Properties

Label 112.6.p.b.31.3
Level $112$
Weight $6$
Character 112.31
Analytic conductor $17.963$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 691 x^{12} - 8602 x^{11} + 416261 x^{10} - 3521447 x^{9} + 66162087 x^{8} + \cdots + 17213603549184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{6}\cdot 7^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Root \(-1.05545 - 1.82809i\) of defining polynomial
Character \(\chi\) \(=\) 112.31
Dual form 112.6.p.b.47.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.47608 + 7.75280i) q^{3} +(-62.1336 + 35.8729i) q^{5} +(-115.750 + 58.3859i) q^{7} +(81.4294 + 141.040i) q^{9} +(132.963 + 76.7665i) q^{11} -891.047i q^{13} -642.279i q^{15} +(-1317.23 - 760.503i) q^{17} +(884.013 + 1531.15i) q^{19} +(65.4523 - 1158.73i) q^{21} +(3323.54 - 1918.85i) q^{23} +(1011.22 - 1751.49i) q^{25} -3633.31 q^{27} -2658.88 q^{29} +(3089.59 - 5351.33i) q^{31} +(-1190.31 + 687.226i) q^{33} +(5097.50 - 7780.02i) q^{35} +(-4264.01 - 7385.48i) q^{37} +(6908.10 + 3988.39i) q^{39} -18788.9i q^{41} +19232.2i q^{43} +(-10119.0 - 5842.21i) q^{45} +(-3540.78 - 6132.81i) q^{47} +(9989.16 - 13516.4i) q^{49} +(11792.1 - 6808.14i) q^{51} +(-12581.5 + 21791.7i) q^{53} -11015.3 q^{55} -15827.6 q^{57} +(-645.772 + 1118.51i) q^{59} +(20737.2 - 11972.6i) q^{61} +(-17660.2 - 11571.0i) q^{63} +(31964.4 + 55363.9i) q^{65} +(-14254.9 - 8230.08i) q^{67} +34355.6i q^{69} +25824.7i q^{71} +(9044.00 + 5221.56i) q^{73} +(9052.64 + 15679.6i) q^{75} +(-19872.6 - 1122.53i) q^{77} +(14892.4 - 8598.11i) q^{79} +(-3524.35 + 6104.36i) q^{81} -53986.4 q^{83} +109126. q^{85} +(11901.4 - 20613.8i) q^{87} +(-26565.6 + 15337.7i) q^{89} +(52024.6 + 103139. i) q^{91} +(27658.5 + 47906.0i) q^{93} +(-109854. - 63424.1i) q^{95} +70219.1i q^{97} +25004.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 9 q^{3} + 33 q^{5} - 28 q^{7} - 538 q^{9} + 333 q^{11} + 801 q^{17} - 2135 q^{19} + 2017 q^{21} + 2667 q^{23} + 5434 q^{25} + 17910 q^{27} + 684 q^{29} + 3119 q^{31} + 29013 q^{33} - 2247 q^{35}+ \cdots - 124833 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.47608 + 7.75280i −0.287141 + 0.497342i −0.973126 0.230273i \(-0.926038\pi\)
0.685985 + 0.727615i \(0.259371\pi\)
\(4\) 0 0
\(5\) −62.1336 + 35.8729i −1.11148 + 0.641713i −0.939212 0.343337i \(-0.888443\pi\)
−0.172268 + 0.985050i \(0.555109\pi\)
\(6\) 0 0
\(7\) −115.750 + 58.3859i −0.892845 + 0.450363i
\(8\) 0 0
\(9\) 81.4294 + 141.040i 0.335101 + 0.580411i
\(10\) 0 0
\(11\) 132.963 + 76.7665i 0.331322 + 0.191289i 0.656428 0.754389i \(-0.272067\pi\)
−0.325106 + 0.945678i \(0.605400\pi\)
\(12\) 0 0
\(13\) 891.047i 1.46232i −0.682207 0.731159i \(-0.738980\pi\)
0.682207 0.731159i \(-0.261020\pi\)
\(14\) 0 0
\(15\) 642.279i 0.737048i
\(16\) 0 0
\(17\) −1317.23 760.503i −1.10545 0.638232i −0.167803 0.985821i \(-0.553667\pi\)
−0.937647 + 0.347588i \(0.887001\pi\)
\(18\) 0 0
\(19\) 884.013 + 1531.15i 0.561791 + 0.973050i 0.997340 + 0.0728852i \(0.0232207\pi\)
−0.435550 + 0.900165i \(0.643446\pi\)
\(20\) 0 0
\(21\) 65.4523 1158.73i 0.0323874 0.573367i
\(22\) 0 0
\(23\) 3323.54 1918.85i 1.31003 0.756346i 0.327929 0.944703i \(-0.393649\pi\)
0.982101 + 0.188357i \(0.0603161\pi\)
\(24\) 0 0
\(25\) 1011.22 1751.49i 0.323592 0.560478i
\(26\) 0 0
\(27\) −3633.31 −0.959165
\(28\) 0 0
\(29\) −2658.88 −0.587089 −0.293544 0.955945i \(-0.594835\pi\)
−0.293544 + 0.955945i \(0.594835\pi\)
\(30\) 0 0
\(31\) 3089.59 5351.33i 0.577427 1.00013i −0.418346 0.908288i \(-0.637390\pi\)
0.995773 0.0918454i \(-0.0292766\pi\)
\(32\) 0 0
\(33\) −1190.31 + 687.226i −0.190272 + 0.109854i
\(34\) 0 0
\(35\) 5097.50 7780.02i 0.703375 1.07352i
\(36\) 0 0
\(37\) −4264.01 7385.48i −0.512052 0.886900i −0.999902 0.0139727i \(-0.995552\pi\)
0.487850 0.872927i \(-0.337781\pi\)
\(38\) 0 0
\(39\) 6908.10 + 3988.39i 0.727273 + 0.419891i
\(40\) 0 0
\(41\) 18788.9i 1.74559i −0.488090 0.872793i \(-0.662306\pi\)
0.488090 0.872793i \(-0.337694\pi\)
\(42\) 0 0
\(43\) 19232.2i 1.58620i 0.609090 + 0.793101i \(0.291535\pi\)
−0.609090 + 0.793101i \(0.708465\pi\)
\(44\) 0 0
\(45\) −10119.0 5842.21i −0.744915 0.430077i
\(46\) 0 0
\(47\) −3540.78 6132.81i −0.233805 0.404963i 0.725119 0.688623i \(-0.241785\pi\)
−0.958925 + 0.283660i \(0.908451\pi\)
\(48\) 0 0
\(49\) 9989.16 13516.4i 0.594345 0.804210i
\(50\) 0 0
\(51\) 11792.1 6808.14i 0.634839 0.366525i
\(52\) 0 0
\(53\) −12581.5 + 21791.7i −0.615236 + 1.06562i 0.375107 + 0.926981i \(0.377606\pi\)
−0.990343 + 0.138638i \(0.955728\pi\)
\(54\) 0 0
\(55\) −11015.3 −0.491011
\(56\) 0 0
\(57\) −15827.6 −0.645252
\(58\) 0 0
\(59\) −645.772 + 1118.51i −0.0241518 + 0.0418321i −0.877849 0.478938i \(-0.841022\pi\)
0.853697 + 0.520770i \(0.174355\pi\)
\(60\) 0 0
\(61\) 20737.2 11972.6i 0.713552 0.411970i −0.0988225 0.995105i \(-0.531508\pi\)
0.812375 + 0.583135i \(0.198174\pi\)
\(62\) 0 0
\(63\) −17660.2 11571.0i −0.560589 0.367300i
\(64\) 0 0
\(65\) 31964.4 + 55363.9i 0.938389 + 1.62534i
\(66\) 0 0
\(67\) −14254.9 8230.08i −0.387952 0.223984i 0.293320 0.956014i \(-0.405240\pi\)
−0.681272 + 0.732030i \(0.738573\pi\)
\(68\) 0 0
\(69\) 34355.6i 0.868710i
\(70\) 0 0
\(71\) 25824.7i 0.607980i 0.952675 + 0.303990i \(0.0983190\pi\)
−0.952675 + 0.303990i \(0.901681\pi\)
\(72\) 0 0
\(73\) 9044.00 + 5221.56i 0.198634 + 0.114681i 0.596018 0.802971i \(-0.296749\pi\)
