 0 0
\(233\) −1.08990e6 + 1.88777e6i −0.00564472 + 0.00977693i −0.868834 0.495104i \(-0.835130\pi\)
0.863189 + 0.504881i \(0.168463\pi\)
\(234\) 0 0
\(235\) 1.30641e8 + 2.26277e8i 0.656663 + 1.13737i
\(236\) 0 0
\(237\) −8.76515e7 −0.427701
\(238\) 0 0
\(239\) 1.87131e8 0.886654 0.443327 0.896360i \(-0.353798\pi\)
0.443327 + 0.896360i \(0.353798\pi\)
\(240\) 0 0
\(241\) 6.26650e7 + 1.08539e8i 0.288380 + 0.499489i 0.973423 0.229014i \(-0.0735500\pi\)
−0.685043 + 0.728502i \(0.740217\pi\)
\(242\) 0 0
\(243\) 1.11965e8 1.93929e8i 0.500564 0.867002i
\(244\) 0 0
\(245\) −1.23280e8 1.29100e8i −0.535562 0.560848i
\(246\) 0 0
\(247\) 3.85732e7 6.68108e7i 0.162872 0.282103i
\(248\) 0 0
\(249\) −3.50247e7 6.06645e7i −0.143773 0.249022i
\(250\) 0 0
\(251\) −3.48978e7 −0.139296 −0.0696482 0.997572i \(-0.522188\pi\)
−0.0696482 + 0.997572i \(0.522188\pi\)
\(252\) 0 0
\(253\) −1.70550e8 −0.662110
\(254\) 0 0
\(255\) 2.51444e7 + 4.35514e7i 0.0949622 + 0.164479i
\(256\) 0 0
\(257\) 2.96784e7 5.14046e7i 0.109062 0.188902i −0.806328 0.591468i \(-0.798548\pi\)
0.915391 + 0.402567i \(0.131882\pi\)
\(258\) 0 0
\(259\) −5.31396e7 4.43049e8i −0.190051 1.58454i
\(260\) 0 0
\(261\) 1.12804e8 1.95383e8i 0.392720 0.680212i
\(262\) 0 0
\(263\) −1.06373e7 1.84243e7i −0.0360567 0.0624521i 0.847434 0.530901i \(-0.178146\pi\)
−0.883491 + 0.468449i \(0.844813\pi\)
\(264\) 0 0
\(265\) 2.75921e8 0.910804
\(266\) 0 0
\(267\) −5.00972e7 −0.161073
\(268\) 0 0
\(269\) −5.85529e7 1.01417e8i −0.183407 0.317670i 0.759632 0.650353i \(-0.225379\pi\)
−0.943038 + 0.332684i \(0.892046\pi\)
\(270\) 0 0
\(271\) −1.01385e8 + 1.75603e8i −0.309442 + 0.535970i −0.978240 0.207474i \(-0.933476\pi\)
0.668798 + 0.743444i \(0.266809\pi\)
\(272\) 0 0
\(273\) 1.55413e8 + 6.64836e7i 0.462294 + 0.197763i
\(274\) 0 0
\(275\) −4.02026e7 + 6.96329e7i −0.116571 + 0.201906i
\(276\) 0 0
\(277\) −5.05757e7 8.75996e7i −0.142976 0.247641i 0.785640 0.618684i \(-0.212334\pi\)
−0.928616 + 0.371042i \(0.879000\pi\)
\(278\) 0 0
\(279\) −3.57398e8 −0.985230
\(280\) 0 0
\(281\) 3.69631e8 0.993793 0.496897 0.867810i \(-0.334473\pi\)
0.496897 + 0.867810i \(0.334473\pi\)
\(282\) 0 0
\(283\) −1.09831e8 1.90232e8i −0.288052 0.498921i 0.685293 0.728268i \(-0.259674\pi\)
−0.973345 + 0.229347i \(0.926341\pi\)
\(284\) 0 0
\(285\) −1.95646e7 + 3.38868e7i −0.0500626 + 0.0867109i
\(286\) 0 0
\(287\) 4.52687e8 3.39140e8i 1.13035 0.846821i
\(288\) 0 0
\(289\) 1.43421e8 2.48413e8i 0.349519 0.605385i
\(290\) 0 0
\(291\) 4.71314e7 + 8.16339e7i 0.112120 + 0.194198i
\(292\) 0 0
\(293\) −7.22230e8 −1.67741 −0.838704 0.544587i \(-0.816686\pi\)
−0.838704 + 0.544587i \(0.816686\pi\)
\(294\) 0 0
\(295\) 3.64334e8 0.826272
\(296\) 0 0
\(297\) 1.06138e8 + 1.83836e8i 0.235083 + 0.407176i
\(298\) 0 0
\(299\) 2.94680e8 5.10401e8i 0.637531 1.10424i
\(300\) 0 0
\(301\) 3.07159e8 2.30114e8i 0.649204 0.486364i
\(302\) 0 0
\(303\) 7.72457e7 1.33794e8i 0.159524 0.276303i
\(304\) 0 0
\(305\) 2.30036e8 + 3.98435e8i 0.464245 + 0.804096i
\(306\) 0 0
\(307\) 6.39545e7 0.126150 0.0630750 0.998009i \(-0.479909\pi\)
0.0630750 + 0.998009i \(0.479909\pi\)
\(308\) 0 0
\(309\) 3.85336e8 0.742994
\(310\) 0 0
\(311\) 7.73216e7 + 1.33925e8i 0.145760 + 0.252464i 0.929656 0.368428i \(-0.120104\pi\)
−0.783896 + 0.620892i \(0.786771\pi\)
\(312\) 0 0
\(313\) 2.46992e8 4.27803e8i 0.455279 0.788567i −0.543425 0.839458i \(-0.682873\pi\)
0.998704 + 0.0508911i \(0.0162062\pi\)
\(314\) 0 0
\(315\) 3.16693e8 + 1.35477e8i 0.570889 + 0.244218i
\(316\) 0 0
\(317\) −2.14969e8 + 3.72338e8i −0.379026 + 0.656492i −0.990921 0.134447i \(-0.957074\pi\)
0.611895 + 0.790939i \(0.290408\pi\)
\(318\) 0 0
\(319\) 1.66318e8 + 2.88071e8i 0.286861 + 0.496857i
\(320\) 0 0
\(321\) −1.04260e8 −0.175935
\(322\) 0 0
\(323\) −9.60907e7 −0.158662
\(324\) 0 0
\(325\) −1.38926e8 2.40626e8i −0.224487 0.388822i
\(326\) 0 0
\(327\) 1.95068e8 3.37868e8i 0.308510 0.534355i
\(328\) 0 0
