Properties

Label 112.8.i.a.65.1
Level $112$
Weight $8$
Character 112.65
Analytic conductor $34.987$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9871228542\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{2389})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 598x^{2} + 597x + 356409 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.1
Root \(12.4693 + 21.5975i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.8.i.a.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-38.4387 - 66.5778i) q^{3} +(10.6226 - 18.3989i) q^{5} +(642.284 - 641.104i) q^{7} +(-1861.57 + 3224.33i) q^{9} +(1633.07 + 2828.56i) q^{11} +10238.0 q^{13} -1633.28 q^{15} +(18264.6 + 31635.1i) q^{17} +(-16200.6 + 28060.3i) q^{19} +(-67371.9 - 18118.6i) q^{21} +(8370.58 - 14498.3i) q^{23} +(38836.8 + 67267.3i) q^{25} +118094. q^{27} +43984.4 q^{29} +(66921.6 + 115912. i) q^{31} +(125546. - 217452. i) q^{33} +(-4972.88 - 18627.5i) q^{35} +(289939. - 502188. i) q^{37} +(-393534. - 681621. i) q^{39} -532967. q^{41} +365375. q^{43} +(39549.4 + 68501.5i) q^{45} +(-103432. + 179149. i) q^{47} +(1513.36 - 823542. i) q^{49} +(1.40413e6 - 2.43203e6i) q^{51} +(544104. + 942416. i) q^{53} +69389.9 q^{55} +2.49092e6 q^{57} +(80826.2 + 139995. i) q^{59} +(422154. - 731192. i) q^{61} +(871477. + 3.26439e6i) q^{63} +(108754. - 188367. i) q^{65} +(613923. + 1.06335e6i) q^{67} -1.28702e6 q^{69} -1.10759e6 q^{71} +(-819423. - 1.41928e6i) q^{73} +(2.98567e6 - 5.17134e6i) q^{75} +(2.86230e6 + 769770. i) q^{77} +(-2.49711e6 + 4.32512e6i) q^{79} +(-468133. - 810829. i) q^{81} +3.38355e6 q^{83} +776069. q^{85} +(-1.69070e6 - 2.92838e6i) q^{87} +(-3.26848e6 + 5.66118e6i) q^{89} +(6.57568e6 - 6.56361e6i) q^{91} +(5.14476e6 - 8.91098e6i) q^{93} +(344185. + 596146. i) q^{95} +1.35914e6 q^{97} -1.21603e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 56 q^{3} + 238 q^{5} - 168 q^{7} - 1972 q^{9} + 5848 q^{11} + 2632 q^{13} + 5784 q^{15} + 47642 q^{17} - 41048 q^{19} - 169582 q^{21} - 49316 q^{23} + 108816 q^{25} + 400624 q^{27} + 345640 q^{29}+ \cdots - 15278208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −38.4387 66.5778i −0.821948 1.42366i −0.904230 0.427046i \(-0.859554\pi\)
0.0822818 0.996609i \(-0.473779\pi\)
\(4\) 0 0
\(5\) 10.6226 18.3989i 0.0380046 0.0658259i −0.846397 0.532552i \(-0.821233\pi\)
0.884402 + 0.466726i \(0.154567\pi\)
\(6\) 0 0
\(7\) 642.284 641.104i 0.707756 0.706457i
\(8\) 0 0
\(9\) −1861.57 + 3224.33i −0.851197 + 1.47432i
\(10\) 0 0
\(11\) 1633.07 + 2828.56i 0.369939 + 0.640754i 0.989556 0.144151i \(-0.0460451\pi\)
−0.619616 + 0.784905i \(0.712712\pi\)
\(12\) 0 0
\(13\) 10238.0 1.29245 0.646223 0.763149i \(-0.276348\pi\)
0.646223 + 0.763149i \(0.276348\pi\)
\(14\) 0 0
\(15\) −1633.28 −0.124951
\(16\) 0 0
\(17\) 18264.6 + 31635.1i 0.901650 + 1.56170i 0.825352 + 0.564619i \(0.190977\pi\)
0.0762982 + 0.997085i \(0.475690\pi\)
\(18\) 0 0
\(19\) −16200.6 + 28060.3i −0.541868 + 0.938543i 0.456929 + 0.889503i \(0.348949\pi\)
−0.998797 + 0.0490398i \(0.984384\pi\)
\(20\) 0 0
\(21\) −67371.9 18118.6i −1.58749 0.426930i
\(22\) 0 0
\(23\) 8370.58 14498.3i 0.143452 0.248467i −0.785342 0.619062i \(-0.787513\pi\)
0.928795 + 0.370595i \(0.120846\pi\)
\(24\) 0 0
\(25\) 38836.8 + 67267.3i 0.497111 + 0.861022i
\(26\) 0 0
\(27\) 118094. 1.15466
\(28\) 0 0
\(29\) 43984.4 0.334893 0.167446 0.985881i \(-0.446448\pi\)
0.167446 + 0.985881i \(0.446448\pi\)
\(30\) 0 0
\(31\) 66921.6 + 115912.i 0.403460 + 0.698813i 0.994141 0.108092i \(-0.0344742\pi\)
−0.590681 + 0.806905i \(0.701141\pi\)
\(32\) 0 0
\(33\) 125546. 217452.i 0.608142 1.05333i
\(34\) 0 0
\(35\) −4972.88 18627.5i −0.0196052 0.0734373i
\(36\) 0 0
\(37\) 289939. 502188.i 0.941022 1.62990i 0.177496 0.984122i \(-0.443200\pi\)
0.763526 0.645777i \(-0.223466\pi\)
\(38\) 0 0
\(39\) −393534. 681621.i −1.06232 1.84000i
\(40\) 0 0
\(41\) −532967. −1.20769 −0.603847 0.797100i \(-0.706366\pi\)
−0.603847 + 0.797100i \(0.706366\pi\)
\(42\) 0 0
\(43\) 365375. 0.700809 0.350404 0.936598i \(-0.386044\pi\)
0.350404 + 0.936598i \(0.386044\pi\)
\(44\) 0 0
\(45\) 39549.4 + 68501.5i 0.0646987 + 0.112062i
\(46\) 0 0
\(47\) −103432. + 179149.i −0.145315 + 0.251693i −0.929491 0.368846i \(-0.879753\pi\)
0.784175 + 0.620539i \(0.213086\pi\)
\(48\) 0 0
\(49\) 1513.36 823542.i 0.00183762 0.999998i
\(50\) 0 0
\(51\) 1.40413e6 2.43203e6i 1.48222 2.56728i
\(52\) 0 0
\(53\) 544104. + 942416.i 0.502015 + 0.869515i 0.999997 + 0.00232824i \(0.000741104\pi\)
−0.497982 + 0.867187i \(0.665926\pi\)
\(54\) 0 0
\(55\) 69389.9 0.0562376
\(56\) 0 0
\(57\) 2.49092e6 1.78155
\(58\) 0 0
\(59\) 80826.2 + 139995.i 0.0512354 + 0.0887423i 0.890506 0.454972i \(-0.150351\pi\)
−0.839270 + 0.543714i \(0.817017\pi\)
\(60\) 0 0
\(61\) 422154. 731192.i 0.238131 0.412456i −0.722047 0.691844i \(-0.756798\pi\)
0.960178 + 0.279389i \(0.0901318\pi\)
\(62\) 0 0
\(63\) 871477. + 3.26439e6i 0.439101 + 1.64479i
\(64\) 0 0
\(65\) 108754. 188367.i 0.0491188 0.0850763i
\(66\) 0 0
\(67\) 613923. + 1.06335e6i 0.249375 + 0.431929i 0.963352 0.268239i \(-0.0864416\pi\)
−0.713978 + 0.700168i \(0.753108\pi\)
\(68\) 0 0
\(69\) −1.28702e6 −0.471642
\(70\) 0 0
\(71\) −1.10759e6 −0.367259 −0.183630 0.982995i \(-0.558785\pi\)
−0.183630 + 0.982995i \(0.558785\pi\)
\(72\) 0 0
\(73\) −819423. 1.41928e6i −0.246535 0.427011i 0.716027 0.698072i \(-0.245959\pi\)
−0.962562 + 0.271062i \(0.912625\pi\)
\(74\) 0 0
\(75\) 2.98567e6 5.17134e6i 0.817199 1.41543i