−0.397384 + 0.917652i \(0.630082\pi\)
\(74\) 0 0
\(75\) 9052.64 + 15679.6i 0.185833 + 0.321872i
\(76\) 0 0
\(77\) −19872.6 1122.53i −0.381969 0.0215760i
\(78\) 0 0
\(79\) 14892.4 8598.11i 0.268470 0.155001i −0.359722 0.933060i \(-0.617128\pi\)
0.628192 + 0.778058i \(0.283795\pi\)
\(80\) 0 0
\(81\) −3524.35 + 6104.36i −0.0596852 + 0.103378i
\(82\) 0 0
\(83\) −53986.4 −0.860180 −0.430090 0.902786i \(-0.641518\pi\)
−0.430090 + 0.902786i \(0.641518\pi\)
\(84\) 0 0
\(85\) 109126. 1.63825
\(86\) 0 0
\(87\) 11901.4 20613.8i 0.168577 0.291984i
\(88\) 0 0
\(89\) −26565.6 + 15337.7i −0.355504 + 0.205250i −0.667107 0.744962i \(-0.732468\pi\)
0.311603 + 0.950213i \(0.399134\pi\)
\(90\) 0 0
\(91\) 52024.6 + 103139.i 0.658575 + 1.30562i
\(92\) 0 0
\(93\) 27658.5 + 47906.0i 0.331606 + 0.574358i
\(94\) 0 0
\(95\) −109854. 63424.1i −1.24884 0.721017i
\(96\) 0 0
\(97\) 70219.1i 0.757750i 0.925448 + 0.378875i \(0.123689\pi\)
−0.925448 + 0.378875i \(0.876311\pi\)
\(98\) 0 0
\(99\) 25004.2i 0.256404i
\(100\) 0 0
\(101\) −55272.0 31911.3i −0.539140 0.311273i 0.205590 0.978638i \(-0.434089\pi\)
−0.744730 + 0.667365i \(0.767422\pi\)
\(102\) 0 0
\(103\) −53856.0 93281.2i −0.500197 0.866366i −1.00000 0.000226934i \(-0.999928\pi\)
0.499803 0.866139i \(-0.333406\pi\)
\(104\) 0 0
\(105\) 37500.1 + 74343.9i 0.331939 + 0.658070i
\(106\) 0 0
\(107\) −114226. + 65948.6i −0.964509 + 0.556860i −0.897558 0.440896i \(-0.854661\pi\)
−0.0669515 + 0.997756i \(0.521327\pi\)
\(108\) 0 0
\(109\) −47778.9 + 82755.5i −0.385186 + 0.667161i −0.991795 0.127839i \(-0.959196\pi\)
0.606609 + 0.795000i \(0.292529\pi\)
\(110\) 0 0
\(111\) 76344.2 0.588124
\(112\) 0 0
\(113\) −37554.2 −0.276670 −0.138335 0.990385i \(-0.544175\pi\)
−0.138335 + 0.990385i \(0.544175\pi\)
\(114\) 0 0
\(115\) −137669. + 238450.i −0.970714 + 1.68133i
\(116\) 0 0
\(117\) 125673. 72557.4i 0.848746 0.490024i
\(118\) 0 0
\(119\) 196872. + 11120.6i 1.27443 + 0.0719881i
\(120\) 0 0
\(121\) −68739.3 119060.i −0.426817 0.739269i
\(122\) 0 0
\(123\) 145666. + 84100.6i 0.868154 + 0.501229i
\(124\) 0 0
\(125\) 79103.3i 0.452814i
\(126\) 0 0
\(127\) 358280.i 1.97112i −0.169318 0.985561i \(-0.554156\pi\)
0.169318 0.985561i \(-0.445844\pi\)
\(128\) 0 0
\(129\) −149104. 86085.0i −0.788885 0.455463i
\(130\) 0 0
\(131\) −83435.9 144515.i −0.424790 0.735758i 0.571611 0.820525i \(-0.306319\pi\)
−0.996401 + 0.0847668i \(0.972985\pi\)
\(132\) 0 0
\(133\) −191722. 125617.i −0.939818 0.615773i
\(134\) 0 0
\(135\) 225751. 130337.i 1.06609 0.615509i
\(136\) 0 0
\(137\) 127404. 220670.i 0.579937 1.00448i −0.415548 0.909571i \(-0.636410\pi\)
0.995486 0.0949100i \(-0.0302563\pi\)
\(138\) 0 0
\(139\) 190751. 0.837393 0.418696 0.908126i \(-0.362487\pi\)
0.418696 + 0.908126i \(0.362487\pi\)
\(140\) 0 0
\(141\) 63395.3 0.268540
\(142\) 0 0
\(143\) 68402.5 118477.i 0.279725 0.484499i
\(144\) 0 0
\(145\) 165206. 95381.6i 0.652537 0.376743i
\(146\) 0 0
\(147\) 60077.3 + 137944.i 0.229307 + 0.526514i
\(148\) 0 0
\(149\) 43686.8 + 75667.7i 0.161207 + 0.279219i 0.935302 0.353851i \(-0.115128\pi\)
−0.774095 + 0.633070i \(0.781795\pi\)
\(150\) 0 0
\(151\) −158556. 91542.4i −0.565901 0.326723i 0.189610 0.981860i \(-0.439278\pi\)
−0.755511 + 0.655136i \(0.772611\pi\)
\(152\) 0 0
\(153\) 247709.i 0.855488i
\(154\) 0 0
\(155\) 443330.i 1.48217i
\(156\) 0 0
\(157\) −259967. 150092.i −0.841724 0.485969i 0.0161260 0.999870i \(-0.494867\pi\)
−0.857850 + 0.513901i \(0.828200\pi\)
\(158\) 0 0
\(159\) −112631. 195083.i −0.353318 0.611965i
\(160\) 0 0
\(161\) −272666. + 416154.i −0.829023 + 1.26529i
\(162\) 0 0
\(163\) 514813. 297227.i 1.51768 0.876233i 0.517897 0.855443i \(-0.326715\pi\)
0.999784 0.0207905i \(-0.00661829\pi\)
\(164\) 0 0
\(165\) 49305.5 85399.6i 0.140989 0.244200i
\(166\) 0 0
\(167\) −336959. −0.934946 −0.467473 0.884007i \(-0.654835\pi\)
−0.467473 + 0.884007i \(0.654835\pi\)
\(168\) 0 0
\(169\) −422671. −1.13838
\(170\) 0 0
\(171\) −143969. + 249362.i −0.376513 + 0.652139i
\(172\) 0 0
\(173\) −65047.1 + 37555.0i −0.165239 + 0.0954008i −0.580339 0.814375i \(-0.697080\pi\)
0.415100 + 0.909776i \(0.363747\pi\)
\(174\) 0 0
\(175\) −14786.8 + 261777.i −0.0364989 + 0.646154i
\(176\) 0 0
\(177\) −5781.05 10013.1i −0.0138699 0.0240234i
\(178\) 0 0
\(179\) −160495. 92661.7i −0.374393 0.216156i 0.300983 0.953630i \(-0.402685\pi\)
−0.675376 + 0.737473i \(0.736019\pi\)
\(180\) 0 0
\(181\) 302350.i 0.685984i −0.939338 0.342992i \(-0.888560\pi\)
0.939338 0.342992i \(-0.111440\pi\)
\(182\) 0 0
\(183\) 214362.i 0.473173i
\(184\) 0 0
\(185\) 529877. + 305925.i 1.13827 + 0.657181i
\(186\) 0 0
\(187\) −116762. 202238.i −0.244174 0.422921i
\(188\) 0 0
\(189\) 420556. 212134.i 0.856386 0.431973i
\(190\) 0 0
\(191\) 779856. 450250.i 1.54679 0.893039i 0.548405 0.836213i \(-0.315235\pi\)
0.998384 0.0568265i \(-0.0180982\pi\)
\(192\) 0 0
\(193\) 308039. 533539.i 0.595268 1.03103i −0.398242 0.917281i \(-0.630379\pi\)
0.993509 0.113753i \(-0.0362873\pi\)
\(194\) 0 0
\(195\) −572301. −1.07780
\(196\) 0 0
\(197\) −698830. −1.28294 −0.641469 0.767149i \(-0.721675\pi\)
−0.641469 + 0.767149i \(0.721675\pi\)
\(198\) 0 0
\(199\) −364105. + 630648.i −0.651769 + 1.12890i 0.330924 + 0.943657i \(0.392639\pi\)
−0.982693 + 0.185240i \(0.940694\pi\)
\(200\) 0 0
\(201\) 127612. 73677.0i 0.222793 0.128630i
\(202\) 0 0
\(203\) 307766. 155241.i 0.524179 0.264403i
\(204\) 0 0
