Properties

Label 112.8.a.g
Level $112$
Weight $8$
Character orbit 112.a
Self dual yes
Analytic conductor $34.987$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-70] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.9871228542\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1969}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 492 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{1969}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 35) q^{3} + ( - 9 \beta + 63) q^{5} - 343 q^{7} + (70 \beta + 1007) q^{9} + (126 \beta + 1710) q^{11} + (189 \beta - 3199) q^{13} + (252 \beta + 15516) q^{15} + ( - 90 \beta - 19236) q^{17}+ \cdots + (246582 \beta + 19088550) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 70 q^{3} + 126 q^{5} - 686 q^{7} + 2014 q^{9} + 3420 q^{11} - 6398 q^{13} + 31032 q^{15} - 38472 q^{17} + 43358 q^{19} + 24010 q^{21} - 89928 q^{23} + 170666 q^{25} - 193060 q^{27} + 159576 q^{29}+ \cdots + 38177100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
22.6867
−21.6867
0 −79.3734 0 −336.361 0 −343.000 0 4113.14 0
1.2 0 9.37342 0 462.361 0 −343.000 0 −2099.14 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.8.a.g 2
4.b odd 2 1 14.8.a.c 2
8.b even 2 1 448.8.a.s 2
8.d odd 2 1 448.8.a.l 2
12.b even 2 1 126.8.a.i 2
20.d odd 2 1 350.8.a.j 2
20.e even 4 2 350.8.c.k 4
28.d even 2 1 98.8.a.g 2
28.f even 6 2 98.8.c.k 4
28.g odd 6 2 98.8.c.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.a.c 2 4.b odd 2 1
98.8.a.g 2 28.d even 2 1
98.8.c.g 4 28.g odd 6 2
98.8.c.k 4 28.f even 6 2
112.8.a.g 2 1.a even 1 1 trivial
126.8.a.i 2 12.b even 2 1
350.8.a.j 2 20.d odd 2 1
350.8.c.k 4 20.e even 4 2
448.8.a.l 2 8.d odd 2 1
448.8.a.s 2 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 70T_{3} - 744 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(112))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 70T - 744 \) Copy content Toggle raw display
$5$ \( T^{2} - 126T - 155520 \) Copy content Toggle raw display
$7$ \( (T + 343)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 3420 T - 28335744 \) Copy content Toggle raw display
$13$ \( T^{2} + 6398 T - 60101048 \) Copy content Toggle raw display
$17$ \( T^{2} + 38472 T + 354074796 \) Copy content Toggle raw display
$19$ \( T^{2} - 43358 T + 353711560 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1896721920 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 4918678740 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots + 4461367552 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots - 157363463444 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 74003569668 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 583387157728 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots - 540103776192 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 79218330012 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 4373344023480 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 1039462897040 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 5763055131376 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 850548584448 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 3486040529620 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 16952152365440 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 35507978523864 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 63487720577700 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 2847474625940 \) Copy content Toggle raw display
show more
show less