\(329\) −1.30272e8 1.08613e9i −0.201681 1.68150i
\(330\) 0 0
\(331\) −1.64085e8 + 2.84203e8i −0.248697 + 0.430755i −0.963164 0.268913i \(-0.913336\pi\)
0.714468 + 0.699668i \(0.246669\pi\)
\(332\) 0 0
\(333\) 4.30526e8 + 7.45693e8i 0.638917 + 1.10664i
\(334\) 0 0
\(335\) −7.25983e8 −1.05504
\(336\) 0 0
\(337\) −1.14409e8 −0.162838 −0.0814189 0.996680i \(-0.525945\pi\)
−0.0814189 + 0.996680i \(0.525945\pi\)
\(338\) 0 0
\(339\) 2.60481e8 + 4.51166e8i 0.363142 + 0.628981i
\(340\) 0 0
\(341\) 2.63472e8 4.56348e8i 0.359828 0.623240i
\(342\) 0 0
\(343\) 2.61954e8 + 6.99947e8i 0.350507 + 0.936560i
\(344\) 0 0
\(345\) −1.49463e8 + 2.58878e8i −0.195960 + 0.339413i
\(346\) 0 0
\(347\) −3.28339e8 5.68699e8i −0.421860 0.730684i 0.574261 0.818672i \(-0.305289\pi\)
−0.996121 + 0.0879887i \(0.971956\pi\)
\(348\) 0 0
\(349\) −8.85994e8 −1.11569 −0.557843 0.829947i \(-0.688371\pi\)
−0.557843 + 0.829947i \(0.688371\pi\)
\(350\) 0 0
\(351\) −7.33546e8 −0.905426
\(352\) 0 0
\(353\) −3.43700e8 5.95305e8i −0.415880 0.720324i 0.579641 0.814872i \(-0.303193\pi\)
−0.995520 + 0.0945476i \(0.969860\pi\)
\(354\) 0 0
\(355\) −2.70139e8 + 4.67894e8i −0.320470 + 0.555071i
\(356\) 0 0
\(357\) −2.50733e7 2.09047e8i −0.0291657 0.243168i
\(358\) 0 0
\(359\) 1.61222e7 2.79244e7i 0.0183905 0.0318533i −0.856684 0.515842i \(-0.827479\pi\)
0.875074 + 0.483989i \(0.160812\pi\)
\(360\) 0 0
\(361\) 4.09552e8 + 7.09365e8i 0.458178 + 0.793588i
\(362\) 0 0
\(363\) 2.67673e8 0.293718
\(364\) 0 0
\(365\) 7.09553e8 0.763765
\(366\) 0 0
\(367\) −3.58275e8 6.20551e8i −0.378343 0.655309i 0.612479 0.790487i \(-0.290173\pi\)
−0.990821 + 0.135178i \(0.956839\pi\)
\(368\) 0 0
\(369\) −5.45735e8 + 9.45240e8i −0.565444 + 0.979377i
\(370\) 0 0
\(371\) −1.06210e9 4.54353e8i −1.07984 0.461940i
\(372\) 0 0
\(373\) −6.11134e8 + 1.05852e9i −0.609755 + 1.05613i 0.381525 + 0.924358i \(0.375399\pi\)
−0.991281 + 0.131769i \(0.957934\pi\)
\(374\) 0 0
\(375\) 2.47232e8 + 4.28219e8i 0.242101 + 0.419331i
\(376\) 0 0
\(377\) −1.14947e9 −1.10485
\(378\) 0 0
\(379\) 6.83298e8 0.644723 0.322361 0.946617i \(-0.395523\pi\)
0.322361 + 0.946617i \(0.395523\pi\)
\(380\) 0 0
\(381\) 1.79629e8 + 3.11127e8i 0.166395 + 0.288204i
\(382\) 0 0
\(383\) 1.01294e9 1.75447e9i 0.921273 1.59569i 0.123826 0.992304i \(-0.460484\pi\)
0.797447 0.603388i \(-0.206183\pi\)
\(384\) 0 0
\(385\) −4.06450e8 + 3.04500e8i −0.362990 + 0.271941i
\(386\) 0 0
\(387\) −3.70294e8 + 6.41368e8i −0.324757 + 0.562496i
\(388\) 0 0
\(389\) 3.64506e8 + 6.31342e8i 0.313965 + 0.543803i 0.979217 0.202816i \(-0.0650093\pi\)
−0.665252 + 0.746619i \(0.731676\pi\)
\(390\) 0 0
\(391\) −7.34085e8 −0.621052
\(392\) 0 0
\(393\) 5.62158e8 0.467180
\(394\) 0 0
\(395\) 4.55011e8 + 7.88102e8i 0.371477 + 0.643417i
\(396\) 0 0
\(397\) 6.63836e8 1.14980e9i 0.532469 0.922263i −0.466812 0.884356i \(-0.654598\pi\)
0.999281 0.0379069i \(-0.0120690\pi\)
\(398\) 0 0
\(399\) 1.31111e8 9.82240e7i 0.103331 0.0774128i
\(400\) 0 0
\(401\) 4.28975e8 7.43007e8i 0.332221 0.575423i −0.650726 0.759312i \(-0.725535\pi\)
0.982947 + 0.183889i \(0.0588688\pi\)
\(402\) 0 0
\(403\) 9.10465e8 + 1.57697e9i 0.692940 + 1.20021i
\(404\) 0 0
\(405\) −4.58053e8 −0.342629
\(406\) 0 0
\(407\) −1.26953e9 −0.933387
\(408\) 0 0
\(409\) 1.05133e9 + 1.82096e9i 0.759814 + 1.31604i 0.942945 + 0.332948i \(0.108044\pi\)
−0.183131 + 0.983089i \(0.558623\pi\)
\(410\) 0 0
\(411\) −2.84561e8 + 4.92874e8i −0.202176 + 0.350178i
\(412\) 0 0
\(413\) −1.40243e9 5.99941e8i −0.979618 0.419067i
\(414\) 0 0
\(415\) −3.63636e8 + 6.29835e8i −0.249746 + 0.432572i
\(416\) 0 0
\(417\) 1.42815e8 + 2.47363e8i 0.0964490 + 0.167055i
\(418\) 0 0
\(419\) −2.47991e9 −1.64697 −0.823486 0.567336i \(-0.807974\pi\)
−0.823486 + 0.567336i \(0.807974\pi\)
\(420\) 0 0
\(421\) −5.51855e7 −0.0360444 −0.0180222 0.999838i \(-0.505737\pi\)
−0.0180222 + 0.999838i \(0.505737\pi\)
\(422\) 0 0
\(423\) 1.05543e9 + 1.82806e9i 0.678016 + 1.17436i
\(424\) 0 0