\(205\) 674011. + 1.16742e6i 1.12017 + 1.94018i
\(206\) 0 0
\(207\) 541268. + 312501.i 0.877983 + 0.506904i
\(208\) 0 0
\(209\) 271450.i 0.429857i
\(210\) 0 0
\(211\) 504855.i 0.780657i 0.920676 + 0.390329i \(0.127639\pi\)
−0.920676 + 0.390329i \(0.872361\pi\)
\(212\) 0 0
\(213\) −200214. 115593.i −0.302374 0.174576i
\(214\) 0 0
\(215\) −689915. 1.19497e6i −1.01789 1.76303i
\(216\) 0 0
\(217\) −45178.1 + 799806.i −0.0651297 + 1.15302i
\(218\) 0 0
\(219\) −80963.4 + 46744.2i −0.114072 + 0.0658594i
\(220\) 0 0
\(221\) −677644. + 1.17371e6i −0.933299 + 1.61652i
\(222\) 0 0
\(223\) −1.06011e6 −1.42755 −0.713774 0.700377i \(-0.753015\pi\)
−0.713774 + 0.700377i \(0.753015\pi\)
\(224\) 0 0
\(225\) 329374. 0.433743
\(226\) 0 0
\(227\) −463410. + 802650.i −0.596899 + 1.03386i 0.396377 + 0.918088i \(0.370267\pi\)
−0.993276 + 0.115772i \(0.963066\pi\)
\(228\) 0 0
\(229\) 894784. 516604.i 1.12753 0.650982i 0.184221 0.982885i \(-0.441024\pi\)
0.943314 + 0.331903i \(0.107691\pi\)
\(230\) 0 0
\(231\) 97654.2 149044.i 0.120410 0.183774i
\(232\) 0 0
\(233\) 338884. + 586964.i 0.408941 + 0.708307i 0.994771 0.102127i \(-0.0325648\pi\)
−0.585830 + 0.810434i \(0.699231\pi\)
\(234\) 0 0
\(235\) 440003. + 254036.i 0.519740 + 0.300072i
\(236\) 0 0
\(237\) 153943.i 0.178029i
\(238\) 0 0
\(239\) 447964.i 0.507281i 0.967299 + 0.253640i \(0.0816280\pi\)
−0.967299 + 0.253640i \(0.918372\pi\)
\(240\) 0 0
\(241\) 290776. + 167880.i 0.322490 + 0.186190i 0.652502 0.757787i \(-0.273719\pi\)
−0.330012 + 0.943977i \(0.607053\pi\)
\(242\) 0 0
\(243\) −472998. 819257.i −0.513859 0.890029i
\(244\) 0 0
\(245\) −135793. + 1.19816e6i −0.144531 + 1.27526i
\(246\) 0 0
\(247\) 1.36433e6 787696.i 1.42291 0.821517i
\(248\) 0 0
\(249\) 241648. 418546.i 0.246993 0.427804i
\(250\) 0 0
\(251\) −702313. −0.703633 −0.351816 0.936069i \(-0.614436\pi\)
−0.351816 + 0.936069i \(0.614436\pi\)
\(252\) 0 0
\(253\) 589212. 0.578722
\(254\) 0 0
\(255\) −488455. + 846029.i −0.470408 + 0.814770i
\(256\) 0 0
\(257\) −264047. + 152448.i −0.249372 + 0.143975i −0.619477 0.785015i \(-0.712655\pi\)
0.370104 + 0.928990i \(0.379322\pi\)
\(258\) 0 0
\(259\) 924768. + 605912.i 0.856610 + 0.561255i
\(260\) 0 0
\(261\) −216511. 375008.i −0.196734 0.340753i
\(262\) 0 0
\(263\) −1.64193e6 947969.i −1.46375 0.845094i −0.464563 0.885540i \(-0.653789\pi\)
−0.999182 + 0.0404463i \(0.987122\pi\)
\(264\) 0 0
\(265\) 1.80533e6i 1.57922i
\(266\) 0 0
\(267\) 274610.i 0.235743i
\(268\) 0 0
\(269\) −1.34017e6 773746.i −1.12922 0.651955i −0.185481 0.982648i \(-0.559384\pi\)
−0.943738 + 0.330693i \(0.892718\pi\)
\(270\) 0 0
\(271\) 783413. + 1.35691e6i 0.647989 + 1.12235i 0.983602 + 0.180350i \(0.0577231\pi\)
−0.335613 + 0.942000i \(0.608944\pi\)
\(272\) 0 0
\(273\) −1.03248e6 58321.0i −0.838446 0.0473607i
\(274\) 0 0
\(275\) 268912. 155256.i 0.214426 0.123799i
\(276\) 0 0
\(277\) 938471. 1.62548e6i 0.734888 1.27286i −0.219884 0.975526i \(-0.570568\pi\)
0.954772 0.297338i \(-0.0960988\pi\)
\(278\) 0 0
\(279\) 1.00634e6 0.773985
\(280\) 0 0
\(281\) −1.48022e6 −1.11831 −0.559155 0.829063i \(-0.688874\pi\)
−0.559155 + 0.829063i \(0.688874\pi\)
\(282\) 0 0
\(283\) 186755. 323469.i 0.138614 0.240086i −0.788358 0.615216i \(-0.789069\pi\)
0.926972 + 0.375130i \(0.122402\pi\)
\(284\) 0 0
\(285\) 983429. 567783.i 0.717184 0.414067i
\(286\) 0 0
\(287\) 1.09701e6 + 2.17482e6i 0.786149 + 1.55854i
\(288\) 0 0
\(289\) 446801. + 773883.i 0.314681 + 0.545043i
\(290\) 0 0
\(291\) −544395. 314306.i −0.376861 0.217581i
\(292\) 0 0
\(293\) 1.51194e6i 1.02888i 0.857525 + 0.514442i \(0.172001\pi\)
−0.857525 + 0.514442i \(0.827999\pi\)
\(294\) 0 0
\(295\) 92662.7i 0.0619941i
\(296\) 0 0
\(297\) −483098. 278917.i −0.317793 0.183478i
\(298\) 0 0
\(299\) −1.70978e6 2.96143e6i −1.10602 1.91568i
\(300\) 0 0
\(301\) −1.12289e6 2.22613e6i −0.714368 1.41623i
\(302\) 0 0
\(303\) 494804. 285675.i 0.309618 0.178758i
\(304\) 0 0
\(305\) −858986. + 1.48781e6i −0.528733 + 0.915792i
\(306\) 0 0
\(307\) 1.02264e6 0.619267 0.309634 0.950856i \(-0.399794\pi\)
0.309634 + 0.950856i \(0.399794\pi\)
\(308\) 0 0
\(309\) 964254. 0.574507
\(310\) 0 0
\(311\) −531329. + 920288.i −0.311503 + 0.539539i −0.978688 0.205353i \(-0.934166\pi\)
0.667185 + 0.744892i \(0.267499\pi\)
\(312\) 0 0
\(313\) 309475. 178676.i 0.178552 0.103087i −0.408060 0.912955i \(-0.633795\pi\)
0.586612 + 0.809868i \(0.300461\pi\)
\(314\) 0 0
\(315\) 1.51238e6 + 85428.8i 0.858785 + 0.0485096i
\(316\) 0 0
\(317\) −216990. 375838.i −0.121281 0.210064i 0.798992 0.601341i \(-0.205367\pi\)
−0.920273 + 0.391277i \(0.872033\pi\)
\(318\) 0 0
\(319\) −353534. 204113.i −0.194515 0.112304i
\(320\) 0 0
\(321\) 1.18076e6i 0.639588i
\(322\) 0 0
\(323\) 2.68918e6i 1.43421i
\(324\) 0 0
\(325\) −1.56066e6 901048.i −0.819597 0.473194i
\(326\) 0 0
\(327\) −427724. 740840.i −0.221205 0.383138i
\(328\) 0 0
\(329\) 767916. + 503142.i 0.391132 + 0.256272i
\(330\) 0 0
\(331\) 2.85104e6 1.64605e6i 1.43032 0.825795i 0.433174 0.901310i \(-0.357394\pi\)
0.997145 + 0.0755155i \(0.0240602\pi\)
\(332\) 0 0
\(333\) 694432. 1.20279e6i 0.343178 0.594401i
\(334\) 0 0
\(335\) 1.18095e6 0.574934
\(336\) 0 0
\(337\) 1.52754e6 0.732684 0.366342 0.930480i \(-0.380610\pi\)
0.366342 + 0.930480i \(0.380610\pi\)
\(338\) 0 0
\(339\) 168096. 291150.i 0.0794433 0.137600i
\(340\) 0 0
\(341\) 821606. 474355.i 0.382629 0.220911i
