Properties

Label 112.8.a.e
Level $112$
Weight $8$
Character orbit 112.a
Self dual yes
Analytic conductor $34.987$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,82] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.9871228542\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 82 q^{3} + 448 q^{5} + 343 q^{7} + 4537 q^{9} - 2408 q^{11} + 7116 q^{13} + 36736 q^{15} + 2486 q^{17} - 36482 q^{19} + 28126 q^{21} + 12880 q^{23} + 122579 q^{25} + 192700 q^{27} - 88094 q^{29} - 282636 q^{31}+ \cdots - 10925096 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 82.0000 0 448.000 0 343.000 0 4537.00 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.8.a.e 1
4.b odd 2 1 14.8.a.a 1
8.b even 2 1 448.8.a.a 1
8.d odd 2 1 448.8.a.j 1
12.b even 2 1 126.8.a.d 1
20.d odd 2 1 350.8.a.h 1
20.e even 4 2 350.8.c.d 2
28.d even 2 1 98.8.a.b 1
28.f even 6 2 98.8.c.c 2
28.g odd 6 2 98.8.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.8.a.a 1 4.b odd 2 1
98.8.a.b 1 28.d even 2 1
98.8.c.c 2 28.f even 6 2
98.8.c.f 2 28.g odd 6 2
112.8.a.e 1 1.a even 1 1 trivial
126.8.a.d 1 12.b even 2 1
350.8.a.h 1 20.d odd 2 1
350.8.c.d 2 20.e even 4 2
448.8.a.a 1 8.b even 2 1
448.8.a.j 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 82 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(112))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 82 \) Copy content Toggle raw display
$5$ \( T - 448 \) Copy content Toggle raw display
$7$ \( T - 343 \) Copy content Toggle raw display
$11$ \( T + 2408 \) Copy content Toggle raw display
$13$ \( T - 7116 \) Copy content Toggle raw display
$17$ \( T - 2486 \) Copy content Toggle raw display
$19$ \( T + 36482 \) Copy content Toggle raw display
$23$ \( T - 12880 \) Copy content Toggle raw display
$29$ \( T + 88094 \) Copy content Toggle raw display
$31$ \( T + 282636 \) Copy content Toggle raw display
$37$ \( T + 214534 \) Copy content Toggle raw display
$41$ \( T + 140874 \) Copy content Toggle raw display
$43$ \( T + 36464 \) Copy content Toggle raw display
$47$ \( T + 716868 \) Copy content Toggle raw display
$53$ \( T + 56946 \) Copy content Toggle raw display
$59$ \( T - 2149862 \) Copy content Toggle raw display
$61$ \( T - 3084360 \) Copy content Toggle raw display
$67$ \( T - 3034364 \) Copy content Toggle raw display
$71$ \( T - 106624 \) Copy content Toggle raw display
$73$ \( T - 988930 \) Copy content Toggle raw display
$79$ \( T + 3415896 \) Copy content Toggle raw display
$83$ \( T - 15142 \) Copy content Toggle raw display
$89$ \( T - 174810 \) Copy content Toggle raw display
$97$ \( T - 13506790 \) Copy content Toggle raw display
show more
show less