\(76\) 0 0
\(77\) 2.86230e6 + 769770.i 0.714492 + 0.192151i
\(78\) 0 0
\(79\) −2.49711e6 + 4.32512e6i −0.569826 + 0.986968i 0.426757 + 0.904366i \(0.359656\pi\)
−0.996583 + 0.0826011i \(0.973677\pi\)
\(80\) 0 0
\(81\) −468133. 810829.i −0.0978749 0.169524i
\(82\) 0 0
\(83\) 3.38355e6 0.649531 0.324765 0.945795i \(-0.394715\pi\)
0.324765 + 0.945795i \(0.394715\pi\)
\(84\) 0 0
\(85\) 776069. 0.137067
\(86\) 0 0
\(87\) −1.69070e6 2.92838e6i −0.275264 0.476772i
\(88\) 0 0
\(89\) −3.26848e6 + 5.66118e6i −0.491452 + 0.851220i −0.999952 0.00984263i \(-0.996867\pi\)
0.508500 + 0.861062i \(0.330200\pi\)
\(90\) 0 0
\(91\) 6.57568e6 6.56361e6i 0.914736 0.913057i
\(92\) 0 0
\(93\) 5.14476e6 8.91098e6i 0.663246 1.14878i
\(94\) 0 0
\(95\) 344185. + 596146.i 0.0411869 + 0.0713379i
\(96\) 0 0
\(97\) 1.35914e6 0.151204 0.0756022 0.997138i \(-0.475912\pi\)
0.0756022 + 0.997138i \(0.475912\pi\)
\(98\) 0 0
\(99\) −1.21603e7 −1.25956
\(100\) 0 0
\(101\) −5.84618e6 1.01259e7i −0.564608 0.977930i −0.997086 0.0762853i \(-0.975694\pi\)
0.432478 0.901644i \(-0.357639\pi\)
\(102\) 0 0
\(103\) −1.08658e6 + 1.88202e6i −0.0979790 + 0.169705i −0.910848 0.412742i \(-0.864571\pi\)
0.812869 + 0.582447i \(0.197904\pi\)
\(104\) 0 0
\(105\) −1.04903e6 + 1.04710e6i −0.0884349 + 0.0882726i
\(106\) 0 0
\(107\) 5.38290e6 9.32345e6i 0.424789 0.735756i −0.571612 0.820524i \(-0.693682\pi\)
0.996401 + 0.0847685i \(0.0270151\pi\)
\(108\) 0 0
\(109\) 6.18768e6 + 1.07174e7i 0.457652 + 0.792676i 0.998836 0.0482280i \(-0.0153574\pi\)
−0.541185 + 0.840904i \(0.682024\pi\)
\(110\) 0 0
\(111\) −4.45794e7 −3.09388
\(112\) 0 0
\(113\) −1.93909e7 −1.26422 −0.632112 0.774877i \(-0.717812\pi\)
−0.632112 + 0.774877i \(0.717812\pi\)
\(114\) 0 0
\(115\) −177835. 308019.i −0.0109037 0.0188858i
\(116\) 0 0
\(117\) −1.90587e7 + 3.30106e7i −1.10013 + 1.90547i
\(118\) 0 0
\(119\) 3.20125e7 + 8.60925e6i 1.74142 + 0.468329i
\(120\) 0 0
\(121\) 4.40974e6 7.63790e6i 0.226290 0.391945i
\(122\) 0 0
\(123\) 2.04866e7 + 3.54838e7i 0.992662 + 1.71934i
\(124\) 0 0
\(125\) 3.30997e6 0.151579
\(126\) 0 0
\(127\) 1.41475e6 0.0612868 0.0306434 0.999530i \(-0.490244\pi\)
0.0306434 + 0.999530i \(0.490244\pi\)
\(128\) 0 0
\(129\) −1.40446e7 2.43259e7i −0.576028 0.997711i
\(130\) 0 0
\(131\) −1.77615e7 + 3.07638e7i −0.690287 + 1.19561i 0.281457 + 0.959574i \(0.409182\pi\)
−0.971744 + 0.236038i \(0.924151\pi\)
\(132\) 0 0
\(133\) 7.58418e6 + 2.84089e7i 0.279530 + 1.04707i
\(134\) 0 0
\(135\) 1.25447e6 2.17280e6i 0.0438824 0.0760066i
\(136\) 0 0
\(137\) 2.21508e7 + 3.83663e7i 0.735982 + 1.27476i 0.954291 + 0.298878i \(0.0966125\pi\)
−0.218309 + 0.975880i \(0.570054\pi\)
\(138\) 0 0
\(139\) −2.97789e7 −0.940496 −0.470248 0.882534i \(-0.655836\pi\)
−0.470248 + 0.882534i \(0.655836\pi\)
\(140\) 0 0
\(141\) 1.59031e7 0.477766
\(142\) 0 0
\(143\) 1.67193e7 + 2.89587e7i 0.478126 + 0.828139i
\(144\) 0 0
\(145\) 467229. 809264.i 0.0127275 0.0220446i
\(146\) 0 0
\(147\) −5.48877e7 + 3.15551e7i −1.42516 + 0.819330i
\(148\) 0 0
\(149\) 2.04028e7 3.53387e7i 0.505286 0.875181i −0.494695 0.869067i \(-0.664720\pi\)
0.999981 0.00611484i \(-0.00194642\pi\)
\(150\) 0 0
\(151\) −1.78291e7 3.08810e7i −0.421416 0.729914i 0.574662 0.818391i \(-0.305133\pi\)
−0.996078 + 0.0884767i \(0.971800\pi\)
\(152\) 0 0
\(153\) −1.36003e8 −3.06993
\(154\) 0 0
\(155\) 2.84353e6 0.0613333
\(156\) 0 0
\(157\) 2.60341e7 + 4.50923e7i 0.536899 + 0.929937i 0.999069 + 0.0431455i \(0.0137379\pi\)
−0.462169 + 0.886792i \(0.652929\pi\)
\(158\) 0 0
\(159\) 4.18293e7 7.24505e7i 0.825260 1.42939i
\(160\) 0 0
\(161\) −3.91862e6 1.46784e7i −0.0740018 0.277197i
\(162\) 0 0
\(163\) 2.72230e7 4.71516e7i 0.492356 0.852785i −0.507605 0.861590i \(-0.669469\pi\)
0.999961 + 0.00880425i \(0.00280252\pi\)
\(164\) 0 0
\(165\) −2.66726e6 4.61982e6i −0.0462244 0.0800629i
\(166\) 0 0
\(167\) 3.69146e7 0.613325 0.306662 0.951818i \(-0.400788\pi\)
0.306662 + 0.951818i \(0.400788\pi\)
\(168\) 0 0
\(169\) 4.20675e7 0.670414
\(170\) 0 0
\(171\) −6.03170e7 1.04472e8i −0.922473 1.59777i
\(172\) 0 0
\(173\) 3.84918e7 6.66697e7i 0.565206 0.978965i −0.431825 0.901958i \(-0.642130\pi\)
0.997031 0.0770076i \(-0.0245366\pi\)
\(174\) 0 0
\(175\) 6.80696e7 + 1.83063e7i 0.960108 + 0.258206i
\(176\) 0 0
\(177\) 6.21371e6 1.07625e7i 0.0842256 0.145883i
\(178\) 0 0
\(179\) 2.50183e7 + 4.33329e7i 0.326041 + 0.564719i 0.981722 0.190318i \(-0.0609520\pi\)
−0.655682 + 0.755037i \(0.727619\pi\)
\(180\) 0 0
\(181\) 1.63228e7 0.204606 0.102303 0.994753i \(-0.467379\pi\)
0.102303 + 0.994753i \(0.467379\pi\)
\(182\) 0 0
\(183\) −6.49082e7 −0.782926
\(184\) 0 0
\(185\) −6.15980e6 1.06691e7i −0.0715263 0.123887i
\(186\) 0 0
\(187\) −5.96546e7 + 1.03325e8i −0.667112 + 1.15547i
\(188\) 0 0
\(189\) 7.58498e7 7.57106e7i 0.817219 0.815718i
\(190\) 0 0
\(191\) 7.45240e7 1.29079e8i 0.773890 1.34042i −0.161526 0.986869i \(-0.551641\pi\)
0.935416 0.353549i \(-0.115025\pi\)
\(192\) 0 0
\(193\) −3.16993e7 5.49049e7i −0.317395 0.549744i 0.662549 0.749019i \(-0.269475\pi\)
−0.979944 + 0.199275i \(0.936141\pi\)
\(194\) 0 0
\(195\) −1.67214e7 −0.161492
\(196\) 0 0
\(197\) 2.93791e7 0.273783 0.136892 0.990586i \(-0.456289\pi\)
0.136892 + 0.990586i \(0.456289\pi\)
\(198\) 0 0
\(199\) 2.45848e7 + 4.25821e7i 0.221147 + 0.383037i 0.955156 0.296102i \(-0.0956867\pi\)
−0.734010 + 0.679139i \(0.762353\pi\)
\(200\) 0 0
\(201\) 4.71968e7 8.17473e7i 0.409946 0.710047i
\(202\) 0 0