\(342\) 0 0
\(343\) −367082. + 2.14775e6i −0.168472 + 0.985706i
\(344\) 0 0
\(345\) −1.23243e6 2.13464e6i −0.557463 0.965554i
\(346\) 0 0
\(347\) 1.14392e6 + 660441.i 0.510001 + 0.294449i 0.732834 0.680407i \(-0.238197\pi\)
−0.222833 + 0.974857i \(0.571530\pi\)
\(348\) 0 0
\(349\) 196028.i 0.0861498i 0.999072 + 0.0430749i \(0.0137154\pi\)
−0.999072 + 0.0430749i \(0.986285\pi\)
\(350\) 0 0
\(351\) 3.23745e6i 1.40261i
\(352\) 0 0
\(353\) −3.86551e6 2.23176e6i −1.65109 0.953257i −0.976625 0.214948i \(-0.931042\pi\)
−0.674463 0.738308i \(-0.735625\pi\)
\(354\) 0 0
\(355\) −926406. 1.60458e6i −0.390149 0.675758i
\(356\) 0 0
\(357\) −967431. + 1.47653e6i −0.401744 + 0.613158i
\(358\) 0 0
\(359\) −2.97445e6 + 1.71730e6i −1.21806 + 0.703250i −0.964504 0.264069i \(-0.914935\pi\)
−0.253561 + 0.967319i \(0.581602\pi\)
\(360\) 0 0
\(361\) −324907. + 562756.i −0.131217 + 0.227275i
\(362\) 0 0
\(363\) 1.23073e6 0.490226
\(364\) 0 0
\(365\) −749249. −0.294370
\(366\) 0 0
\(367\) 71351.3 123584.i 0.0276527 0.0478958i −0.851868 0.523757i \(-0.824530\pi\)
0.879521 + 0.475861i \(0.157863\pi\)
\(368\) 0 0
\(369\) 2.64998e6 1.52997e6i 1.01316 0.584947i
\(370\) 0 0
\(371\) 183975. 3.25698e6i 0.0693942 1.22851i
\(372\) 0 0
\(373\) 994539. + 1.72259e6i 0.370126 + 0.641077i 0.989585 0.143952i \(-0.0459811\pi\)
−0.619458 + 0.785029i \(0.712648\pi\)
\(374\) 0 0
\(375\) 613272. + 354073.i 0.225203 + 0.130021i
\(376\) 0 0
\(377\) 2.36919e6i 0.858511i
\(378\) 0 0
\(379\) 2.27226e6i 0.812568i 0.913747 + 0.406284i \(0.133176\pi\)
−0.913747 + 0.406284i \(0.866824\pi\)
\(380\) 0 0
\(381\) 2.77767e6 + 1.60369e6i 0.980323 + 0.565989i
\(382\) 0 0
\(383\) 752460. + 1.30330e6i 0.262112 + 0.453991i 0.966803 0.255523i \(-0.0822478\pi\)
−0.704691 + 0.709514i \(0.748914\pi\)
\(384\) 0 0
\(385\) 1.27503e6 643141.i 0.438397 0.221133i
\(386\) 0 0
\(387\) −2.71251e6 + 1.56607e6i −0.920649 + 0.531537i
\(388\) 0 0
\(389\) −1.41991e6 + 2.45936e6i −0.475759 + 0.824039i −0.999614 0.0277686i \(-0.991160\pi\)
0.523856 + 0.851807i \(0.324493\pi\)
\(390\) 0 0
\(391\) −5.83715e6 −1.93090
\(392\) 0 0
\(393\) 1.49386e6 0.487898
\(394\) 0 0
\(395\) −616878. + 1.06846e6i −0.198933 + 0.344562i
\(396\) 0 0
\(397\) −2.79588e6 + 1.61420e6i −0.890312 + 0.514022i −0.874045 0.485846i \(-0.838512\pi\)
−0.0162674 + 0.999868i \(0.505178\pi\)
\(398\) 0 0
\(399\) 1.83205e6 924112.i 0.576110 0.290598i
\(400\) 0 0
\(401\) 3.02149e6 + 5.23337e6i 0.938340 + 1.62525i 0.768567 + 0.639769i \(0.220970\pi\)
0.169772 + 0.985483i \(0.445697\pi\)
\(402\) 0 0
\(403\) −4.76829e6 2.75297e6i −1.46251 0.844382i
\(404\) 0 0
\(405\) 505715.i 0.153203i
\(406\) 0 0
\(407\) 1.30933e6i 0.391800i
\(408\) 0 0
\(409\) 2.50759e6 + 1.44776e6i 0.741221 + 0.427944i 0.822513 0.568746i \(-0.192571\pi\)
−0.0812923 + 0.996690i \(0.525905\pi\)
\(410\) 0 0
\(411\) 1.14054e6 + 1.97547e6i 0.333047 + 0.576855i
\(412\) 0 0
\(413\) 9442.91 167172.i 0.00272415 0.0482267i
\(414\) 0 0
\(415\) 3.35437e6 1.93665e6i 0.956073 0.551989i
\(416\) 0 0
\(417\) −853815. + 1.47885e6i −0.240449 + 0.416471i
\(418\) 0 0
\(419\) −3.80628e6 −1.05917 −0.529585 0.848257i \(-0.677652\pi\)
−0.529585 + 0.848257i \(0.677652\pi\)
\(420\) 0 0
\(421\) −4.30950e6 −1.18501 −0.592504 0.805567i \(-0.701861\pi\)
−0.592504 + 0.805567i \(0.701861\pi\)
\(422\) 0 0
\(423\) 576648. 998783.i 0.156697 0.271406i
\(424\) 0 0
\(425\) −2.66403e6 + 1.53808e6i −0.715430 + 0.413053i
\(426\) 0 0
\(427\) −1.70130e6 + 2.59660e6i −0.451556 + 0.689183i
\(428\) 0 0
\(429\) 612350. + 1.06062e6i 0.160641 + 0.278238i
\(430\) 0 0
\(431\) 2.33697e6 + 1.34925e6i 0.605981 + 0.349863i 0.771391 0.636362i \(-0.219561\pi\)
−0.165410 + 0.986225i \(0.552895\pi\)
\(432\) 0 0
\(433\) 3.11101e6i 0.797410i −0.917079 0.398705i \(-0.869460\pi\)
0.917079 0.398705i \(-0.130540\pi\)
\(434\) 0 0
\(435\) 1.70774e6i 0.432712i
\(436\) 0 0
\(437\) 5.87610e6 + 3.39257e6i 1.47192 + 0.849816i
\(438\) 0 0
\(439\) 3.34202e6 + 5.78854e6i 0.827651 + 1.43353i 0.899876 + 0.436146i \(0.143657\pi\)
−0.0722248 + 0.997388i \(0.523010\pi\)
\(440\) 0 0
\(441\) 2.71976e6 + 308242.i 0.665938 + 0.0754736i
\(442\) 0 0
\(443\) 896344. 517505.i 0.217003 0.125287i −0.387559 0.921845i \(-0.626682\pi\)
0.604562 + 0.796558i \(0.293348\pi\)
\(444\) 0 0
\(445\) 1.10041e6 1.90597e6i 0.263424 0.456264i
\(446\) 0 0
\(447\) −782181. −0.185156
\(448\) 0 0
\(449\) 5.42168e6 1.26917 0.634583 0.772855i \(-0.281172\pi\)
0.634583 + 0.772855i \(0.281172\pi\)
\(450\) 0 0
\(451\) 1.44236e6 2.49824e6i 0.333912 0.578352i
\(452\) 0 0
\(453\) 1.41942e6 819502.i 0.324986 0.187631i
\(454\) 0 0
\(455\) −6.93236e6 4.54211e6i −1.56983 1.02856i
\(456\) 0 0
\(457\) −1.38367e6 2.39658e6i −0.309914 0.536786i 0.668429 0.743776i \(-0.266967\pi\)
−0.978343 + 0.206989i \(0.933634\pi\)
\(458\) 0 0
\(459\) 4.78591e6 + 2.76315e6i 1.06031 + 0.612170i
\(460\) 0 0
\(461\) 414792.i 0.0909029i −0.998967 0.0454515i \(-0.985527\pi\)
0.998967 0.0454515i \(-0.0144726\pi\)
\(462\) 0 0
\(463\) 3.28204e6i 0.711526i −0.934576 0.355763i \(-0.884221\pi\)
0.934576 0.355763i \(-0.115779\pi\)
\(464\) 0 0
\(465\) −3.43705e6 1.98438e6i −0.737146 0.425591i
\(466\) 0 0
\(467\) −1.65003e6 2.85793e6i −0.350105 0.606400i 0.636163 0.771555i \(-0.280521\pi\)
−0.986268 + 0.165155i \(0.947187\pi\)
\(468\) 0 0
\(469\) 2.13053e6 + 120346.i 0.447255 + 0.0252638i