\(425\) −1.73041e8 + 2.99715e8i −0.109342 + 0.189386i
\(426\) 0 0
\(427\) −2.29386e8 1.91249e9i −0.142583 1.18878i
\(428\) 0 0
\(429\) 2.40458e8 4.16486e8i 0.147041 0.254683i
\(430\) 0 0
\(431\) 8.42361e8 + 1.45901e9i 0.506790 + 0.877786i 0.999969 + 0.00785824i \(0.00250138\pi\)
−0.493179 + 0.869928i \(0.664165\pi\)
\(432\) 0 0
\(433\) −1.29692e9 −0.767724 −0.383862 0.923390i \(-0.625406\pi\)
−0.383862 + 0.923390i \(0.625406\pi\)
\(434\) 0 0
\(435\) 5.83017e8 0.339601
\(436\) 0 0
\(437\) −2.85591e8 4.94659e8i −0.163704 0.283544i
\(438\) 0 0
\(439\) −7.03191e7 + 1.21796e8i −0.0396686 + 0.0687081i −0.885178 0.465252i \(-0.845964\pi\)
0.845509 + 0.533960i \(0.179297\pi\)
\(440\) 0 0
\(441\) −9.95961e8 1.04298e9i −0.552977 0.579085i
\(442\) 0 0
\(443\) −9.24666e8 + 1.60157e9i −0.505326 + 0.875251i 0.494655 + 0.869090i \(0.335295\pi\)
−0.999981 + 0.00616141i \(0.998039\pi\)
\(444\) 0 0
\(445\) 2.60061e8 + 4.50439e8i 0.139899 + 0.242313i
\(446\) 0 0
\(447\) −5.09176e8 −0.269645
\(448\) 0 0
\(449\) −2.91794e9 −1.52130 −0.760648 0.649165i \(-0.775118\pi\)
−0.760648 + 0.649165i \(0.775118\pi\)
\(450\) 0 0
\(451\) −8.04627e8 1.39365e9i −0.413025 0.715381i
\(452\) 0 0
\(453\) −3.52856e8 + 6.11164e8i −0.178342 + 0.308897i
\(454\) 0 0
\(455\) −2.08996e8 1.74249e9i −0.104016 0.867224i
\(456\) 0 0
\(457\) −1.42040e9 + 2.46021e9i −0.696153 + 1.20577i 0.273638 + 0.961833i \(0.411773\pi\)
−0.969791 + 0.243939i \(0.921560\pi\)
\(458\) 0 0
\(459\) 4.56839e8 + 7.91269e8i 0.220505 + 0.381926i
\(460\) 0 0
\(461\) 3.96057e9 1.88280 0.941400 0.337291i \(-0.109511\pi\)
0.941400 + 0.337291i \(0.109511\pi\)
\(462\) 0 0
\(463\) 2.19815e9 1.02926 0.514629 0.857413i \(-0.327930\pi\)
0.514629 + 0.857413i \(0.327930\pi\)
\(464\) 0 0
\(465\) −4.61793e8 7.99850e8i −0.212992 0.368912i
\(466\) 0 0
\(467\) 1.56120e9 2.70408e9i 0.709332 1.22860i −0.255773 0.966737i \(-0.582330\pi\)
0.965105 0.261862i \(-0.0843366\pi\)
\(468\) 0 0
\(469\) 2.79453e9 + 1.19546e9i 1.25084 + 0.535094i
\(470\) 0 0
\(471\) 8.30572e7 1.43859e8i 0.0366272 0.0634403i
\(472\) 0 0
\(473\) −5.45959e8 9.45629e8i −0.237217 0.410872i
\(474\) 0 0
\(475\) −2.69282e8 −0.115287
\(476\) 0 0
\(477\) 2.22913e9 0.940420
\(478\) 0 0
\(479\) −6.79522e8 1.17697e9i −0.282507 0.489317i 0.689494 0.724291i \(-0.257833\pi\)
−0.972002 + 0.234974i \(0.924499\pi\)
\(480\) 0 0
\(481\) 2.19352e9 3.79928e9i 0.898738 1.55666i
\(482\) 0 0
\(483\) 1.00162e9 7.50382e8i 0.404471 0.303017i
\(484\) 0 0
\(485\) 4.89330e8 8.47545e8i 0.194763 0.337339i
\(486\) 0 0
\(487\) 1.19733e9 + 2.07383e9i 0.469745 + 0.813622i 0.999402 0.0345902i \(-0.0110126\pi\)
−0.529657 + 0.848212i \(0.677679\pi\)
\(488\) 0 0
\(489\) −1.11992e9 −0.433118
\(490\) 0 0
\(491\) 1.95738e9 0.746261 0.373130 0.927779i \(-0.378284\pi\)
0.373130 + 0.927779i \(0.378284\pi\)
\(492\) 0 0
\(493\) 7.15867e8 + 1.23992e9i 0.269072 + 0.466046i
\(494\) 0 0
\(495\) 4.89994e8 8.48694e8i 0.181582 0.314509i
\(496\) 0 0
\(497\) 1.81032e9 1.35623e9i 0.661465 0.495550i
\(498\) 0 0
\(499\) 1.47577e8 2.55611e8i 0.0531699 0.0920931i −0.838215 0.545339i \(-0.816401\pi\)
0.891385 + 0.453246i \(0.149734\pi\)
\(500\) 0 0
\(501\) 8.56238e8 + 1.48305e9i 0.304202 + 0.526893i
\(502\) 0 0
\(503\) −2.51431e9 −0.880909 −0.440454 0.897775i \(-0.645183\pi\)
−0.440454 + 0.897775i \(0.645183\pi\)
\(504\) 0 0
\(505\) −1.60397e9 −0.554213
\(506\) 0 0
\(507\) 1.75924e8 + 3.04709e8i 0.0599510 + 0.103838i
\(508\) 0 0
\(509\) 1.11783e9 1.93615e9i 0.375721 0.650767i −0.614714 0.788750i \(-0.710729\pi\)
0.990435 + 0.137983i \(0.0440619\pi\)
\(510\) 0 0
\(511\) −2.73128e9 1.16840e9i −0.905511 0.387365i
\(512\) 0 0
\(513\) −3.55461e8 + 6.15676e8i −0.116247 + 0.201345i
\(514\) 0 0
\(515\) −2.00033e9 3.46468e9i −0.645323 1.11773i
\(516\) 0 0
\(517\) −3.11225e9 −0.990506
\(518\) 0 0
\(519\) 1.41796e9 0.445223
\(520\) 0 0
\(521\) −1.59740e9 2.76677e9i −0.494858 0.857120i 0.505124 0.863047i \(-0.331447\pi\)