\(203\) 2.82505e7 2.81986e7i 0.237022 0.236587i
\(204\) 0 0
\(205\) −5.66150e6 + 9.80600e6i −0.0458979 + 0.0794975i
\(206\) 0 0
\(207\) 3.11648e7 + 5.39790e7i 0.244213 + 0.422988i
\(208\) 0 0
\(209\) −1.05827e8 −0.801834
\(210\) 0 0
\(211\) 2.55314e8 1.87105 0.935526 0.353258i \(-0.114926\pi\)
0.935526 + 0.353258i \(0.114926\pi\)
\(212\) 0 0
\(213\) 4.25741e7 + 7.37406e7i 0.301868 + 0.522851i
\(214\) 0 0
\(215\) 3.88124e6 6.72250e6i 0.0266339 0.0461314i
\(216\) 0 0
\(217\) 1.17294e8 + 3.15444e7i 0.779232 + 0.209562i
\(218\) 0 0
\(219\) −6.29951e7 + 1.09111e8i −0.405277 + 0.701961i
\(220\) 0 0
\(221\) 1.86992e8 + 3.23880e8i 1.16533 + 2.01842i
\(222\) 0 0
\(223\) 3.35491e7 0.202588 0.101294 0.994857i \(-0.467702\pi\)
0.101294 + 0.994857i \(0.467702\pi\)
\(224\) 0 0
\(225\) −2.89189e8 −1.69256
\(226\) 0 0
\(227\) 7.55391e6 + 1.30838e7i 0.0428629 + 0.0742407i 0.886661 0.462420i \(-0.153019\pi\)
−0.843798 + 0.536661i \(0.819685\pi\)
\(228\) 0 0
\(229\) 5.15808e7 8.93406e7i 0.283834 0.491615i −0.688492 0.725244i \(-0.741727\pi\)
0.972326 + 0.233629i \(0.0750603\pi\)
\(230\) 0 0
\(231\) −5.87734e7 2.20154e8i −0.313718 1.17513i
\(232\) 0 0
\(233\) −5.19814e7 + 9.00345e7i −0.269217 + 0.466298i −0.968660 0.248391i \(-0.920098\pi\)
0.699443 + 0.714689i \(0.253432\pi\)
\(234\) 0 0
\(235\) 2.19743e6 + 3.80606e6i 0.0110453 + 0.0191310i
\(236\) 0 0
\(237\) 3.83942e8 1.87347
\(238\) 0 0
\(239\) −1.40545e8 −0.665919 −0.332960 0.942941i \(-0.608047\pi\)
−0.332960 + 0.942941i \(0.608047\pi\)
\(240\) 0 0
\(241\) −1.52501e8 2.64139e8i −0.701798 1.21555i −0.967835 0.251587i \(-0.919047\pi\)
0.266036 0.963963i \(-0.414286\pi\)
\(242\) 0 0
\(243\) 9.31470e7 1.61335e8i 0.416435 0.721286i
\(244\) 0 0
\(245\) −1.51362e7 8.77600e6i −0.0657559 0.0381255i
\(246\) 0 0
\(247\) −1.65861e8 + 2.87280e8i −0.700335 + 1.21302i
\(248\) 0 0
\(249\) −1.30059e8 2.25269e8i −0.533880 0.924708i
\(250\) 0 0
\(251\) −7.20544e7 −0.287609 −0.143804 0.989606i \(-0.545934\pi\)
−0.143804 + 0.989606i \(0.545934\pi\)
\(252\) 0 0
\(253\) 5.46790e7 0.212275
\(254\) 0 0
\(255\) −2.98311e7 5.16689e7i −0.112662 0.195137i
\(256\) 0 0
\(257\) 2.89343e6 5.01156e6i 0.0106328 0.0184165i −0.860660 0.509180i \(-0.829949\pi\)
0.871293 + 0.490763i \(0.163282\pi\)
\(258\) 0 0
\(259\) −1.35732e8 5.08428e8i −0.485438 1.81836i
\(260\) 0 0
\(261\) −8.18799e7 + 1.41820e8i −0.285060 + 0.493738i
\(262\) 0 0
\(263\) 1.16636e8 + 2.02020e8i 0.395356 + 0.684778i 0.993147 0.116875i \(-0.0372877\pi\)
−0.597790 + 0.801653i \(0.703954\pi\)
\(264\) 0 0
\(265\) 2.31192e7 0.0763155
\(266\) 0 0
\(267\) 5.02545e8 1.61579
\(268\) 0 0
\(269\) 2.06500e8 + 3.57668e8i 0.646825 + 1.12033i 0.983877 + 0.178848i \(0.0572371\pi\)
−0.337051 + 0.941486i \(0.609430\pi\)
\(270\) 0 0
\(271\) 1.45930e7 2.52758e7i 0.0445401 0.0771457i −0.842896 0.538077i \(-0.819151\pi\)
0.887436 + 0.460931i \(0.152484\pi\)
\(272\) 0 0
\(273\) −6.89751e8 1.85498e8i −2.05174 0.551784i
\(274\) 0 0
\(275\) −1.26847e8 + 2.19705e8i −0.367802 + 0.637052i
\(276\) 0 0
\(277\) −3.26538e8 5.65581e8i −0.923113 1.59888i −0.794568 0.607175i \(-0.792303\pi\)
−0.128545 0.991704i \(-0.541031\pi\)
\(278\) 0 0
\(279\) −4.98316e8 −1.37369
\(280\) 0 0
\(281\) 5.17554e8 1.39150 0.695750 0.718284i \(-0.255072\pi\)
0.695750 + 0.718284i \(0.255072\pi\)
\(282\) 0 0
\(283\) 7.16532e6 + 1.24107e7i 0.0187924 + 0.0325494i 0.875269 0.483637i \(-0.160685\pi\)
−0.856476 + 0.516186i \(0.827351\pi\)
\(284\) 0 0
\(285\) 2.64601e7 4.58302e7i 0.0677070 0.117272i
\(286\) 0 0
\(287\) −3.42316e8 + 3.41688e8i −0.854753 + 0.853184i
\(288\) 0 0
\(289\) −4.62019e8 + 8.00241e8i −1.12595 + 1.95020i
\(290\) 0 0
\(291\) −5.22437e7 9.04888e7i −0.124282 0.215263i
\(292\) 0 0
\(293\) −4.59597e8 −1.06743 −0.533716 0.845664i \(-0.679205\pi\)
−0.533716 + 0.845664i \(0.679205\pi\)
\(294\) 0 0
\(295\) 3.43434e6 0.00778872
\(296\) 0 0
\(297\) 1.92856e8 + 3.34036e8i 0.427155 + 0.739854i
\(298\) 0 0
\(299\) 8.56977e7 1.48433e8i 0.185404 0.321130i
\(300\) 0 0
\(301\) 2.34675e8 2.34244e8i 0.496002 0.495091i
\(302\) 0 0
\(303\) −4.49439e8 + 7.78451e8i −0.928157 + 1.60761i
\(304\) 0 0
\(305\) −8.96875e6 1.55343e7i −0.0181002 0.0313504i
\(306\) 0 0
\(307\) 2.28161e8 0.450046 0.225023 0.974354i \(-0.427754\pi\)
0.225023 + 0.974354i \(0.427754\pi\)
\(308\) 0 0
\(309\) 1.67068e8 0.322135
\(310\) 0 0
\(311\) 3.56536e8 + 6.17538e8i 0.672112 + 1.16413i 0.977304 + 0.211842i \(0.0679462\pi\)
−0.305192 + 0.952291i \(0.598720\pi\)
\(312\) 0 0
\(313\) 6.97714e7 1.20848e8i 0.128609 0.222758i −0.794529 0.607226i \(-0.792282\pi\)
0.923138 + 0.384469i \(0.125615\pi\)
\(314\) 0 0
\(315\) 6.93185e7 + 1.86421e7i 0.124958 + 0.0336054i
\(316\) 0 0
\(317\) 7.69441e7 1.33271e8i 0.135665 0.234979i −0.790186 0.612867i \(-0.790016\pi\)
0.925851 + 0.377888i \(0.123350\pi\)
\(318\) 0 0
\(319\) 7.18297e7 + 1.24413e8i 0.123890 + 0.214584i
\(320\) 0 0
\(321\) −8.27646e8 −1.39662
\(322\) 0 0
\(323\) −1.18359e9 −1.95430
\(324\) 0 0
\(325\) 3.97610e8 + 6.88681e8i 0.642489 + 1.11282i
\(326\) 0 0
\(327\) 4.75693e8 8.23924e8i 0.752331 1.30308i
\(328\) 0 0
\(329\) 4.84207e7 + 1.81375e8i 0.0749627 + 0.280796i
\(330\) 0 0
\(331\) 6.99907e7 1.21227e8i 0.106082 0.183740i −0.808098 0.589048i \(-0.799503\pi\)
0.914180 + 0.405309i \(0.132836\pi\)
\(332\) 0 0
\(333\) 1.07948e9 + 1.86971e9i 1.60199 + 2.77473i
\(334\) 0 0
\(335\) 2.60858e7 0.0379095
\(336\) 0 0
\(337\) −9.36806e7 −0.133335 −0.0666676 0.997775i \(-0.521237\pi\)