\(470\) 0 0
\(471\) 2.32727e6 1.34365e6i 0.483386 0.279083i
\(472\) 0 0
\(473\) −1.47639e6 + 2.55718e6i −0.303423 + 0.525544i
\(474\) 0 0
\(475\) 3.57574e6 0.727164
\(476\) 0 0
\(477\) −4.09801e6 −0.824663
\(478\) 0 0
\(479\) −1.16966e6 + 2.02592e6i −0.232928 + 0.403444i −0.958669 0.284525i \(-0.908164\pi\)
0.725740 + 0.687969i \(0.241497\pi\)
\(480\) 0 0
\(481\) −6.58081e6 + 3.79943e6i −1.29693 + 0.748783i
\(482\) 0 0
\(483\) −2.00588e6 3.97667e6i −0.391235 0.775624i
\(484\) 0 0
\(485\) −2.51896e6 4.36297e6i −0.486258 0.842224i
\(486\) 0 0
\(487\) −2.65756e6 1.53434e6i −0.507763 0.293157i 0.224151 0.974554i \(-0.428039\pi\)
−0.731914 + 0.681398i \(0.761373\pi\)
\(488\) 0 0
\(489\) 5.32165e6i 1.00641i
\(490\) 0 0
\(491\) 4.39524e6i 0.822770i 0.911462 + 0.411385i \(0.134955\pi\)
−0.911462 + 0.411385i \(0.865045\pi\)
\(492\) 0 0
\(493\) 3.50236e6 + 2.02209e6i 0.648997 + 0.374699i
\(494\) 0 0
\(495\) −896972. 1.55360e6i −0.164538 0.284988i
\(496\) 0 0
\(497\) −1.50780e6 2.98921e6i −0.273812 0.542832i
\(498\) 0 0
\(499\) −6.73309e6 + 3.88735e6i −1.21049 + 0.698879i −0.962867 0.269976i \(-0.912984\pi\)
−0.247627 + 0.968855i \(0.579651\pi\)
\(500\) 0 0
\(501\) 1.50826e6 2.61238e6i 0.268461 0.464988i
\(502\) 0 0
\(503\) 5.37075e6 0.946488 0.473244 0.880931i \(-0.343083\pi\)
0.473244 + 0.880931i \(0.343083\pi\)
\(504\) 0 0
\(505\) 4.57900e6 0.798991
\(506\) 0 0
\(507\) 1.89191e6 3.27688e6i 0.326874 0.566162i
\(508\) 0 0
\(509\) 1.89203e6 1.09236e6i 0.323693 0.186884i −0.329344 0.944210i \(-0.606828\pi\)
0.653037 + 0.757326i \(0.273494\pi\)
\(510\) 0 0
\(511\) −1.35171e6 76353.2i −0.228998 0.0129352i
\(512\) 0 0
\(513\) −3.21189e6 5.56316e6i −0.538850 0.933316i
\(514\) 0 0
\(515\) 6.69253e6 + 3.86393e6i 1.11192 + 0.641965i
\(516\) 0 0
\(517\) 1.08725e6i 0.178898i
\(518\) 0 0
\(519\) 672396.i 0.109574i
\(520\) 0 0
\(521\) −4.30421e6 2.48504e6i −0.694703 0.401087i 0.110669 0.993857i \(-0.464701\pi\)
−0.805371 + 0.592771i \(0.798034\pi\)
\(522\) 0 0
\(523\) 5.88630e6 + 1.01954e7i 0.940997 + 1.62985i 0.763575 + 0.645719i \(0.223442\pi\)
0.177422 + 0.984135i \(0.443224\pi\)
\(524\) 0 0
\(525\) −1.96331e6 1.28637e6i −0.310879 0.203689i
\(526\) 0 0
\(527\) −8.13941e6 + 4.69929e6i −1.27663 + 0.737065i
\(528\) 0 0
\(529\) 4.14576e6 7.18067e6i 0.644118 1.11564i
\(530\) 0 0
\(531\) −210339. −0.0323731
\(532\) 0 0
\(533\) −1.67418e7 −2.55260
\(534\) 0 0
\(535\) 4.73153e6 8.19525e6i 0.714689 1.23788i
\(536\) 0 0
\(537\) 1.43677e6 829522.i 0.215007 0.124134i
\(538\) 0 0
\(539\) 2.36580e6 1.03035e6i 0.350756 0.152761i
\(540\) 0 0
\(541\) −3.23323e6 5.60011e6i −0.474945 0.822628i 0.524644 0.851322i \(-0.324199\pi\)
−0.999588 + 0.0286937i \(0.990865\pi\)
\(542\) 0 0
\(543\) 2.34406e6 + 1.35334e6i 0.341169 + 0.196974i
\(544\) 0 0
\(545\) 6.85586e6i 0.988715i
\(546\) 0 0
\(547\) 1.14808e7i 1.64061i −0.571927 0.820305i \(-0.693804\pi\)
0.571927 0.820305i \(-0.306196\pi\)
\(548\) 0 0
\(549\) 3.37724e6 + 1.94985e6i 0.478224 + 0.276103i
\(550\) 0 0
\(551\) −2.35048e6 4.07116e6i −0.329821 0.571267i
\(552\) 0 0
\(553\) −1.22178e6 + 1.86474e6i −0.169895 + 0.259301i
\(554\) 0 0
\(555\) −4.74354e6 + 2.73869e6i −0.653688 + 0.377407i
\(556\) 0 0
\(557\) 4.53151e6 7.84880e6i 0.618877 1.07193i −0.370814 0.928707i \(-0.620921\pi\)
0.989691 0.143220i \(-0.0457455\pi\)
\(558\) 0 0
\(559\) 1.71368e7 2.31953
\(560\) 0 0
\(561\) 2.09055e6 0.280449
\(562\) 0 0
\(563\) 1.32480e6 2.29462e6i 0.176148 0.305098i −0.764410 0.644731i \(-0.776969\pi\)
0.940558 + 0.339633i \(0.110303\pi\)
\(564\) 0 0
\(565\) 2.33338e6 1.34718e6i 0.307513 0.177543i
\(566\) 0 0
\(567\) 51535.5 912353.i 0.00673207 0.119181i
\(568\) 0 0
\(569\) −4.54125e6 7.86567e6i −0.588023 1.01849i −0.994491 0.104821i \(-0.966573\pi\)
0.406468 0.913665i \(-0.366760\pi\)
\(570\) 0 0
\(571\) −1.33094e6 768420.i −0.170832 0.0986299i 0.412146 0.911118i \(-0.364779\pi\)
−0.582978 + 0.812488i \(0.698113\pi\)
\(572\) 0 0
\(573\) 8.06142e6i 1.02571i
\(574\) 0 0
\(575\) 7.76153e6i 0.978989i
\(576\) 0 0
\(577\) 3.66985e6 + 2.11879e6i 0.458890 + 0.264940i 0.711577 0.702608i \(-0.247981\pi\)
−0.252688 + 0.967548i \(0.581314\pi\)
\(578\) 0 0
\(579\) 2.75761e6 + 4.77633e6i 0.341851 + 0.592103i
\(580\) 0 0
\(581\) 6.24894e6 3.15205e6i 0.768008 0.387394i
\(582\) 0 0
\(583\) −3.34575e6 + 1.93167e6i −0.407682 + 0.235376i
\(584\) 0 0
\(585\) −5.20568e6 + 9.01651e6i −0.628909 + 1.08930i
\(586\) 0 0
\(587\) 1.20181e7 1.43960 0.719799 0.694182i \(-0.244234\pi\)
0.719799 + 0.694182i \(0.244234\pi\)
\(588\) 0 0
\(589\) 1.09250e7 1.29757
\(590\) 0 0
\(591\) 3.12802e6 5.41789e6i 0.368384 0.638059i
\(592\) 0 0
\(593\) −1.24383e7 + 7.18125e6i −1.45253 + 0.838617i −0.998624 0.0524350i \(-0.983302\pi\)
−0.453902 + 0.891052i \(0.649968\pi\)
\(594\) 0 0
\(595\) −1.26313e7 + 6.37141e6i −1.46270 + 0.737807i
\(596\) 0 0
\(597\) −3.25952e6 5.64566e6i −0.374299 0.648304i
\(598\) 0 0
\(599\) −9.17016e6 5.29439e6i −1.04426 0.602905i −0.123225 0.992379i \(-0.539324\pi\)
−0.921038 + 0.389473i \(0.872657\pi\)
\(600\) 0 0
\(601\) 2.68606e6i 0.303340i −0.988431 0.151670i \(-0.951535\pi\)
0.988431 0.151670i \(-0.0484652\pi\)
\(602\) 0 0
\(603\) 2.68068e6i 0.300229i
\(604\) 0 0
\(605\) 8.54205e6 + 4.93175e6i 0.948797 + 0.547788i
\(606\) 0 0
\(607\) 4.01156e6 + 6.94823e6i 0.441918 + 0.765425i 0.997832 0.0658153i \(-0.0209648\pi\)