−0.999982 + 0.00592705i \(0.998113\pi\)
\(522\) 0 0
\(523\) −4.70741e8 + 8.15348e8i −0.143889 + 0.249222i −0.928958 0.370186i \(-0.879294\pi\)
0.785069 + 0.619408i \(0.212627\pi\)
\(524\) 0 0
\(525\) −7.02646e7 5.85827e8i −0.0211923 0.176690i
\(526\) 0 0
\(527\) 1.13404e9 1.96422e9i 0.337514 0.584592i
\(528\) 0 0
\(529\) −4.79361e8 8.30278e8i −0.140789 0.243853i
\(530\) 0 0
\(531\) 2.94341e9 0.853140
\(532\) 0 0
\(533\) 5.56100e9 1.59077
\(534\) 0 0
\(535\) 5.41230e8 + 9.37438e8i 0.152807 + 0.264670i
\(536\) 0 0
\(537\) 6.36547e8 1.10253e9i 0.177387 0.307242i
\(538\) 0 0
\(539\) 2.06596e9 5.02820e8i 0.568279 0.138309i
\(540\) 0 0
\(541\) −1.93667e9 + 3.35441e9i −0.525854 + 0.910806i 0.473692 + 0.880691i \(0.342921\pi\)
−0.999546 + 0.0301159i \(0.990412\pi\)
\(542\) 0 0
\(543\) −1.60645e9 2.78246e9i −0.430595 0.745813i
\(544\) 0 0
\(545\) −4.05050e9 −1.07182
\(546\) 0 0
\(547\) 1.92865e9 0.503845 0.251922 0.967747i \(-0.418937\pi\)
0.251922 + 0.967747i \(0.418937\pi\)
\(548\) 0 0
\(549\) 1.85844e9 + 3.21890e9i 0.479341 + 0.830242i
\(550\) 0 0
\(551\) −5.57007e8 + 9.64765e8i −0.141850 + 0.245692i
\(552\) 0 0
\(553\) −4.53724e8 3.78290e9i −0.114092 0.951232i
\(554\) 0 0
\(555\) −1.11256e9 + 1.92702e9i −0.276248 + 0.478476i
\(556\) 0 0
\(557\) −1.65798e9 2.87170e9i −0.406524 0.704120i 0.587974 0.808880i \(-0.299926\pi\)
−0.994498 + 0.104760i \(0.966593\pi\)
\(558\) 0 0
\(559\) 3.77327e9 0.913644
\(560\) 0 0
\(561\) −5.99012e8 −0.143240
\(562\) 0 0
\(563\) −9.36100e8 1.62137e9i −0.221077 0.382916i 0.734059 0.679086i \(-0.237624\pi\)
−0.955135 + 0.296170i \(0.904290\pi\)
\(564\) 0 0
\(565\) 2.70438e9 4.68413e9i 0.630810 1.09259i
\(566\) 0 0
\(567\) 1.76319e9 + 7.54266e8i 0.406216 + 0.173774i
\(568\) 0 0
\(569\) 3.17886e8 5.50595e8i 0.0723400 0.125297i −0.827586 0.561338i \(-0.810287\pi\)
0.899926 + 0.436042i \(0.143620\pi\)
\(570\) 0 0
\(571\) 2.85689e9 + 4.94828e9i 0.642196 + 1.11232i 0.984942 + 0.172887i \(0.0553097\pi\)
−0.342746 + 0.939428i \(0.611357\pi\)
\(572\) 0 0
\(573\) 4.70171e8 0.104403
\(574\) 0 0
\(575\) −2.05718e9 −0.451267
\(576\) 0 0
\(577\) 3.17926e9 + 5.50664e9i 0.688986 + 1.19336i 0.972166 + 0.234292i \(0.0752773\pi\)
−0.283180 + 0.959067i \(0.591389\pi\)
\(578\) 0 0
\(579\) −1.41211e9 + 2.44584e9i −0.302338 + 0.523665i
\(580\) 0 0
\(581\) 2.43688e9 1.82564e9i 0.515487 0.386187i
\(582\) 0 0
\(583\) −1.64331e9 + 2.84629e9i −0.343462 + 0.594894i
\(584\) 0 0
\(585\) 1.69324e9 + 2.93278e9i 0.349682 + 0.605667i
\(586\) 0 0
\(587\) −7.71077e8 −0.157349 −0.0786745 0.996900i \(-0.525069\pi\)
−0.0786745 + 0.996900i \(0.525069\pi\)
\(588\) 0 0
\(589\) 1.76477e9 0.355864
\(590\) 0 0
\(591\) −9.35550e8 1.62042e9i −0.186428 0.322903i
\(592\) 0 0
\(593\) −3.20093e9 + 5.54417e9i −0.630354 + 1.09181i 0.357125 + 0.934057i \(0.383757\pi\)
−0.987479 + 0.157749i \(0.949576\pi\)
\(594\) 0 0
\(595\) −1.74945e9 + 1.31063e9i −0.340480 + 0.255078i
\(596\) 0 0
\(597\) 5.73516e8 9.93359e8i 0.110315 0.191072i
\(598\) 0 0
\(599\) −6.60575e8 1.14415e9i −0.125582 0.217515i 0.796378 0.604799i \(-0.206747\pi\)
−0.921960 + 0.387284i \(0.873413\pi\)
\(600\) 0 0
\(601\) −2.93204e9 −0.550947 −0.275474 0.961309i \(-0.588835\pi\)
−0.275474 + 0.961309i \(0.588835\pi\)
\(602\) 0 0
\(603\) −5.86512e9 −1.08935
\(604\) 0 0
\(605\) −1.38953e9 2.40673e9i −0.255107 0.441859i
\(606\) 0 0
\(607\) −2.76216e9 + 4.78420e9i −0.501289 + 0.868258i 0.498710 + 0.866769i \(0.333807\pi\)
−0.999999 + 0.00148902i \(0.999526\pi\)
\(608\) 0 0
\(609\) −2.24421e9 9.60040e8i −0.402626 0.172238i
\(610\) 0 0
\(611\) 5.37740e9 9.31393e9i 0.953736 1.65192i
\(612\) 0 0
\(613\) 3.14956e9 + 5.45520e9i 0.552253 + 0.956530i 0.998112 + 0.0614270i \(0.0195651\pi\)
−0.445858 + 0.895103i \(0.647102\pi\)
\(614\) 0 0
\(615\) −2.82057e9 −0.488961
\(616\) 0 0
\(617\) −4.76835e9 −0.817278 −0.408639 0.912696i \(-0.633996\pi\)
−0.408639 + 0.912696i \(0.633996\pi\)
\(618\) 0 0