−0.0666676 + 0.997775i \(0.521237\pi\)
\(338\) 0 0
\(339\) 7.45363e8 + 1.29101e9i 1.03913 + 1.79982i
\(340\) 0 0
\(341\) −2.18575e8 + 3.78584e8i −0.298511 + 0.517037i
\(342\) 0 0
\(343\) −5.27004e8 5.29917e8i −0.705155 0.709053i
\(344\) 0 0
\(345\) −1.36715e7 + 2.36797e7i −0.0179245 + 0.0310462i
\(346\) 0 0
\(347\) −2.85722e8 4.94886e8i −0.367106 0.635846i 0.622006 0.783012i \(-0.286318\pi\)
−0.989112 + 0.147167i \(0.952985\pi\)
\(348\) 0 0
\(349\) −2.32123e8 −0.292300 −0.146150 0.989262i \(-0.546688\pi\)
−0.146150 + 0.989262i \(0.546688\pi\)
\(350\) 0 0
\(351\) 1.20904e9 1.49234
\(352\) 0 0
\(353\) −5.79874e8 1.00437e9i −0.701653 1.21530i −0.967886 0.251390i \(-0.919112\pi\)
0.266233 0.963909i \(-0.414221\pi\)
\(354\) 0 0
\(355\) −1.17654e7 + 2.03783e7i −0.0139575 + 0.0241752i
\(356\) 0 0
\(357\) −6.57333e8 2.46225e9i −0.764622 2.86413i
\(358\) 0 0
\(359\) 4.85816e8 8.41458e8i 0.554168 0.959847i −0.443800 0.896126i \(-0.646370\pi\)
0.997968 0.0637210i \(-0.0202968\pi\)
\(360\) 0 0
\(361\) −7.79833e7 1.35071e8i −0.0872421 0.151108i
\(362\) 0 0
\(363\) −6.78019e8 −0.743993
\(364\) 0 0
\(365\) −3.48176e7 −0.0374778
\(366\) 0 0
\(367\) −8.51399e8 1.47467e9i −0.899088 1.55727i −0.828663 0.559749i \(-0.810898\pi\)
−0.0704252 0.997517i \(-0.522436\pi\)
\(368\) 0 0
\(369\) 9.92154e8 1.71846e9i 1.02799 1.78052i
\(370\) 0 0
\(371\) 9.53657e8 + 2.56471e8i 0.969579 + 0.260753i
\(372\) 0 0
\(373\) −1.88494e8 + 3.26481e8i −0.188068 + 0.325744i −0.944606 0.328206i \(-0.893556\pi\)
0.756538 + 0.653950i \(0.226889\pi\)
\(374\) 0 0
\(375\) −1.27231e8 2.20371e8i −0.124590 0.215797i
\(376\) 0 0
\(377\) 4.50311e8 0.432831
\(378\) 0 0
\(379\) −8.86999e8 −0.836924 −0.418462 0.908234i \(-0.637431\pi\)
−0.418462 + 0.908234i \(0.637431\pi\)
\(380\) 0 0
\(381\) −5.43812e7 9.41910e7i −0.0503746 0.0872513i
\(382\) 0 0
\(383\) −2.17148e8 + 3.76111e8i −0.197497 + 0.342074i −0.947716 0.319115i \(-0.896614\pi\)
0.750220 + 0.661189i \(0.229948\pi\)
\(384\) 0 0
\(385\) 4.45680e7 4.44861e7i 0.0398025 0.0397294i
\(386\) 0 0
\(387\) −6.80171e8 + 1.17809e9i −0.596526 + 1.03321i
\(388\) 0 0
\(389\) −7.57986e7 1.31287e8i −0.0652886 0.113083i 0.831533 0.555475i \(-0.187463\pi\)
−0.896822 + 0.442392i \(0.854130\pi\)
\(390\) 0 0
\(391\) 6.11540e8 0.517376
\(392\) 0 0
\(393\) 2.73091e9 2.26952
\(394\) 0 0
\(395\) 5.30515e7 + 9.18880e7i 0.0433120 + 0.0750186i
\(396\) 0 0
\(397\) 8.52585e8 1.47672e9i 0.683866 1.18449i −0.289926 0.957049i \(-0.593631\pi\)
0.973792 0.227441i \(-0.0730360\pi\)
\(398\) 0 0
\(399\) 1.59988e9 1.59694e9i 1.26090 1.25859i
\(400\) 0 0
\(401\) −5.75883e8 + 9.97459e8i −0.445994 + 0.772484i −0.998121 0.0612759i \(-0.980483\pi\)
0.552127 + 0.833760i \(0.313816\pi\)
\(402\) 0 0
\(403\) 6.85141e8 + 1.18670e9i 0.521450 + 0.903177i
\(404\) 0 0
\(405\) −1.98911e7 −0.0148788
\(406\) 0 0
\(407\) 1.89396e9 1.39248
\(408\) 0 0
\(409\) −5.71985e8 9.90706e8i −0.413383 0.716001i 0.581874 0.813279i \(-0.302320\pi\)
−0.995257 + 0.0972783i \(0.968986\pi\)
\(410\) 0 0
\(411\) 1.70289e9 2.94950e9i 1.20988 2.09557i
\(412\) 0 0
\(413\) 1.41665e8 + 3.80985e7i 0.0989548 + 0.0266123i
\(414\) 0 0
\(415\) 3.59421e7 6.22536e7i 0.0246851 0.0427559i
\(416\) 0 0
\(417\) 1.14466e9 + 1.98261e9i 0.773039 + 1.33894i
\(418\) 0 0
\(419\) −1.72282e9 −1.14417 −0.572084 0.820195i \(-0.693865\pi\)
−0.572084 + 0.820195i \(0.693865\pi\)
\(420\) 0 0
\(421\) −2.50496e9 −1.63611 −0.818056 0.575139i \(-0.804948\pi\)
−0.818056 + 0.575139i \(0.804948\pi\)
\(422\) 0 0
\(423\) −3.85090e8 6.66996e8i −0.247384 0.428481i
\(424\) 0 0
\(425\) −1.41868e9 + 2.45722e9i −0.896441 + 1.55268i
\(426\) 0 0
\(427\) −1.97628e8 7.40278e8i −0.122843 0.460147i
\(428\) 0 0
\(429\) 1.28534e9 2.22627e9i 0.785990 1.36137i
\(430\) 0 0
\(431\) 1.14303e9 + 1.97978e9i 0.687679 + 1.19110i 0.972587 + 0.232541i \(0.0747039\pi\)
−0.284907 + 0.958555i \(0.591963\pi\)
\(432\) 0 0
\(433\) −2.07332e9 −1.22732 −0.613660 0.789570i \(-0.710303\pi\)
−0.613660 + 0.789570i \(0.710303\pi\)
\(434\) 0 0
\(435\) −7.18387e7 −0.0418452
\(436\) 0 0
\(437\) 2.71217e8 + 4.69761e8i 0.155465 + 0.269273i
\(438\) 0 0
\(439\) −8.79323e8 + 1.52303e9i −0.496047 + 0.859178i −0.999990 0.00455873i \(-0.998549\pi\)
0.503943 + 0.863737i \(0.331882\pi\)
\(440\) 0 0
\(441\) 2.65255e9 + 1.53796e9i 1.47275 + 0.853904i
\(442\) 0 0
\(443\) −9.64736e8 + 1.67097e9i −0.527224 + 0.913179i 0.472272 + 0.881453i \(0.343434\pi\)
−0.999497 + 0.0317264i \(0.989899\pi\)
\(444\) 0 0
\(445\) 6.94395e7 + 1.20273e8i 0.0373548 + 0.0647005i
\(446\) 0 0
\(447\) −3.13703e9 −1.66128
\(448\) 0 0
\(449\) 3.29325e9 1.71697 0.858484 0.512840i \(-0.171407\pi\)
0.858484 + 0.512840i \(0.171407\pi\)
\(450\) 0 0
\(451\) −8.70373e8 1.50753e9i −0.446774 0.773835i
\(452\) 0 0
\(453\) −1.37066e9 + 2.37405e9i −0.692764 + 1.19990i
\(454\) 0 0
\(455\) −5.09122e7 1.90708e8i −0.0253386 0.0949136i
\(456\) 0 0
\(457\) 9.57310e8 1.65811e9i 0.469187 0.812655i −0.530193 0.847877i \(-0.677880\pi\)
0.999380 + 0.0352218i \(0.0112138\pi\)
\(458\) 0 0
\(459\) 2.15694e9 + 3.73592e9i 1.04110 + 1.80324i
\(460\) 0 0
\(461\) −1.84068e9 −0.875032 −0.437516 0.899211i \(-0.644142\pi\)
−0.437516 + 0.899211i \(0.644142\pi\)
\(462\) 0 0
\(463\) 1.67942e8 0.0786367 0.0393184 0.999227i \(-0.487481\pi\)
0.0393184 + 0.999227i \(0.487481\pi\)
\(464\) 0 0
\(465\) −1.09301e8 1.89316e8i −0.0504128 0.0873175i
\(466\) 0 0
\(467\) 6.89538e8 1.19432e9i 0.313292 0.542638i −0.665781 0.746147i \(-0.731901\pi\)