−0.555914 + 0.831240i \(0.687631\pi\)
\(608\) 0 0
\(609\) −174030. + 3.08092e6i −0.0190143 + 0.336617i
\(610\) 0 0
\(611\) −5.46462e6 + 3.15500e6i −0.592185 + 0.341898i
\(612\) 0 0
\(613\) −4.11201e6 + 7.12221e6i −0.441980 + 0.765533i −0.997836 0.0657460i \(-0.979057\pi\)
0.555856 + 0.831279i \(0.312391\pi\)
\(614\) 0 0
\(615\) −1.20677e7 −1.28658
\(616\) 0 0
\(617\) 1.44777e7 1.53104 0.765519 0.643414i \(-0.222482\pi\)
0.765519 + 0.643414i \(0.222482\pi\)
\(618\) 0 0
\(619\) −5.90572e6 + 1.02290e7i −0.619507 + 1.07302i 0.370068 + 0.929004i \(0.379334\pi\)
−0.989576 + 0.144014i \(0.953999\pi\)
\(620\) 0 0
\(621\) −1.20755e7 + 6.97177e6i −1.25653 + 0.725460i
\(622\) 0 0
\(623\) 2.17947e6 3.32639e6i 0.224973 0.343363i
\(624\) 0 0
\(625\) 5.99774e6 + 1.03884e7i 0.614168 + 1.06377i
\(626\) 0 0
\(627\) −2.10450e6 1.21503e6i −0.213786 0.123430i
\(628\) 0 0
\(629\) 1.29712e7i 1.30723i
\(630\) 0 0
\(631\) 1.17328e7i 1.17308i −0.809920 0.586540i \(-0.800490\pi\)
0.809920 0.586540i \(-0.199510\pi\)
\(632\) 0 0
\(633\) −3.91404e6 2.25977e6i −0.388254 0.224158i
\(634\) 0 0
\(635\) 1.28525e7 + 2.22613e7i 1.26490 + 2.19086i
\(636\) 0 0
\(637\) −1.20437e7 8.90081e6i −1.17601 0.869122i
\(638\) 0 0
\(639\) −3.64231e6 + 2.10289e6i −0.352879 + 0.203735i
\(640\) 0 0
\(641\) 380293. 658688.i 0.0365573 0.0633190i −0.847168 0.531325i \(-0.821694\pi\)
0.883725 + 0.468006i \(0.155028\pi\)
\(642\) 0 0
\(643\) −6.37262e6 −0.607842 −0.303921 0.952697i \(-0.598296\pi\)
−0.303921 + 0.952697i \(0.598296\pi\)
\(644\) 0 0
\(645\) 1.23525e7 1.16911
\(646\) 0 0
\(647\) 3.94167e6 6.82717e6i 0.370185 0.641180i −0.619408 0.785069i \(-0.712628\pi\)
0.989594 + 0.143889i \(0.0459608\pi\)
\(648\) 0 0
\(649\) −171728. + 99147.3i −0.0160040 + 0.00923994i
\(650\) 0 0
\(651\) −5.99851e6 3.93025e6i −0.554742 0.363470i
\(652\) 0 0
\(653\) 609680. + 1.05600e6i 0.0559524 + 0.0969124i 0.892645 0.450761i \(-0.148847\pi\)
−0.836693 + 0.547673i \(0.815514\pi\)
\(654\) 0 0
\(655\) 1.03683e7 + 5.98617e6i 0.944292 + 0.545187i
\(656\) 0 0
\(657\) 1.70075e6i 0.153719i
\(658\) 0 0
\(659\) 7.56715e6i 0.678764i 0.940649 + 0.339382i \(0.110218\pi\)
−0.940649 + 0.339382i \(0.889782\pi\)
\(660\) 0 0
\(661\) −3.69564e6 2.13368e6i −0.328993 0.189944i 0.326401 0.945231i \(-0.394164\pi\)
−0.655394 + 0.755287i \(0.727497\pi\)
\(662\) 0 0
\(663\) −6.06637e6 1.05073e7i −0.535976 0.928338i
\(664\) 0 0
\(665\) 1.64187e7 + 927431.i 1.43974 + 0.0813256i
\(666\) 0 0
\(667\) −8.83689e6 + 5.10198e6i −0.769103 + 0.444042i
\(668\) 0 0
\(669\) 4.74515e6 8.21885e6i 0.409907 0.709979i
\(670\) 0 0
\(671\) 3.67639e6 0.315221
\(672\) 0 0
\(673\) −1.12574e7 −0.958075 −0.479038 0.877794i \(-0.659014\pi\)
−0.479038 + 0.877794i \(0.659014\pi\)
\(674\) 0 0
\(675\) −3.67410e6 + 6.36372e6i −0.310378 + 0.537591i
\(676\) 0 0
\(677\) 1.59919e7 9.23295e6i 1.34100 0.774228i 0.354047 0.935228i \(-0.384805\pi\)
0.986954 + 0.161000i \(0.0514719\pi\)
\(678\) 0 0
\(679\) −4.09981e6 8.12787e6i −0.341263 0.676554i
\(680\) 0 0
\(681\) −4.14852e6 7.18545e6i −0.342788 0.593726i
\(682\) 0 0
\(683\) −1.37655e6 794751.i −0.112912 0.0651898i 0.442480 0.896778i \(-0.354099\pi\)
−0.555392 + 0.831588i \(0.687432\pi\)
\(684\) 0 0
\(685\) 1.82814e7i 1.48861i
\(686\) 0 0
\(687\) 9.24944e6i 0.747694i
\(688\) 0 0
\(689\) 1.94174e7 + 1.12107e7i 1.55828 + 0.899671i
\(690\) 0 0
\(691\) −2.78270e6 4.81977e6i −0.221703 0.384000i 0.733623 0.679557i \(-0.237828\pi\)
−0.955325 + 0.295557i \(0.904495\pi\)
\(692\) 0 0
\(693\) −1.45989e6 2.89424e6i −0.115475 0.228929i
\(694\) 0 0
\(695\) −1.18520e7 + 6.84277e6i −0.930745 + 0.537366i
\(696\) 0 0
\(697\) −1.42890e7 + 2.47493e7i −1.11409 + 1.92966i
\(698\) 0 0
\(699\) −6.06748e6 −0.469694
\(700\) 0 0
\(701\) −1.20878e7 −0.929078 −0.464539 0.885553i \(-0.653780\pi\)
−0.464539 + 0.885553i \(0.653780\pi\)
\(702\) 0 0
\(703\) 7.53888e6 1.30577e7i 0.575332 0.996504i
\(704\) 0 0
\(705\) −3.93898e6 + 2.27417e6i −0.298477 + 0.172326i
\(706\) 0 0
\(707\) 8.26091e6 + 466629.i 0.621555 + 0.0351094i
\(708\) 0 0
\(709\) 7.90276e6 + 1.36880e7i 0.590423 + 1.02264i 0.994175 + 0.107775i \(0.0343725\pi\)
−0.403752 + 0.914868i \(0.632294\pi\)
\(710\) 0 0
\(711\) 2.42535e6 + 1.40028e6i 0.179929 + 0.103882i
\(712\) 0 0
\(713\) 2.37138e7i 1.74694i
\(714\) 0 0
\(715\) 9.81517e6i 0.718014i
\(716\) 0 0
\(717\) −3.47297e6 2.00512e6i −0.252292 0.145661i
\(718\) 0 0
\(719\) 1.05303e7 + 1.82391e7i 0.759661 + 1.31577i 0.943023 + 0.332726i \(0.107969\pi\)
−0.183362 + 0.983045i \(0.558698\pi\)
\(720\) 0 0
\(721\) 1.16801e7 + 7.65288e6i 0.836778 + 0.548260i
\(722\) 0 0
\(723\) −2.60308e6 + 1.50289e6i −0.185200 + 0.106925i
\(724\) 0 0
\(725\) −2.68872e6 + 4.65701e6i −0.189977 + 0.329050i
\(726\) 0 0
\(727\) −1.07408e7 −0.753701 −0.376851 0.926274i \(-0.622993\pi\)
−0.376851 + 0.926274i \(0.622993\pi\)
\(728\) 0 0
\(729\) 6.75587e6 0.470828
\(730\) 0 0
\(731\) 1.46262e7 2.53333e7i 1.01237 1.75347i
\(732\) 0 0
\(733\) −9.60458e6 + 5.54520e6i −0.660265 + 0.381204i −0.792378 0.610030i \(-0.791157\pi\)
0.132113 + 0.991235i \(0.457824\pi\)
\(734\) 0 0
\(735\) −8.68127e6 6.41583e6i −0.592741 0.438061i
\(736\) 0 0
\(737\) −1.26359e6 2.18860e6i −0.0856914 0.148422i
\(738\) 0 0
\(739\) −8.76469e6 5.06030e6i −0.590372 0.340851i 0.174873 0.984591i \(-0.444049\pi\)
−0.765244 + 0.643740i \(0.777382\pi\)
\(740\) 0 0
\(741\) 1.41032e7i 0.943563i