\(619\) 3.93891e8 + 6.82239e8i 0.0667511 + 0.115616i 0.897469 0.441077i \(-0.145403\pi\)
−0.830718 + 0.556693i \(0.812070\pi\)
\(620\) 0 0
\(621\) −2.71554e9 + 4.70346e9i −0.455026 + 0.788128i
\(622\) 0 0
\(623\) −2.59326e8 2.16211e9i −0.0429672 0.358237i
\(624\) 0 0
\(625\) 1.35034e9 2.33885e9i 0.221239 0.383197i
\(626\) 0 0
\(627\) −2.33042e8 4.03640e8i −0.0377570 0.0653970i
\(628\) 0 0
\(629\) −5.46432e9 −0.875506
\(630\) 0 0
\(631\) 9.52407e9 1.50911 0.754553 0.656239i \(-0.227854\pi\)
0.754553 + 0.656239i \(0.227854\pi\)
\(632\) 0 0
\(633\) 1.30003e9 + 2.25171e9i 0.203723 + 0.352858i
\(634\) 0 0
\(635\) 1.86496e9 3.23021e9i 0.289042 0.500636i
\(636\) 0 0
\(637\) −2.06484e9 + 7.05153e9i −0.316517 + 1.08092i
\(638\) 0 0
\(639\) −2.18242e9 + 3.78006e9i −0.330891 + 0.573120i
\(640\) 0 0
\(641\) 1.32160e9 + 2.28909e9i 0.198198 + 0.343288i 0.947944 0.318437i \(-0.103158\pi\)
−0.749746 + 0.661725i \(0.769825\pi\)
\(642\) 0 0
\(643\) −7.78643e9 −1.15505 −0.577524 0.816374i \(-0.695981\pi\)
−0.577524 + 0.816374i \(0.695981\pi\)
\(644\) 0 0
\(645\) −1.91383e9 −0.280830
\(646\) 0 0
\(647\) 4.77250e9 + 8.26622e9i 0.692757 + 1.19989i 0.970931 + 0.239360i \(0.0769377\pi\)
−0.278173 + 0.960531i \(0.589729\pi\)
\(648\) 0 0
\(649\) −2.16987e9 + 3.75833e9i −0.311586 + 0.539682i
\(650\) 0 0
\(651\) 4.60487e8 + 3.83929e9i 0.0654161 + 0.545403i
\(652\) 0 0
\(653\) 5.15813e8 8.93414e8i 0.0724930 0.125562i −0.827500 0.561465i \(-0.810238\pi\)
0.899993 + 0.435904i \(0.143571\pi\)
\(654\) 0 0
\(655\) −2.91824e9 5.05453e9i −0.405766 0.702808i
\(656\) 0 0
\(657\) 5.73239e9 0.788600
\(658\) 0 0
\(659\) −9.97213e9 −1.35734 −0.678671 0.734443i \(-0.737444\pi\)
−0.678671 + 0.734443i \(0.737444\pi\)
\(660\) 0 0
\(661\) −4.39852e9 7.61845e9i −0.592381 1.02603i −0.993911 0.110188i \(-0.964855\pi\)
0.401530 0.915846i \(-0.368479\pi\)
\(662\) 0 0
\(663\) 1.03498e9 1.79264e9i 0.137923 0.238889i
\(664\) 0 0
\(665\) −1.56378e9 6.68961e8i −0.206205 0.0882115i
\(666\) 0 0
\(667\) −4.25526e9 + 7.37032e9i −0.555246 + 0.961714i
\(668\) 0 0
\(669\) −2.97987e9 5.16129e9i −0.384774 0.666449i
\(670\) 0 0
\(671\) −5.48012e9 −0.700264
\(672\) 0 0
\(673\) 7.42386e9 0.938808 0.469404 0.882983i \(-0.344469\pi\)
0.469404 + 0.882983i \(0.344469\pi\)
\(674\) 0 0
\(675\) 1.28023e9 + 2.21743e9i 0.160223 + 0.277515i
\(676\) 0 0
\(677\) 5.72981e8 9.92432e8i 0.0709708 0.122925i −0.828356 0.560202i \(-0.810724\pi\)
0.899327 + 0.437277i \(0.144057\pi\)
\(678\) 0 0
\(679\) −3.27921e9 + 2.45669e9i −0.402000 + 0.301166i
\(680\) 0 0
\(681\) −7.03863e8 + 1.21913e9i −0.0854030 + 0.147922i
\(682\) 0 0
\(683\) 5.29365e9 + 9.16887e9i 0.635745 + 1.10114i 0.986357 + 0.164621i \(0.0526402\pi\)
−0.350612 + 0.936521i \(0.614026\pi\)
\(684\) 0 0
\(685\) 5.90877e9 0.702393
\(686\) 0 0
\(687\) −1.49674e9 −0.176115
\(688\) 0 0
\(689\) −5.67868e9 9.83576e9i −0.661424 1.14562i
\(690\) 0 0
\(691\) 3.78065e9 6.54827e9i 0.435906 0.755011i −0.561463 0.827502i \(-0.689761\pi\)
0.997369 + 0.0724904i \(0.0230947\pi\)
\(692\) 0 0
\(693\) −3.28366e9 + 2.46002e9i −0.374793 + 0.280784i
\(694\) 0 0
\(695\) 1.48275e9 2.56819e9i 0.167540 0.290189i
\(696\) 0 0
\(697\) −3.46329e9 5.99859e9i −0.387413 0.671018i
\(698\) 0 0
\(699\) −4.55087e7 −0.00503992
\(700\) 0 0
\(701\) −1.31100e10 −1.43744 −0.718719 0.695301i \(-0.755271\pi\)
−0.718719 + 0.695301i \(0.755271\pi\)
\(702\) 0 0
\(703\) −2.12586e9 3.68210e9i −0.230776 0.399716i
\(704\) 0 0
\(705\) −2.72745e9 + 4.72408e9i −0.293153 + 0.507756i
\(706\) 0 0
\(707\) 6.17417e9 + 2.64122e9i 0.657069 + 0.281085i
\(708\) 0 0
\(709\) −1.55398e8 + 2.69157e8i −0.0163750 + 0.0283624i −0.874097 0.485752i \(-0.838546\pi\)
0.857722 + 0.514114i \(0.171879\pi\)
\(710\) 0 0
\(711\) 3.67597e9 + 6.36697e9i 0.383556 + 0.664338i
\(712\) 0 0
\(713\) 1.34819e10 1.39296
\(714\) 0 0
\(715\) −4.99300e9 −0.510847
\(716\) 0 0
\(717\) 1.95341e9 + 3.38340e9i 0.197914 + 0.342797i
\(718\) 0 0
\(719\) 2.09243e9 3.62420e9i 0.209943 0.363631i −0.741754 0.670673i \(-0.766006\pi\)