0.979073 + 0.203510i \(0.0652348\pi\)
\(468\) 0 0
\(469\) 1.07603e9 + 2.89381e8i 0.481636 + 0.129528i
\(470\) 0 0
\(471\) 2.00143e9 3.46658e9i 0.882607 1.52872i
\(472\) 0 0
\(473\) 5.96684e8 + 1.03349e9i 0.259257 + 0.449046i
\(474\) 0 0
\(475\) −2.51672e9 −1.07748
\(476\) 0 0
\(477\) −4.05155e9 −1.70925
\(478\) 0 0
\(479\) 2.26505e9 + 3.92318e9i 0.941679 + 1.63104i 0.762268 + 0.647261i \(0.224086\pi\)
0.179411 + 0.983774i \(0.442581\pi\)
\(480\) 0 0
\(481\) 2.96838e9 5.14139e9i 1.21622 2.10655i
\(482\) 0 0
\(483\) −8.26630e8 + 8.25112e8i −0.333807 + 0.333195i
\(484\) 0 0
\(485\) 1.44376e7 2.50067e7i 0.00574646 0.00995316i
\(486\) 0 0
\(487\) 7.69774e8 + 1.33329e9i 0.302003 + 0.523085i 0.976590 0.215111i \(-0.0690112\pi\)
−0.674586 + 0.738196i \(0.735678\pi\)
\(488\) 0 0
\(489\) −4.18566e9 −1.61876
\(490\) 0 0
\(491\) 1.85780e9 0.708295 0.354148 0.935190i \(-0.384771\pi\)
0.354148 + 0.935190i \(0.384771\pi\)
\(492\) 0 0
\(493\) 8.03356e8 + 1.39145e9i 0.301956 + 0.523003i
\(494\) 0 0
\(495\) −1.29174e8 + 2.23736e8i −0.0478692 + 0.0829119i
\(496\) 0 0
\(497\) −7.11384e8 + 7.10078e8i −0.259930 + 0.259453i
\(498\) 0 0
\(499\) 2.67677e9 4.63630e9i 0.964405 1.67040i 0.253198 0.967414i \(-0.418518\pi\)
0.711206 0.702983i \(-0.248149\pi\)
\(500\) 0 0
\(501\) −1.41895e9 2.45769e9i −0.504121 0.873163i
\(502\) 0 0
\(503\) −5.43979e9 −1.90587 −0.952936 0.303170i \(-0.901955\pi\)
−0.952936 + 0.303170i \(0.901955\pi\)
\(504\) 0 0
\(505\) −2.48406e8 −0.0858308
\(506\) 0 0
\(507\) −1.61702e9 2.80076e9i −0.551046 0.954439i
\(508\) 0 0
\(509\) −9.12084e8 + 1.57978e9i −0.306565 + 0.530986i −0.977609 0.210432i \(-0.932513\pi\)
0.671044 + 0.741418i \(0.265846\pi\)
\(510\) 0 0
\(511\) −1.43621e9 3.86246e8i −0.476151 0.128053i
\(512\) 0 0
\(513\) −1.91319e9 + 3.31375e9i −0.625674 + 1.08370i
\(514\) 0 0
\(515\) 2.30847e7 + 3.99839e7i 0.00744730 + 0.0128991i
\(516\) 0 0
\(517\) −6.75645e8 −0.215031
\(518\) 0 0
\(519\) −5.91830e9 −1.85828
\(520\) 0 0
\(521\) 2.07430e8 + 3.59280e8i 0.0642599 + 0.111301i 0.896365 0.443316i \(-0.146198\pi\)
−0.832106 + 0.554617i \(0.812865\pi\)
\(522\) 0 0
\(523\) −1.60836e9 + 2.78576e9i −0.491616 + 0.851505i −0.999953 0.00965354i \(-0.996927\pi\)
0.508337 + 0.861158i \(0.330260\pi\)
\(524\) 0 0
\(525\) −1.39772e9 5.23559e9i −0.421563 1.57910i
\(526\) 0 0
\(527\) −2.44459e9 + 4.23415e9i −0.727559 + 1.26017i
\(528\) 0 0
\(529\) 1.56228e9 + 2.70595e9i 0.458843 + 0.794739i
\(530\) 0 0
\(531\) −6.01853e8 −0.174446
\(532\) 0 0
\(533\) −5.45650e9 −1.56088
\(534\) 0 0
\(535\) −1.14361e8 1.98079e8i −0.0322878 0.0559242i
\(536\) 0 0
\(537\) 1.92334e9 3.33132e9i 0.535977 0.928339i
\(538\) 0 0
\(539\) 2.33191e9 1.34062e9i 0.641433 0.368761i
\(540\) 0 0
\(541\) 1.14907e9 1.99025e9i 0.312002 0.540403i −0.666794 0.745242i \(-0.732334\pi\)
0.978796 + 0.204839i \(0.0656672\pi\)
\(542\) 0 0
\(543\) −6.27426e8 1.08673e9i −0.168176 0.291289i
\(544\) 0 0
\(545\) 2.62917e8 0.0695714
\(546\) 0 0
\(547\) 6.33362e9 1.65461 0.827306 0.561752i \(-0.189872\pi\)
0.827306 + 0.561752i \(0.189872\pi\)
\(548\) 0 0
\(549\) 1.57174e9 + 2.72233e9i 0.405393 + 0.702162i
\(550\) 0 0
\(551\) −7.12574e8 + 1.23421e9i −0.181468 + 0.314311i
\(552\) 0 0
\(553\) 1.16900e9 + 4.37886e9i 0.293952 + 1.10109i
\(554\) 0 0
\(555\) −4.73550e8 + 8.20212e8i −0.117582 + 0.203658i
\(556\) 0 0
\(557\) 3.75684e9 + 6.50705e9i 0.921149 + 1.59548i 0.797640 + 0.603134i \(0.206082\pi\)
0.123510 + 0.992343i \(0.460585\pi\)
\(558\) 0 0
\(559\) 3.74070e9 0.905757
\(560\) 0 0
\(561\) 9.17219e9 2.19332
\(562\) 0 0
\(563\) 2.39314e9 + 4.14504e9i 0.565183 + 0.978926i 0.997033 + 0.0769801i \(0.0245278\pi\)
−0.431850 + 0.901946i \(0.642139\pi\)
\(564\) 0 0
\(565\) −2.05982e8 + 3.56772e8i −0.0480463 + 0.0832187i
\(566\) 0 0
\(567\) −8.20500e8 2.20661e8i −0.189033 0.0508375i
\(568\) 0 0
\(569\) −2.60548e9 + 4.51283e9i −0.592919 + 1.02697i 0.400918 + 0.916114i \(0.368691\pi\)
−0.993837 + 0.110852i \(0.964642\pi\)
\(570\) 0 0
\(571\) −3.04516e9 5.27437e9i −0.684516 1.18562i −0.973589 0.228310i \(-0.926680\pi\)
0.289072 0.957307i \(-0.406653\pi\)
\(572\) 0 0
\(573\) −1.14584e10 −2.54439
\(574\) 0 0
\(575\) 1.30035e9 0.285247
\(576\) 0 0
\(577\) 1.01575e9 + 1.75934e9i 0.220127 + 0.381271i 0.954846 0.297100i \(-0.0960195\pi\)
−0.734719 + 0.678371i \(0.762686\pi\)
\(578\) 0 0
\(579\) −2.43696e9 + 4.22094e9i −0.521764 + 0.903721i
\(580\) 0 0
\(581\) 2.17320e9 2.16921e9i 0.459709 0.458865i
\(582\) 0 0
\(583\) −1.77712e9 + 3.07807e9i −0.371430 + 0.643336i
\(584\) 0 0
\(585\) 4.04905e8 + 7.01317e8i 0.0836196 + 0.144833i
\(586\) 0 0
\(587\) 7.84037e9 1.59994 0.799970 0.600041i \(-0.204849\pi\)
0.799970 + 0.600041i \(0.204849\pi\)
\(588\) 0 0
\(589\) −4.33668e9 −0.874488
\(590\) 0 0
\(591\) −1.12930e9 1.95600e9i −0.225036 0.389773i
\(592\) 0 0
\(593\) 7.96578e8 1.37971e9i 0.156869 0.271705i −0.776869 0.629662i \(-0.783193\pi\)
0.933738 + 0.357957i \(0.116527\pi\)
\(594\) 0 0
\(595\) 4.98456e8 4.97541e8i 0.0970102 0.0968321i
\(596\) 0 0
\(597\) 1.89001e9 3.27360e9i 0.363542 0.629674i
\(598\) 0 0
\(599\) 3.97790e8 + 6.88992e8i 0.0756240 + 0.130985i 0.901357 0.433076i \(-0.142572\pi\)
−0.825733 + 0.564060i \(0.809238\pi\)
\(600\) 0 0
\(601\) 6.44884e8 0.121177 0.0605886 0.998163i \(-0.480702\pi\)
0.0605886 + 0.998163i \(0.480702\pi\)
\(602\) 0 0
\(603\) −4.57144e9 −0.849067
\(604\) 0 0
\(605\) −9.36859e7 1.62269e8i −0.0172001 0.0297914i
\(606\) 0 0