\(742\) 0 0
\(743\) 1.69668e7i 1.12753i 0.825934 + 0.563766i \(0.190648\pi\)
−0.825934 + 0.563766i \(0.809352\pi\)
\(744\) 0 0
\(745\) −5.42883e6 3.13434e6i −0.358357 0.206897i
\(746\) 0 0
\(747\) −4.39609e6 7.61424e6i −0.288247 0.499258i
\(748\) 0 0
\(749\) 9.37123e6 1.43028e7i 0.610368 0.931569i
\(750\) 0 0
\(751\) 662389. 382431.i 0.0428562 0.0247430i −0.478419 0.878132i \(-0.658790\pi\)
0.521275 + 0.853389i \(0.325457\pi\)
\(752\) 0 0
\(753\) 3.14361e6 5.44489e6i 0.202042 0.349946i
\(754\) 0 0
\(755\) 1.31356e7 0.838650
\(756\) 0 0
\(757\) −1.42566e7 −0.904223 −0.452112 0.891961i \(-0.649329\pi\)
−0.452112 + 0.891961i \(0.649329\pi\)
\(758\) 0 0
\(759\) −2.63736e6 + 4.56804e6i −0.166175 + 0.287823i
\(760\) 0 0
\(761\) 4.44249e6 2.56487e6i 0.278077 0.160548i −0.354476 0.935065i \(-0.615341\pi\)
0.632552 + 0.774518i \(0.282007\pi\)
\(762\) 0 0
\(763\) 698655. 1.23686e7i 0.0434462 0.769145i
\(764\) 0 0
\(765\) 8.88604e6 + 1.53911e7i 0.548978 + 0.950857i
\(766\) 0 0
\(767\) 996644. + 575413.i 0.0611719 + 0.0353176i
\(768\) 0 0
\(769\) 2.22364e7i 1.35596i −0.735079 0.677982i \(-0.762855\pi\)
0.735079 0.677982i \(-0.237145\pi\)
\(770\) 0 0
\(771\) 2.72947e6i 0.165365i
\(772\) 0 0
\(773\) −2.52779e7 1.45942e7i −1.52157 0.878480i −0.999676 0.0254706i \(-0.991892\pi\)
−0.521896 0.853009i \(-0.674775\pi\)
\(774\) 0 0
\(775\) −6.24855e6 1.08228e7i −0.373701 0.647270i
\(776\) 0 0
\(777\) −8.83685e6 + 4.45743e6i −0.525103 + 0.264869i
\(778\) 0 0
\(779\) 2.87687e7 1.66096e7i 1.69854 0.980654i
\(780\) 0 0
\(781\) −1.98247e6 + 3.43374e6i −0.116300 + 0.201437i
\(782\) 0 0
\(783\) 9.66054e6 0.563115
\(784\) 0 0
\(785\) 2.15369e7 1.24741
\(786\) 0 0
\(787\) 7.68832e6 1.33166e7i 0.442481 0.766399i −0.555392 0.831589i \(-0.687432\pi\)
0.997873 + 0.0651893i \(0.0207651\pi\)
\(788\) 0 0
\(789\) 1.46988e7 8.48637e6i 0.840601 0.485321i
\(790\) 0 0
\(791\) 4.34690e6 2.19264e6i 0.247024 0.124602i
\(792\) 0 0
\(793\) −1.06682e7 1.84778e7i −0.602431 1.04344i
\(794\) 0 0
\(795\) 1.39964e7 + 8.08081e6i 0.785412 + 0.453458i
\(796\) 0 0
\(797\) 1.57429e7i 0.877887i −0.898515 0.438943i \(-0.855353\pi\)
0.898515 0.438943i \(-0.144647\pi\)
\(798\) 0 0
\(799\) 1.07711e7i 0.596888i
\(800\) 0 0
\(801\) −4.32645e6 2.49787e6i −0.238259 0.137559i
\(802\) 0 0
\(803\) 801681. + 1.38855e6i 0.0438746 + 0.0759930i
\(804\) 0 0
\(805\) 2.01309e6 3.56385e7i 0.109490 1.93834i
\(806\) 0 0
\(807\) 1.19974e7 6.92670e6i 0.648490 0.374406i
\(808\) 0 0
\(809\) 1.71161e7 2.96460e7i 0.919461 1.59255i 0.119227 0.992867i \(-0.461959\pi\)
0.800235 0.599687i \(-0.204708\pi\)
\(810\) 0 0
\(811\) −2.08905e7 −1.11531 −0.557656 0.830072i \(-0.688299\pi\)
−0.557656 + 0.830072i \(0.688299\pi\)
\(812\) 0 0
\(813\) −1.40265e7 −0.744256
\(814\) 0 0
\(815\) −2.13248e7 + 3.69356e7i −1.12458 + 1.94783i
\(816\) 0 0
\(817\) −2.94475e7 + 1.70015e7i −1.54345 + 0.891114i
\(818\) 0 0
\(819\) −1.03103e7 + 1.57361e7i −0.537110 + 0.819760i
\(820\) 0 0
\(821\) −1.25323e7 2.17066e7i −0.648894 1.12392i −0.983387 0.181519i \(-0.941899\pi\)
0.334494 0.942398i \(-0.391435\pi\)
\(822\) 0 0
\(823\) 1.38348e7 + 7.98750e6i 0.711987 + 0.411066i 0.811796 0.583941i \(-0.198490\pi\)
−0.0998094 + 0.995007i \(0.531823\pi\)
\(824\) 0 0
\(825\) 2.77976e6i 0.142191i
\(826\) 0 0
\(827\) 8.71482e6i 0.443093i −0.975150 0.221546i \(-0.928890\pi\)
0.975150 0.221546i \(-0.0711104\pi\)
\(828\) 0 0
\(829\) 1.71534e7 + 9.90349e6i 0.866887 + 0.500498i 0.866313 0.499502i \(-0.166484\pi\)
0.000574741 1.00000i \(0.499817\pi\)
\(830\) 0 0
\(831\) 8.40134e6 + 1.45515e7i 0.422033 + 0.730982i
\(832\) 0 0
\(833\) −2.34373e7 + 1.02074e7i −1.17029 + 0.509684i
\(834\) 0 0
\(835\) 2.09365e7 1.20877e7i 1.03917 0.599967i
\(836\) 0 0
\(837\) −1.12255e7 + 1.94431e7i −0.553848 + 0.959293i
\(838\) 0 0
\(839\) −2.72849e6 −0.133819 −0.0669094 0.997759i \(-0.521314\pi\)
−0.0669094 + 0.997759i \(0.521314\pi\)
\(840\) 0 0
\(841\) −1.34415e7 −0.655327
\(842\) 0 0
\(843\) 6.62560e6 1.14759e7i 0.321112 0.556182i
\(844\) 0 0
\(845\) 2.62621e7 1.51624e7i 1.26528 0.730511i
\(846\) 0 0
\(847\) 1.49080e7 + 9.76779e6i 0.714021 + 0.467830i
\(848\) 0 0
\(849\) 1.67186e6 + 2.89574e6i 0.0796032 + 0.137877i
\(850\) 0 0
\(851\) −2.83432e7 1.63640e7i −1.34161 0.774577i
\(852\) 0 0
\(853\) 1.50708e7i 0.709194i 0.935019 + 0.354597i \(0.115382\pi\)
−0.935019 + 0.354597i \(0.884618\pi\)
\(854\) 0 0
\(855\) 2.06584e7i 0.966453i
\(856\) 0 0
\(857\) −1.45058e7 8.37495e6i −0.674669 0.389521i 0.123174 0.992385i \(-0.460693\pi\)
−0.797844 + 0.602864i \(0.794026\pi\)
\(858\) 0 0
\(859\) −4.71493e6 8.16649e6i −0.218018 0.377618i 0.736184 0.676781i \(-0.236626\pi\)
−0.954202 + 0.299163i \(0.903292\pi\)
\(860\) 0 0
\(861\) −2.17712e7 1.22978e6i −1.00086 0.0565351i
\(862\) 0 0
\(863\) −5.29346e6 + 3.05618e6i −0.241943 + 0.139686i −0.616069 0.787692i \(-0.711276\pi\)
0.374127 + 0.927378i \(0.377943\pi\)
\(864\) 0 0
\(865\) 2.69441e6 4.66685e6i 0.122440 0.212072i
\(866\) 0 0
\(867\) −7.99967e6 −0.361430
\(868\) 0 0
\(869\) 2.64019e6 0.118600
\(870\) 0 0
\(871\) −7.33339e6 + 1.27018e7i −0.327536 + 0.567309i
\(872\) 0 0
\(873\) −9.90370e6 + 5.71790e6i −0.439807 + 0.253922i
\(874\) 0 0
\(875\) 4.61852e6 + 9.15621e6i 0.203931 + 0.404293i
\(876\) 0 0
\(877\) 9.54078e6 + 1.65251e7i 0.418875 + 0.725513i 0.995827 0.0912652i \(-0.0290911\pi\)
−0.576951 + 0.816779i \(0.695758\pi\)