0.951696 + 0.307041i \(0.0993389\pi\)
\(720\) 0 0
\(721\) 1.99468e9 + 1.66305e10i 0.198198 + 1.65246i
\(722\) 0 0
\(723\) −1.30828e9 + 2.26601e9i −0.128741 + 0.222986i
\(724\) 0 0
\(725\) 2.00612e9 + 3.47471e9i 0.195512 + 0.338637i
\(726\) 0 0
\(727\) 9.54370e9 0.921184 0.460592 0.887612i \(-0.347637\pi\)
0.460592 + 0.887612i \(0.347637\pi\)
\(728\) 0 0
\(729\) 5.34261e7 0.00510749
\(730\) 0 0
\(731\) −2.34993e9 4.07019e9i −0.222507 0.385393i
\(732\) 0 0
\(733\) −5.03140e9 + 8.71464e9i −0.471873 + 0.817307i −0.999482 0.0321796i \(-0.989755\pi\)
0.527609 + 0.849487i \(0.323088\pi\)
\(734\) 0 0
\(735\) 1.04730e9 3.57658e9i 0.0972891 0.332248i
\(736\) 0 0
\(737\) 4.32374e9 7.48894e9i 0.397854 0.689103i
\(738\) 0 0
\(739\) −3.54880e9 6.14670e9i −0.323464 0.560256i 0.657736 0.753248i \(-0.271514\pi\)
−0.981200 + 0.192992i \(0.938181\pi\)
\(740\) 0 0
\(741\) 1.61062e9 0.145421
\(742\) 0 0
\(743\) −3.16400e8 −0.0282993 −0.0141497 0.999900i \(-0.504504\pi\)
−0.0141497 + 0.999900i \(0.504504\pi\)
\(744\) 0 0
\(745\) 2.64320e9 + 4.57816e9i 0.234198 + 0.405643i
\(746\) 0 0
\(747\) −2.93777e9 + 5.08836e9i −0.257867 + 0.446638i
\(748\) 0 0
\(749\) −5.39699e8 4.49971e9i −0.0469316 0.391290i
\(750\) 0 0
\(751\) 3.22967e9 5.59396e9i 0.278240 0.481925i −0.692708 0.721218i \(-0.743582\pi\)
0.970947 + 0.239293i \(0.0769158\pi\)
\(752\) 0 0
\(753\) −3.64287e8 6.30964e8i −0.0310929 0.0538545i
\(754\) 0 0
\(755\) 7.32689e9 0.619591
\(756\) 0 0
\(757\) 1.07167e10 0.897892 0.448946 0.893559i \(-0.351800\pi\)
0.448946 + 0.893559i \(0.351800\pi\)
\(758\) 0 0
\(759\) −1.78032e9 3.08361e9i −0.147793 0.255984i
\(760\) 0 0
\(761\) 4.51415e9 7.81874e9i 0.371304 0.643117i −0.618462 0.785814i \(-0.712244\pi\)
0.989766 + 0.142697i \(0.0455774\pi\)
\(762\) 0 0
\(763\) 1.55916e10 + 6.66987e9i 1.27073 + 0.543602i
\(764\) 0 0
\(765\) 2.10904e9 3.65296e9i 0.170322 0.295006i
\(766\) 0 0
\(767\) −7.49829e9 1.29874e10i −0.600038 1.03930i
\(768\) 0 0
\(769\) 8.30919e9 0.658895 0.329448 0.944174i \(-0.393137\pi\)
0.329448 + 0.944174i \(0.393137\pi\)
\(770\) 0 0
\(771\) 1.23922e9 0.0973771
\(772\) 0 0
\(773\) −5.63091e9 9.75302e9i −0.438480 0.759470i 0.559092 0.829106i \(-0.311150\pi\)
−0.997573 + 0.0696352i \(0.977816\pi\)
\(774\) 0 0
\(775\) 3.17800e9 5.50446e9i 0.245244 0.424775i
\(776\) 0 0
\(777\) 7.45577e9 5.58564e9i 0.570189 0.427168i
\(778\) 0 0
\(779\) 2.69474e9 4.66743e9i 0.204238 0.353750i
\(780\) 0 0
\(781\) −3.21774e9 5.57328e9i −0.241697 0.418632i
\(782\) 0 0
\(783\) 1.05926e10 0.788563
\(784\) 0 0
\(785\) −1.72465e9 −0.127249
\(786\) 0 0
\(787\) −1.11102e10 1.92434e10i −0.812475 1.40725i −0.911127 0.412127i \(-0.864786\pi\)
0.0986511 0.995122i \(-0.468547\pi\)
\(788\) 0 0
\(789\) 2.22079e8 3.84652e8i 0.0160968 0.0278804i
\(790\) 0 0
\(791\) −1.81232e10 + 1.35774e10i −1.30202 + 0.975434i
\(792\) 0 0
\(793\) 9.46866e9 1.64002e10i 0.674268 1.16787i
\(794\) 0 0
\(795\) 2.88026e9 + 4.98876e9i 0.203304 + 0.352133i
\(796\) 0 0
\(797\) −6.49195e9 −0.454225 −0.227113 0.973868i \(-0.572929\pi\)
−0.227113 + 0.973868i \(0.572929\pi\)
\(798\) 0 0
\(799\) −1.33958e10 −0.929082
\(800\) 0 0
\(801\) 2.10100e9 + 3.63904e9i 0.144448 + 0.250192i
\(802\) 0 0
\(803\) −4.22589e9 + 7.31946e9i −0.288014 + 0.498855i
\(804\) 0 0
\(805\) −1.19465e10 5.11053e9i −0.807149 0.345287i
\(806\) 0 0
\(807\) 1.22243e9 2.11731e9i 0.0818780 0.141817i
\(808\) 0 0
\(809\) 5.80562e9 + 1.00556e10i 0.385504 + 0.667712i 0.991839 0.127497i \(-0.0406944\pi\)
−0.606335 + 0.795209i \(0.707361\pi\)
\(810\) 0 0
\(811\) 1.72427e10 1.13510 0.567548 0.823340i \(-0.307892\pi\)
0.567548 + 0.823340i \(0.307892\pi\)
\(812\) 0 0
\(813\) −4.23329e9 −0.276288
\(814\) 0 0
\(815\) 5.81366e9 + 1.00696e10i 0.376182 + 0.651567i
\(816\) 0 0
\(817\) 1.82845e9 3.16696e9i 0.117302 0.203173i
\(818\) 0 0
\(819\) −1.68845e9 1.40774e10i −0.107398 0.895423i
\(820\) 0 0
