Defining parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(112, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 102 | 25 | 77 |
Cusp forms | 90 | 23 | 67 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(112, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
112.7.c.a | $1$ | $25.766$ | \(\Q\) | \(\Q(\sqrt{-7}) \) | \(0\) | \(0\) | \(0\) | \(343\) | \(q+7^{3}q^{7}+3^{6}q^{9}-1962q^{11}+22734q^{23}+\cdots\) |
112.7.c.b | $2$ | $25.766$ | \(\Q(\sqrt{-510}) \) | None | \(0\) | \(0\) | \(0\) | \(-266\) | \(q+\beta q^{3}+\beta q^{5}+(-133+7\beta )q^{7}-1311q^{9}+\cdots\) |
112.7.c.c | $4$ | $25.766$ | 4.0.211968.1 | None | \(0\) | \(0\) | \(0\) | \(-308\) | \(q-\beta _{1}q^{3}+5\beta _{2}q^{5}+(-77+14\beta _{1}+\cdots)q^{7}+\cdots\) |
112.7.c.d | $4$ | $25.766$ | 4.0.903168.1 | None | \(0\) | \(0\) | \(0\) | \(28\) | \(q-\beta _{2}q^{3}-\beta _{1}q^{5}+(7-\beta _{1}+2\beta _{2}+\beta _{3})q^{7}+\cdots\) |
112.7.c.e | $12$ | $25.766$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(564\) | \(q-\beta _{4}q^{3}-\beta _{8}q^{5}+(47+\beta _{4}-\beta _{5})q^{7}+\cdots\) |
Decomposition of \(S_{7}^{\mathrm{old}}(112, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(112, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)