\(878\) 0 0
\(879\) −1.17218e7 6.76758e6i −0.511707 0.295434i
\(880\) 0 0
\(881\) 1.21256e7i 0.526338i −0.964750 0.263169i \(-0.915232\pi\)
0.964750 0.263169i \(-0.0847676\pi\)
\(882\) 0 0
\(883\) 2.06429e7i 0.890980i −0.895287 0.445490i \(-0.853029\pi\)
0.895287 0.445490i \(-0.146971\pi\)
\(884\) 0 0
\(885\) 718395. + 414766.i 0.0308323 + 0.0178010i
\(886\) 0 0
\(887\) −1.87403e6 3.24591e6i −0.0799774 0.138525i 0.823263 0.567661i \(-0.192151\pi\)
−0.903240 + 0.429136i \(0.858818\pi\)
\(888\) 0 0
\(889\) 2.09185e7 + 4.14710e7i 0.887722 + 1.75991i
\(890\) 0 0
\(891\) −937220. + 541104.i −0.0395501 + 0.0228343i
\(892\) 0 0
\(893\) 6.26019e6 1.08430e7i 0.262699 0.455009i
\(894\) 0 0
\(895\) 1.32962e7 0.554841
\(896\) 0 0
\(897\) 3.06125e7 1.27033
\(898\) 0 0
\(899\) −8.21486e6 + 1.42286e7i −0.339001 + 0.587167i
\(900\) 0 0
\(901\) 3.31454e7 1.91365e7i 1.36023 0.785326i
\(902\) 0 0
\(903\) 2.22849e7 + 1.25879e6i 0.909476 + 0.0513730i
\(904\) 0 0
\(905\) 1.08462e7 + 1.87861e7i 0.440205 + 0.762457i
\(906\) 0 0
\(907\) 3.62087e6 + 2.09051e6i 0.146149 + 0.0843790i 0.571291 0.820747i \(-0.306443\pi\)
−0.425143 + 0.905126i \(0.639776\pi\)
\(908\) 0 0
\(909\) 1.03941e7i 0.417231i
\(910\) 0 0
\(911\) 1.56891e6i 0.0626329i 0.999510 + 0.0313165i \(0.00996997\pi\)
−0.999510 + 0.0313165i \(0.990030\pi\)
\(912\) 0 0
\(913\) −7.17822e6 4.14435e6i −0.284997 0.164543i
\(914\) 0 0
\(915\) −7.68978e6 1.33191e7i −0.303641 0.525922i
\(916\) 0 0
\(917\) 1.80954e7 + 1.18562e7i 0.710631 + 0.465608i
\(918\) 0 0
\(919\) −3.21820e7 + 1.85803e7i −1.25697 + 0.725710i −0.972484 0.232971i \(-0.925155\pi\)
−0.284483 + 0.958681i \(0.591822\pi\)
\(920\) 0 0
\(921\) −4.57743e6 + 7.92835e6i −0.177817 + 0.307988i
\(922\) 0 0
\(923\) 2.30110e7 0.889061
\(924\) 0 0
\(925\) −1.72475e7 −0.662783
\(926\) 0 0
\(927\) 8.77092e6 1.51917e7i 0.335232 0.580639i
\(928\) 0 0
\(929\) −2.02938e7 + 1.17166e7i −0.771479 + 0.445414i −0.833402 0.552667i \(-0.813610\pi\)
0.0619229 + 0.998081i \(0.480277\pi\)
\(930\) 0 0
\(931\) 2.95262e7 + 3.34633e6i 1.11643 + 0.126530i
\(932\) 0 0
\(933\) −4.75654e6 8.23857e6i −0.178890 0.309847i
\(934\) 0 0
\(935\) 1.45097e7 + 8.37720e6i 0.542788 + 0.313379i
\(936\) 0 0
\(937\) 1.07872e7i 0.401383i −0.979654 0.200692i \(-0.935681\pi\)
0.979654 0.200692i \(-0.0643189\pi\)
\(938\) 0 0
\(939\) 3.19907e6i 0.118402i
\(940\) 0 0
\(941\) 4.34621e6 + 2.50928e6i 0.160006 + 0.0923795i 0.577865 0.816132i \(-0.303886\pi\)
−0.417859 + 0.908512i \(0.637219\pi\)
\(942\) 0 0
\(943\) −3.60530e7 6.24456e7i −1.32027 2.28677i
\(944\) 0 0
\(945\) −1.85208e7 + 2.82672e7i −0.674653 + 1.02968i
\(946\) 0 0
\(947\) 6.30773e6 3.64177e6i 0.228559 0.131959i −0.381348 0.924432i \(-0.624540\pi\)
0.609907 + 0.792473i \(0.291207\pi\)
\(948\) 0 0
\(949\) 4.65265e6 8.05863e6i 0.167701 0.290466i
\(950\) 0 0
\(951\) 3.88506e6 0.139298
\(952\) 0 0
\(953\) −3.16792e6 −0.112991 −0.0564953 0.998403i \(-0.517993\pi\)
−0.0564953 + 0.998403i \(0.517993\pi\)
\(954\) 0 0
\(955\) −3.23035e7 + 5.59514e7i −1.14615 + 1.98519i
\(956\) 0 0
\(957\) 3.16489e6 1.82725e6i 0.111707 0.0644938i
\(958\) 0 0
\(959\) −1.86299e6 + 3.29812e7i −0.0654128 + 1.15803i
\(960\) 0 0
\(961\) −4.77661e6 8.27333e6i −0.166844 0.288983i
\(962\) 0 0
\(963\) −1.86028e7 1.07403e7i −0.646415 0.373208i
\(964\) 0 0
\(965\) 4.42009e7i 1.52796i
\(966\) 0 0
\(967\) 4.48807e7i 1.54345i 0.635954 + 0.771727i \(0.280607\pi\)
−0.635954 + 0.771727i \(0.719393\pi\)
\(968\) 0 0
\(969\) 2.08486e7 + 1.20370e7i 0.713294 + 0.411820i
\(970\) 0 0
\(971\) −1.70288e7 2.94948e7i −0.579611 1.00392i −0.995524 0.0945115i \(-0.969871\pi\)
0.415912 0.909405i \(-0.363462\pi\)
\(972\) 0 0
\(973\) −2.20794e7 + 1.11372e7i −0.747662 + 0.377131i
\(974\) 0 0
\(975\) 1.39713e7 8.06633e6i 0.470679 0.271747i
\(976\) 0 0
\(977\) 1.84492e7 3.19549e7i 0.618359 1.07103i −0.371426 0.928463i \(-0.621131\pi\)
0.989785 0.142567i \(-0.0455357\pi\)
\(978\) 0 0
\(979\) −4.70967e6 −0.157049
\(980\) 0 0
\(981\) −1.55624e7 −0.516303
\(982\) 0 0
\(983\) −2.30167e7 + 3.98660e7i −0.759729 + 1.31589i 0.183260 + 0.983065i \(0.441335\pi\)
−0.942989 + 0.332825i \(0.891998\pi\)
\(984\) 0 0
\(985\) 4.34208e7 2.50690e7i 1.42596 0.823279i
\(986\) 0 0
\(987\) −7.33801e6 + 3.70139e6i −0.239765 + 0.120941i
\(988\) 0 0
\(989\) 3.69037e7 + 6.39190e7i 1.19972 + 2.07797i
\(990\) 0 0
\(991\) −164564. 95010.9i −0.00532292 0.00307319i 0.497336 0.867558i \(-0.334312\pi\)
−0.502659 + 0.864485i \(0.667645\pi\)
\(992\) 0 0
\(993\) 2.94713e7i 0.948477i
\(994\) 0 0
\(995\) 5.22459e7i 1.67300i
\(996\) 0 0
\(997\) 1.67476e7 + 9.66925e6i 0.533599 + 0.308074i 0.742481 0.669867i \(-0.233649\pi\)
−0.208881 + 0.977941i \(0.566982\pi\)
\(998\) 0 0
\(999\) 1.54925e7 + 2.68338e7i 0.491142 + 0.850683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.p.b.31.3 14
4.3 odd 2 112.6.p.c.31.5 yes 14
7.3 odd 6 784.6.f.c.783.6 14
7.4 even 3 784.6.f.d.783.9 14
7.5 odd 6 112.6.p.c.47.5 yes 14
28.3 even 6 784.6.f.d.783.10 14
28.11 odd 6 784.6.f.c.783.5 14
28.19 even 6 inner 112.6.p.b.47.3 yes 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.b.31.3 14 1.1 even 1 trivial
112.6.p.b.47.3 yes 14 28.19 even 6 inner
112.6.p.c.31.5 yes 14 4.3 odd 2
112.6.p.c.47.5 yes 14 7.5 odd 6
784.6.f.c.783.5 14 28.11 odd 6
784.6.f.c.783.6 14 7.3 odd 6
784.6.f.d.783.9 14 7.4 even 3
784.6.f.d.783.10 14 28.3 even 6