\(821\) −7.15770e9 + 1.23975e10i −0.451412 + 0.781868i −0.998474 0.0552240i \(-0.982413\pi\)
0.547062 + 0.837092i \(0.315746\pi\)
\(822\) 0 0
\(823\) −2.33905e9 4.05135e9i −0.146265 0.253338i 0.783579 0.621292i \(-0.213392\pi\)
−0.929844 + 0.367954i \(0.880059\pi\)
\(824\) 0 0
\(825\) −1.67865e9 −0.104081
\(826\) 0 0
\(827\) 1.01540e10 0.624264 0.312132 0.950039i \(-0.398957\pi\)
0.312132 + 0.950039i \(0.398957\pi\)
\(828\) 0 0
\(829\) −5.51455e9 9.55148e9i −0.336178 0.582278i 0.647532 0.762038i \(-0.275801\pi\)
−0.983710 + 0.179760i \(0.942468\pi\)
\(830\) 0 0
\(831\) 1.05589e9 1.82885e9i 0.0638284 0.110554i
\(832\) 0 0
\(833\) 8.89235e9 2.16425e9i 0.533039 0.129733i
\(834\) 0 0
\(835\) 8.88969e9 1.53974e10i 0.528426 0.915260i
\(836\) 0 0
\(837\) −8.39015e9 1.45322e10i −0.494573 0.856626i
\(838\) 0 0
\(839\) 1.71068e10 1.00001 0.500003 0.866023i \(-0.333332\pi\)
0.500003 + 0.866023i \(0.333332\pi\)
\(840\) 0 0
\(841\) −6.51269e8 −0.0377550
\(842\) 0 0
\(843\) 3.85847e9 + 6.68306e9i 0.221829 + 0.384219i
\(844\) 0 0
\(845\) 1.82649e9 3.16357e9i 0.104140 0.180376i
\(846\) 0 0
\(847\) 1.38560e9 + 1.15523e10i 0.0783510 + 0.653247i
\(848\) 0 0
\(849\) 2.29298e9 3.97156e9i 0.128595 0.222733i
\(850\) 0 0
\(851\) −1.62405e10 2.81294e10i −0.903330 1.56461i
\(852\) 0 0
\(853\) −2.88309e9 −0.159051 −0.0795256 0.996833i \(-0.525341\pi\)
−0.0795256 + 0.996833i \(0.525341\pi\)
\(854\) 0 0
\(855\) 3.28203e9 0.179582
\(856\) 0 0
\(857\) 1.20159e10 + 2.08122e10i 0.652116 + 1.12950i 0.982608 + 0.185690i \(0.0594520\pi\)
−0.330492 + 0.943809i \(0.607215\pi\)
\(858\) 0 0
\(859\) −1.70872e10 + 2.95958e10i −0.919801 + 1.59314i −0.120084 + 0.992764i \(0.538317\pi\)
−0.799716 + 0.600378i \(0.795017\pi\)
\(860\) 0 0
\(861\) 1.08572e10 + 4.64457e9i 0.579706 + 0.247990i
\(862\) 0 0
\(863\) 1.48357e10 2.56962e10i 0.785724 1.36091i −0.142841 0.989746i \(-0.545624\pi\)
0.928566 0.371168i \(-0.121043\pi\)
\(864\) 0 0
\(865\) −7.36082e9 1.27493e10i −0.386696 0.669777i
\(866\) 0 0
\(867\) 5.98853e9 0.312071
\(868\) 0 0
\(869\) −1.08397e10 −0.560333
\(870\) 0 0
\(871\) 1.49413e10 + 2.58791e10i 0.766169 + 1.32704i
\(872\) 0 0
\(873\) 3.95324e9 6.84721e9i 0.201096 0.348308i
\(874\) 0 0
\(875\) −1.72015e10 + 1.28868e10i −0.868035 + 0.650305i
\(876\) 0 0
\(877\) 3.70786e9 6.42220e9i 0.185620 0.321503i −0.758165 0.652062i \(-0.773904\pi\)
0.943785 + 0.330559i \(0.107237\pi\)
\(878\) 0 0
\(879\) −7.53914e9 1.30582e10i −0.374422 0.648517i
\(880\) 0 0
\(881\) 3.89699e10 1.92005 0.960027 0.279907i \(-0.0903037\pi\)
0.960027 + 0.279907i \(0.0903037\pi\)
\(882\) 0 0
\(883\) 6.37811e9 0.311767 0.155883 0.987775i \(-0.450178\pi\)
0.155883 + 0.987775i \(0.450178\pi\)
\(884\) 0 0
\(885\) 3.80318e9 + 6.58730e9i 0.184436 + 0.319452i
\(886\) 0 0
\(887\) −1.84996e10 + 3.20422e10i −0.890079 + 1.54166i −0.0503004 + 0.998734i \(0.516018\pi\)
−0.839779 + 0.542928i \(0.817315\pi\)
\(888\) 0 0
\(889\) −1.24979e10 + 9.36305e9i −0.596597 + 0.446952i
\(890\) 0 0
\(891\) 2.72803e9 4.72509e9i 0.129205 0.223789i
\(892\) 0 0
\(893\) −5.21155e9 9.02666e9i −0.244899 0.424177i
\(894\) 0 0
\(895\) −1.32176e10 −0.616272
\(896\) 0 0
\(897\) 1.23043e10 0.569224
\(898\) 0 0
\(899\) −1.31474e10 2.27719e10i −0.603503 1.04530i
\(900\) 0 0
\(901\) −7.07315e9 + 1.22511e10i −0.322163 + 0.558003i
\(902\) 0 0
\(903\) 7.36690e9 + 3.15146e9i 0.332949 + 0.142431i
\(904\) 0 0
\(905\) −1.66786e10 + 2.88883e10i −0.747981 + 1.29554i
\(906\) 0 0
\(907\) −3.20212e9 5.54623e9i −0.142499 0.246816i 0.785938 0.618305i \(-0.212180\pi\)
−0.928437 + 0.371490i \(0.878847\pi\)
\(908\) 0 0
\(909\) −1.29583e10 −0.572234
\(910\) 0 0
\(911\) 2.59678e9 0.113794 0.0568971 0.998380i \(-0.481879\pi\)
0.0568971 + 0.998380i \(0.481879\pi\)
\(912\) 0 0
\(913\) −4.33142e9 7.50224e9i −0.188357 0.326244i
\(914\) 0 0
\(915\) −4.80256e9 + 8.31828e9i −0.207252 + 0.358971i
\(916\) 0 0
\(917\) 2.90998e9 + 2.42618e10i 0.124623 + 1.03904i
\(918\) 0 0