\(607\) 1.62737e9 2.81869e9i 0.295343 0.511549i −0.679721 0.733470i \(-0.737899\pi\)
0.975065 + 0.221921i \(0.0712327\pi\)
\(608\) 0 0
\(609\) −2.96331e9 7.96936e8i −0.531639 0.142976i
\(610\) 0 0
\(611\) −1.05893e9 + 1.83412e9i −0.187812 + 0.325300i
\(612\) 0 0
\(613\) −1.95906e9 3.39319e9i −0.343508 0.594973i 0.641574 0.767061i \(-0.278282\pi\)
−0.985081 + 0.172089i \(0.944948\pi\)
\(614\) 0 0
\(615\) 8.70483e8 0.150903
\(616\) 0 0
\(617\) 6.38504e9 1.09437 0.547187 0.837010i \(-0.315699\pi\)
0.547187 + 0.837010i \(0.315699\pi\)
\(618\) 0 0
\(619\) −5.48911e9 9.50741e9i −0.930217 1.61118i −0.782948 0.622087i \(-0.786285\pi\)
−0.147269 0.989096i \(-0.547048\pi\)
\(620\) 0 0
\(621\) 9.88515e8 1.71216e9i 0.165639 0.286895i
\(622\) 0 0
\(623\) 1.53011e9 + 5.73152e9i 0.253522 + 0.949645i
\(624\) 0 0
\(625\) −2.99897e9 + 5.19436e9i −0.491351 + 0.851044i
\(626\) 0 0
\(627\) 4.06785e9 + 7.04572e9i 0.659065 + 1.14153i
\(628\) 0 0
\(629\) 2.11824e10 3.39389
\(630\) 0 0
\(631\) 6.75136e9 1.06977 0.534883 0.844926i \(-0.320356\pi\)
0.534883 + 0.844926i \(0.320356\pi\)
\(632\) 0 0
\(633\) −9.81393e9 1.69982e10i −1.53791 2.66373i
\(634\) 0 0
\(635\) 1.50283e7 2.60299e7i 0.00232918 0.00403426i
\(636\) 0 0
\(637\) 1.54937e7 8.43139e9i 0.00237503 1.29244i
\(638\) 0 0
\(639\) 2.06184e9 3.57122e9i 0.312610 0.541456i
\(640\) 0 0
\(641\) −2.66451e9 4.61507e9i −0.399590 0.692110i 0.594085 0.804402i \(-0.297514\pi\)
−0.993675 + 0.112292i \(0.964181\pi\)
\(642\) 0 0
\(643\) −3.64486e9 −0.540683 −0.270342 0.962764i \(-0.587137\pi\)
−0.270342 + 0.962764i \(0.587137\pi\)
\(644\) 0 0
\(645\) −5.96759e8 −0.0875669
\(646\) 0 0
\(647\) −4.98373e8 8.63207e8i −0.0723418 0.125300i 0.827585 0.561340i \(-0.189714\pi\)
−0.899927 + 0.436040i \(0.856381\pi\)
\(648\) 0 0
\(649\) −2.63990e8 + 4.57244e8i −0.0379080 + 0.0656585i
\(650\) 0 0
\(651\) −2.40848e9 9.02170e9i −0.342144 1.28161i
\(652\) 0 0
\(653\) −1.25807e9 + 2.17905e9i −0.176811 + 0.306246i −0.940787 0.338999i \(-0.889912\pi\)
0.763975 + 0.645245i \(0.223245\pi\)
\(654\) 0 0
\(655\) 3.77346e8 + 6.53583e8i 0.0524681 + 0.0908774i
\(656\) 0 0
\(657\) 6.10164e9 0.839398
\(658\) 0 0
\(659\) −2.14485e9 −0.291944 −0.145972 0.989289i \(-0.546631\pi\)
−0.145972 + 0.989289i \(0.546631\pi\)
\(660\) 0 0
\(661\) 2.15616e9 + 3.73457e9i 0.290386 + 0.502962i 0.973901 0.226974i \(-0.0728831\pi\)
−0.683515 + 0.729936i \(0.739550\pi\)
\(662\) 0 0
\(663\) 1.43755e10 2.48990e10i 1.91569 3.31807i
\(664\) 0 0
\(665\) 6.03256e8 + 1.62236e8i 0.0795474 + 0.0213930i
\(666\) 0 0
\(667\) 3.68175e8 6.37698e8i 0.0480412 0.0832098i
\(668\) 0 0
\(669\) −1.28958e9 2.23363e9i −0.166517 0.288416i
\(670\) 0 0
\(671\) 2.75763e9 0.352377
\(672\) 0 0
\(673\) 8.49626e9 1.07442 0.537211 0.843448i \(-0.319478\pi\)
0.537211 + 0.843448i \(0.319478\pi\)
\(674\) 0 0
\(675\) 4.58640e9 + 7.94387e9i 0.573995 + 0.994189i
\(676\) 0 0
\(677\) −3.85081e9 + 6.66980e9i −0.476971 + 0.826138i −0.999652 0.0263906i \(-0.991599\pi\)
0.522681 + 0.852528i \(0.324932\pi\)
\(678\) 0 0
\(679\) 8.72956e8 8.71353e8i 0.107016 0.106819i
\(680\) 0 0
\(681\) 5.80725e8 1.00584e9i 0.0704621 0.122044i
\(682\) 0 0
\(683\) −4.85022e9 8.40083e9i −0.582491 1.00890i −0.995183 0.0980333i \(-0.968745\pi\)
0.412692 0.910871i \(-0.364588\pi\)
\(684\) 0 0
\(685\) 9.41196e8 0.111883
\(686\) 0 0
\(687\) −7.93080e9 −0.933186
\(688\) 0 0
\(689\) 5.57052e9 + 9.64843e9i 0.648827 + 1.12380i
\(690\) 0 0
\(691\) −1.42444e9 + 2.46720e9i −0.164237 + 0.284466i −0.936384 0.350977i \(-0.885849\pi\)
0.772147 + 0.635444i \(0.219183\pi\)
\(692\) 0 0
\(693\) −7.81035e9 + 7.79601e9i −0.891465 + 0.889828i
\(694\) 0 0
\(695\) −3.16329e8 + 5.47899e8i −0.0357432 + 0.0619090i
\(696\) 0 0
\(697\) −9.73441e9 1.68605e10i −1.08892 1.88606i
\(698\) 0 0
\(699\) 7.99240e9 0.885130
\(700\) 0 0
\(701\) −4.47816e9 −0.491006 −0.245503 0.969396i \(-0.578953\pi\)
−0.245503 + 0.969396i \(0.578953\pi\)
\(702\) 0 0
\(703\) 9.39436e9 + 1.62715e10i 1.01982 + 1.76638i
\(704\) 0 0
\(705\) 1.68933e8 2.92600e8i 0.0181573 0.0314494i
\(706\) 0 0
\(707\) −1.02466e10 2.75567e9i −1.09047 0.293265i
\(708\) 0 0
\(709\) 4.19450e9 7.26510e9i 0.441997 0.765560i −0.555841 0.831289i \(-0.687604\pi\)
0.997838 + 0.0657281i \(0.0209370\pi\)
\(710\) 0 0
\(711\) −9.29706e9 1.61030e10i −0.970068 1.68021i
\(712\) 0 0
\(713\) 2.24069e9 0.231509
\(714\) 0 0
\(715\) 7.10411e8 0.0726840
\(716\) 0 0
\(717\) 5.40235e9 + 9.35715e9i 0.547351 + 0.948040i
\(718\) 0 0
\(719\) −6.19091e8 + 1.07230e9i −0.0621160 + 0.107588i −0.895411 0.445240i \(-0.853118\pi\)
0.833295 + 0.552829i \(0.186452\pi\)
\(720\) 0 0
\(721\) 5.08676e8 + 1.90540e9i 0.0505437 + 0.189327i
\(722\) 0 0
\(723\) −1.17239e10 + 2.03063e10i −1.15368 + 1.99824i
\(724\) 0 0
\(725\) 1.70821e9 + 2.95872e9i 0.166479 + 0.288350i
\(726\) 0 0
\(727\) 3.52132e9 0.339888 0.169944 0.985454i \(-0.445641\pi\)
0.169944 + 0.985454i \(0.445641\pi\)
\(728\) 0 0
\(729\) −1.63694e10 −1.56490
\(730\) 0 0
\(731\) 6.67342e9 + 1.15587e10i 0.631884 + 1.09446i
\(732\) 0 0
\(733\) −3.95436e9 + 6.84915e9i −0.370862 + 0.642352i −0.989698 0.143168i \(-0.954271\pi\)
0.618836 + 0.785520i \(0.287604\pi\)
\(734\) 0 0
\(735\) −2.47174e6 + 1.34507e9i −0.000229613 + 0.124951i
\(736\) 0 0
\(737\) −2.00516e9 + 3.47304e9i −0.184507 + 0.319576i
\(738\) 0 0
\(739\) 2.24356e9 + 3.88597e9i 0.204495 + 0.354196i 0.949972 0.312336i \(-0.101111\pi\)
−0.745477 + 0.666532i \(0.767778\pi\)
\(740\) 0 0
\(741\) 2.55020e10 2.30255
\(742\) 0 0
\(743\) 4.33508e9 0.387736 0.193868 0.981028i \(-0.437897\pi\)
0.193868 + 0.981028i \(0.437897\pi\)
\(744\) 0 0
\(745\) −4.33461e8 7.50777e8i −0.0384064 0.0665218i
\(746\) 0 0
\(747\) −6.29871e9 + 1.09097e10i −0.552878 + 0.957613i
\(748\) 0 0
\(749\) −2.51996e9 9.43930e9i −0.219133 0.820830i
\(750\) 0 0
\(751\) −5.94199e9 + 1.02918e10i −0.511908 + 0.886651i 0.487997 + 0.872845i \(0.337728\pi\)
−0.999905 + 0.0138052i \(0.995606\pi\)
\(752\) 0 0
\(753\) 2.76968e9 + 4.79722e9i 0.236400 + 0.409456i
\(754\) 0 0
\(755\) −7.57567e8 −0.0640630
\(756\) 0 0
\(757\) 1.37796e10 1.15452 0.577260 0.816560i \(-0.304122\pi\)
0.577260 + 0.816560i \(0.304122\pi\)
\(758\) 0 0
\(759\) −2.10179e9 3.64041e9i −0.174479 0.302206i
\(760\) 0 0
\(761\) −4.26500e9 + 7.38719e9i −0.350810 + 0.607622i −0.986392 0.164412i \(-0.947427\pi\)
0.635581 + 0.772034i \(0.280761\pi\)
\(762\) 0 0
\(763\) 1.08452e10 + 2.91664e9i 0.883897 + 0.237710i
\(764\) 0 0
\(765\) −1.44470e9 + 2.50230e9i −0.116671 + 0.202081i
\(766\) 0 0
\(767\) 8.27496e8 + 1.43327e9i 0.0662189 + 0.114695i
\(768\) 0 0
\(769\) −1.57605e10 −1.24976 −0.624881 0.780720i \(-0.714853\pi\)
−0.624881 + 0.780720i \(0.714853\pi\)
\(770\) 0 0
\(771\) −4.44878e8 −0.0349583
\(772\) 0 0
\(773\) 1.87506e9 + 3.24770e9i 0.146011 + 0.252899i 0.929750 0.368192i \(-0.120023\pi\)
−0.783738 + 0.621091i \(0.786690\pi\)
\(774\) 0 0
\(775\) −5.19804e9 + 9.00327e9i −0.401129 + 0.694776i
\(776\) 0 0
\(777\) −2.86326e10 + 2.85801e10i −2.18972 + 2.18570i
\(778\) 0 0
\(779\) 8.63439e9 1.49552e10i 0.654411 1.13347i
\(780\) 0 0
\(781\) −1.80876e9 3.13287e9i −0.135864 0.235323i
\(782\) 0 0
\(783\) 5.19430e9 0.386688
\(784\) 0 0
\(785\) 1.10620e9 0.0816186
\(786\) 0 0
\(787\) −1.01205e10 1.75292e10i −0.740099 1.28189i −0.952450 0.304696i \(-0.901445\pi\)
0.212350 0.977194i \(-0.431888\pi\)
\(788\) 0 0
\(789\) 8.96670e9 1.55308e10i 0.649925 1.12570i
\(790\) 0 0
\(791\) −1.24545e10 + 1.24316e10i −0.894763 + 0.893120i
\(792\) 0 0
\(793\) 4.32200e9 7.48592e9i 0.307772 0.533076i
\(794\) 0 0
\(795\) −8.88673e8 1.53923e9i −0.0627273 0.108647i
\(796\) 0 0
\(797\) −1.96658e10 −1.37597 −0.687983 0.725727i \(-0.741504\pi\)
−0.687983 + 0.725727i \(0.741504\pi\)
\(798\) 0 0
\(799\) −7.55654e9 −0.524094
\(800\) 0 0
\(801\) −1.21690e10 2.10773e10i −0.836644 1.44911i
\(802\) 0 0
\(803\) 2.67635e9 4.63558e9i 0.182406 0.315936i
\(804\) 0 0
\(805\) −3.11692e8 8.38247e7i −0.0210591 0.00566352i
\(806\) 0 0
\(807\) 1.58752e10 2.74966e10i 1.06331 1.84171i
\(808\) 0 0
\(809\) −2.91367e9 5.04662e9i −0.193473 0.335105i 0.752926 0.658105i \(-0.228642\pi\)
−0.946399 + 0.323000i \(0.895308\pi\)
\(810\) 0 0
\(811\) −1.13903e10 −0.749829 −0.374914 0.927059i \(-0.622328\pi\)
−0.374914 + 0.927059i \(0.622328\pi\)
\(812\) 0 0
\(813\) −2.24374e9 −0.146439
\(814\) 0 0
\(815\) −5.78358e8 1.00175e9i −0.0374236 0.0648195i
\(816\) 0 0
\(817\) −5.91930e9 + 1.02525e10i −0.379746 + 0.657739i
\(818\) 0 0
\(819\) 8.92216e9 + 3.34207e10i 0.567514 + 2.12580i
\(820\) 0 0
\(821\) −5.98364e9 + 1.03640e10i −0.377367 + 0.653619i −0.990678 0.136222i \(-0.956504\pi\)
0.613311 + 0.789841i \(0.289837\pi\)
\(822\) 0 0
\(823\) −1.24348e10 2.15376e10i −0.777568 1.34679i −0.933340 0.358994i \(-0.883120\pi\)
0.155772 0.987793i \(-0.450213\pi\)
\(824\) 0 0
\(825\) 1.95033e10 1.20926
\(826\) 0 0
\(827\) −1.05586e10 −0.649137 −0.324569 0.945862i \(-0.605219\pi\)
−0.324569 + 0.945862i \(0.605219\pi\)
\(828\) 0 0
\(829\) 5.93269e9 + 1.02757e10i 0.361668 + 0.626428i 0.988236 0.152939i \(-0.0488739\pi\)
−0.626567 + 0.779367i \(0.715541\pi\)
\(830\) 0 0
\(831\) −2.51034e10 + 4.34804e10i −1.51750 + 2.62839i
\(832\) 0 0
\(833\) 2.60805e10 1.49938e10i 1.56336 0.898779i
\(834\) 0 0
\(835\) 3.92129e8 6.79188e8i 0.0233092 0.0403726i
\(836\) 0 0
\(837\) 7.90304e9 + 1.36885e10i 0.465859 + 0.806892i
\(838\) 0 0
\(839\) −4.68285e9 −0.273743 −0.136872 0.990589i \(-0.543705\pi\)
−0.136872 + 0.990589i \(0.543705\pi\)
\(840\) 0 0
\(841\) −1.53152e10 −0.887847
\(842\) 0 0
\(843\) −1.98941e10 3.44576e10i −1.14374 1.98102i
\(844\) 0 0
\(845\) 4.46866e8 7.73995e8i 0.0254788 0.0441306i
\(846\) 0 0
\(847\) −2.06439e9 7.73280e9i −0.116734 0.437265i
\(848\) 0 0
\(849\) 5.50851e8 9.54102e8i 0.0308928 0.0535079i
\(850\) 0 0
\(851\) −4.85391e9 8.40721e9i −0.269984 0.467626i
\(852\) 0 0
\(853\) −5.76473e9 −0.318022 −0.159011 0.987277i \(-0.550831\pi\)
−0.159011 + 0.987277i \(0.550831\pi\)
\(854\) 0 0
\(855\) −2.56290e9 −0.140233
\(856\) 0 0
\(857\) −1.23111e10 2.13235e10i −0.668135 1.15724i −0.978425 0.206602i \(-0.933759\pi\)
0.310290 0.950642i \(-0.399574\pi\)
\(858\) 0 0
\(859\) 1.49943e10 2.59709e10i 0.807144 1.39801i −0.107691 0.994184i \(-0.534346\pi\)
0.914834 0.403829i \(-0.132321\pi\)
\(860\) 0 0
\(861\) 3.59070e10 + 9.65662e9i 1.91720 + 0.515601i
\(862\) 0 0
\(863\) 4.28994e8 7.43040e8i 0.0227203 0.0393527i −0.854442 0.519547i \(-0.826101\pi\)
0.877162 + 0.480195i \(0.159434\pi\)
\(864\) 0 0
\(865\) −8.17766e8 1.41641e9i −0.0429608 0.0744103i
\(866\) 0 0
\(867\) 7.10377e10 3.70187
\(868\) 0 0
\(869\) −1.63118e10 −0.843204
\(870\) 0 0
\(871\) 6.28533e9 + 1.08865e10i 0.322303 + 0.558245i
\(872\) 0 0
\(873\) −2.53014e9 + 4.38233e9i −0.128705 + 0.222923i
\(874\) 0 0
\(875\) 2.12594e9 2.12204e9i 0.107281 0.107084i
\(876\) 0 0
\(877\) 2.82487e9 4.89282e9i 0.141416 0.244940i −0.786614 0.617445i \(-0.788168\pi\)
0.928030 + 0.372505i \(0.121501\pi\)
\(878\) 0 0