\(919\) −1.87721e10 + 3.25142e10i −0.797825 + 1.38187i 0.123205 + 0.992381i \(0.460683\pi\)
−0.921030 + 0.389492i \(0.872651\pi\)
\(920\) 0 0
\(921\) 6.67602e8 + 1.15632e9i 0.0281585 + 0.0487719i
\(922\) 0 0
\(923\) 2.22387e10 0.930900
\(924\) 0 0
\(925\) −1.53130e10 −0.636159
\(926\) 0 0
\(927\) −1.61604e10 2.79907e10i −0.666306 1.15408i
\(928\) 0 0
\(929\) −1.26185e10 + 2.18559e10i −0.516361 + 0.894363i 0.483459 + 0.875367i \(0.339380\pi\)
−0.999820 + 0.0189960i \(0.993953\pi\)
\(930\) 0 0
\(931\) 4.91788e9 + 5.15007e9i 0.199735 + 0.209165i
\(932\) 0 0
\(933\) −1.61427e9 + 2.79600e9i −0.0650716 + 0.112707i
\(934\) 0 0
\(935\) 3.10955e9 + 5.38590e9i 0.124410 + 0.215485i
\(936\) 0 0
\(937\) −6.75432e9 −0.268221 −0.134111 0.990966i \(-0.542818\pi\)
−0.134111 + 0.990966i \(0.542818\pi\)
\(938\) 0 0
\(939\) 1.03131e10 0.406499
\(940\) 0 0
\(941\) 4.73345e9 + 8.19857e9i 0.185188 + 0.320756i 0.943640 0.330974i \(-0.107377\pi\)
−0.758452 + 0.651729i \(0.774044\pi\)
\(942\) 0 0
\(943\) 2.05865e10 3.56568e10i 0.799449 1.38469i
\(944\) 0 0
\(945\) 1.92595e9 + 1.60575e10i 0.0742392 + 0.618965i
\(946\) 0 0
\(947\) −2.51579e10 + 4.35748e10i −0.962608 + 1.66729i −0.246701 + 0.969092i \(0.579346\pi\)
−0.715908 + 0.698195i \(0.753987\pi\)
\(948\) 0 0
\(949\) −1.46032e10 2.52934e10i −0.554645 0.960673i
\(950\) 0 0
\(951\) −8.97599e9 −0.338416
\(952\) 0 0
\(953\) −2.56329e9 −0.0959342 −0.0479671 0.998849i \(-0.515274\pi\)
−0.0479671 + 0.998849i \(0.515274\pi\)
\(954\) 0 0
\(955\) −2.44072e9 4.22745e9i −0.0906790 0.157061i
\(956\) 0 0
\(957\) −3.47228e9 + 6.01416e9i −0.128063 + 0.221811i
\(958\) 0 0
\(959\) −2.27446e10 9.72984e9i −0.832749 0.356238i
\(960\) 0 0
\(961\) −7.07111e9 + 1.22475e10i −0.257013 + 0.445160i
\(962\) 0 0
\(963\) 4.37253e9 + 7.57344e9i 0.157776 + 0.273276i
\(964\) 0 0
\(965\) 2.93218e10 1.05038
\(966\) 0 0
\(967\) −1.17322e10 −0.417241 −0.208621 0.977997i \(-0.566897\pi\)
−0.208621 + 0.977997i \(0.566897\pi\)
\(968\) 0 0
\(969\) −1.00306e9 1.73735e9i −0.0354156 0.0613416i
\(970\) 0 0
\(971\) −8.01185e9 + 1.38769e10i −0.280844 + 0.486437i −0.971593 0.236658i \(-0.923948\pi\)
0.690749 + 0.723095i \(0.257281\pi\)
\(972\) 0 0
\(973\) −9.93651e9 + 7.44413e9i −0.345811 + 0.259071i
\(974\) 0 0
\(975\) 2.90040e9 5.02365e9i 0.100217 0.173581i
\(976\) 0 0
\(977\) −2.08302e10 3.60790e10i −0.714601 1.23772i −0.963113 0.269096i \(-0.913275\pi\)
0.248513 0.968629i \(-0.420058\pi\)
\(978\) 0 0
\(979\) −6.19540e9 −0.211023
\(980\) 0 0
\(981\) −3.27235e10 −1.10667
\(982\) 0 0
\(983\) 2.36038e10 + 4.08830e10i 0.792584 + 1.37280i 0.924362 + 0.381516i \(0.124598\pi\)
−0.131778 + 0.991279i \(0.542069\pi\)
\(984\) 0 0
\(985\) −9.71314e9 + 1.68236e10i −0.323842 + 0.560910i
\(986\) 0 0
\(987\) 1.82778e10 1.36932e10i 0.605082 0.453309i
\(988\) 0 0
\(989\) 1.39684e10 2.41940e10i 0.459156 0.795282i
\(990\) 0 0
\(991\) −3.20329e9 5.54826e9i −0.104553 0.181092i 0.809002 0.587806i \(-0.200008\pi\)
−0.913556 + 0.406714i \(0.866675\pi\)
\(992\) 0 0
\(993\) −6.85132e9 −0.222051
\(994\) 0 0
\(995\) −1.19088e10 −0.383254
\(996\) 0 0
\(997\) 6.01597e9 + 1.04200e10i 0.192253 + 0.332991i 0.945996 0.324177i \(-0.105087\pi\)
−0.753744 + 0.657168i \(0.771754\pi\)
\(998\) 0 0
\(999\) −2.02137e10 + 3.50112e10i −0.641457 + 1.11104i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.8.i.a.65.2 4
4.3 odd 2 14.8.c.a.9.1 4
7.4 even 3 inner 112.8.i.a.81.2 4
12.11 even 2 126.8.g.e.37.1 4
28.3 even 6 98.8.c.h.67.2 4
28.11 odd 6 14.8.c.a.11.1 yes 4
28.19 even 6 98.8.a.k.1.1 2
28.23 odd 6 98.8.a.h.1.2 2
28.27 even 2 98.8.c.h.79.2 4
84.11 even 6 126.8.g.e.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.8.c.a.9.1 4 4.3 odd 2
14.8.c.a.11.1 yes 4 28.11 odd 6
98.8.a.h.1.2 2 28.23 odd 6
98.8.a.k.1.1 2 28.19 even 6
98.8.c.h.67.2 4 28.3 even 6
98.8.c.h.79.2 4 28.27 even 2
112.8.i.a.65.2 4 1.1 even 1 trivial
112.8.i.a.81.2 4 7.4 even 3 inner
126.8.g.e.37.1 4 12.11 even 2
126.8.g.e.109.1 4 84.11 even 6