\(879\) 1.76663e10 + 3.05989e10i 0.877373 + 1.51966i
\(880\) 0 0
\(881\) −2.87116e10 −1.41462 −0.707312 0.706902i \(-0.750092\pi\)
−0.707312 + 0.706902i \(0.750092\pi\)
\(882\) 0 0
\(883\) −1.38023e10 −0.674668 −0.337334 0.941385i \(-0.609525\pi\)
−0.337334 + 0.941385i \(0.609525\pi\)
\(884\) 0 0
\(885\) −1.32011e8 2.28651e8i −0.00640192 0.0110884i
\(886\) 0 0
\(887\) −1.86125e10 + 3.22378e10i −0.895513 + 1.55107i −0.0623449 + 0.998055i \(0.519858\pi\)
−0.833168 + 0.553020i \(0.813475\pi\)
\(888\) 0 0
\(889\) 9.08672e8 9.07003e8i 0.0433761 0.0432965i
\(890\) 0 0
\(891\) 1.52899e9 2.64828e9i 0.0724156 0.125427i
\(892\) 0 0
\(893\) −3.35131e9 5.80464e9i −0.157483 0.272769i
\(894\) 0 0
\(895\) 1.06304e9 0.0495642
\(896\) 0 0
\(897\) −1.31764e10 −0.609571
\(898\) 0 0
\(899\) 2.94351e9 + 5.09830e9i 0.135116 + 0.234027i
\(900\) 0 0
\(901\) −1.98757e10 + 3.44256e10i −0.905284 + 1.56800i
\(902\) 0 0
\(903\) −2.46160e10 6.62009e9i −1.11253 0.299197i
\(904\) 0 0
\(905\) 1.73390e8 3.00321e8i 0.00777597 0.0134684i
\(906\) 0 0
\(907\) −2.80129e9 4.85198e9i −0.124662 0.215920i 0.796939 0.604060i \(-0.206451\pi\)
−0.921601 + 0.388139i \(0.873118\pi\)
\(908\) 0 0
\(909\) 4.35322e10 1.92237
\(910\) 0 0
\(911\) 3.57046e10 1.56462 0.782312 0.622886i \(-0.214040\pi\)
0.782312 + 0.622886i \(0.214040\pi\)
\(912\) 0 0
\(913\) 5.52558e9 + 9.57059e9i 0.240287 + 0.416189i
\(914\) 0 0
\(915\) −6.89494e8 + 1.19424e9i −0.0297548 + 0.0515368i
\(916\) 0 0
\(917\) 8.31489e9 + 3.11460e10i 0.356093 + 1.33386i
\(918\) 0 0
\(919\) 2.19020e9 3.79354e9i 0.0930850 0.161228i −0.815723 0.578443i \(-0.803660\pi\)
0.908808 + 0.417215i \(0.136994\pi\)
\(920\) 0 0
\(921\) −8.77020e9 1.51904e10i −0.369914 0.640710i
\(922\) 0 0
\(923\) −1.13394e10 −0.474663
\(924\) 0 0
\(925\) 4.50412e10 1.87117
\(926\) 0 0
\(927\) −4.04550e9 7.00701e9i −0.166799 0.288904i
\(928\) 0 0
\(929\) 9.08246e9 1.57313e10i 0.371662 0.643738i −0.618159 0.786053i \(-0.712121\pi\)
0.989821 + 0.142315i \(0.0454546\pi\)
\(930\) 0 0
\(931\) 2.30843e10 + 1.33843e10i 0.937546 + 0.543592i
\(932\) 0 0
\(933\) 2.74096e10 4.74747e10i 1.10488 1.91371i
\(934\) 0 0
\(935\) 1.26738e9 + 2.19516e9i 0.0507066 + 0.0878264i
\(936\) 0 0
\(937\) 2.55925e10 1.01631 0.508153 0.861267i \(-0.330328\pi\)
0.508153 + 0.861267i \(0.330328\pi\)
\(938\) 0 0
\(939\) −1.07277e10 −0.422840
\(940\) 0 0
\(941\) −1.53193e10 2.65338e10i −0.599343 1.03809i −0.992918 0.118800i \(-0.962095\pi\)
0.393576 0.919292i \(-0.371238\pi\)
\(942\) 0 0
\(943\) −4.46124e9 + 7.72710e9i −0.173247 + 0.300072i
\(944\) 0 0
\(945\) −5.87268e8 2.19980e9i −0.0226373 0.0847952i
\(946\) 0 0
\(947\) 1.13440e10 1.96484e10i 0.434052 0.751800i −0.563166 0.826344i \(-0.690417\pi\)
0.997218 + 0.0745437i \(0.0237500\pi\)
\(948\) 0 0
\(949\) −8.38923e9 1.45306e10i −0.318633 0.551888i
\(950\) 0 0
\(951\) −1.18305e10 −0.446038
\(952\) 0 0
\(953\) −2.31130e10 −0.865030 −0.432515 0.901627i \(-0.642374\pi\)
−0.432515 + 0.901627i \(0.642374\pi\)
\(954\) 0 0
\(955\) −1.58328e9 2.74232e9i −0.0588228 0.101884i
\(956\) 0 0
\(957\) 5.52208e9 9.56452e9i 0.203662 0.352754i
\(958\) 0 0
\(959\) 3.88239e10 + 1.04411e10i 1.42146 + 0.382278i
\(960\) 0 0
\(961\) 4.79931e9 8.31265e9i 0.174440 0.302140i
\(962\) 0 0
\(963\) 2.00413e10 + 3.47125e10i 0.723157 + 1.25255i
\(964\) 0 0
\(965\) −1.34692e9 −0.0482498
\(966\) 0 0
\(967\) −1.63381e10 −0.581043 −0.290521 0.956868i \(-0.593829\pi\)
−0.290521 + 0.956868i \(0.593829\pi\)
\(968\) 0 0
\(969\) 4.54956e10 + 7.88006e10i 1.60633 + 2.78225i
\(970\) 0 0
\(971\) −2.36893e9 + 4.10311e9i −0.0830396 + 0.143829i −0.904554 0.426359i \(-0.859796\pi\)
0.821515 + 0.570188i \(0.193129\pi\)
\(972\) 0 0
\(973\) −1.91265e10 + 1.90914e10i −0.665642 + 0.664420i
\(974\) 0 0
\(975\) 3.05672e10 5.29440e10i 1.05619 1.82937i
\(976\) 0 0
\(977\) −8.57370e9 1.48501e10i −0.294129 0.509446i 0.680653 0.732606i \(-0.261696\pi\)
−0.974782 + 0.223160i \(0.928363\pi\)
\(978\) 0 0
\(979\) −2.13506e10 −0.727230
\(980\) 0 0
\(981\) −4.60751e10 −1.55821
\(982\) 0 0
\(983\) −2.27209e10 3.93537e10i −0.762935 1.32144i −0.941332 0.337483i \(-0.890425\pi\)
0.178397 0.983959i \(-0.442909\pi\)
\(984\) 0 0
\(985\) 3.12083e8 5.40543e8i 0.0104050 0.0180220i
\(986\) 0 0
\(987\) 1.02143e10 1.01956e10i 0.338142 0.337521i
\(988\) 0 0
\(989\) 3.05840e9 5.29731e9i 0.100533 0.174128i
\(990\) 0 0
\(991\) −1.63460e10 2.83122e10i −0.533525 0.924092i −0.999233 0.0391537i \(-0.987534\pi\)
0.465708 0.884938i \(-0.345800\pi\)
\(992\) 0 0
\(993\) −1.07614e10 −0.348776
\(994\) 0 0
\(995\) 1.04462e9 0.0336184
\(996\) 0 0
\(997\) −2.70222e10 4.68038e10i −0.863550 1.49571i −0.868480 0.495724i \(-0.834903\pi\)
0.00493036 0.999988i \(-0.498431\pi\)
\(998\) 0 0
\(999\) 3.42400e10 5.93054e10i 1.08656 1.88198i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.8.i.a.65.1 4
4.3 odd 2 14.8.c.a.9.2 4
7.4 even 3 inner 112.8.i.a.81.1 4
12.11 even 2 126.8.g.e.37.2 4
28.3 even 6 98.8.c.h.67.1 4
28.11 odd 6 14.8.c.a.11.2 yes 4
28.19 even 6 98.8.a.k.1.2 2
28.23 odd 6 98.8.a.h.1.1 2
28.27 even 2 98.8.c.h.79.1 4
84.11 even 6 126.8.g.e.109.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.8.c.a.9.2 4 4.3 odd 2
14.8.c.a.11.2 yes 4 28.11 odd 6
98.8.a.h.1.1 2 28.23 odd 6
98.8.a.k.1.2 2 28.19 even 6
98.8.c.h.67.1 4 28.3 even 6
98.8.c.h.79.1 4 28.27 even 2
112.8.i.a.65.1 4 1.1 even 1 trivial
112.8.i.a.81.1 4 7.4 even 3 inner
126.8.g.e.37.2 4 12.11 even 2
126.8.g.e.109.2 4 84.11 even 6