Properties

Label 112.6.i.f.81.5
Level $112$
Weight $6$
Character 112.81
Analytic conductor $17.963$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 200 x^{8} - 198 x^{7} + 34197 x^{6} - 16185 x^{5} + 1170401 x^{4} + 2020497 x^{3} + \cdots + 13068225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{18}\cdot 3\cdot 7 \)
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.5
Root \(-6.63412 + 11.4906i\) of defining polynomial
Character \(\chi\) \(=\) 112.81
Dual form 112.6.i.f.65.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(13.7682 - 23.8473i) q^{3} +(39.9714 + 69.2326i) q^{5} +(-113.410 - 62.8111i) q^{7} +(-257.629 - 446.226i) q^{9} +(227.576 - 394.173i) q^{11} -581.059 q^{13} +2201.35 q^{15} +(1187.69 - 2057.15i) q^{17} +(-366.096 - 634.097i) q^{19} +(-3059.33 + 1839.72i) q^{21} +(-296.582 - 513.695i) q^{23} +(-1632.93 + 2828.32i) q^{25} -7497.01 q^{27} -930.360 q^{29} +(-312.116 + 540.601i) q^{31} +(-6266.64 - 10854.1i) q^{33} +(-184.578 - 10362.3i) q^{35} +(2038.91 + 3531.50i) q^{37} +(-8000.16 + 13856.7i) q^{39} +6674.36 q^{41} +8956.88 q^{43} +(20595.6 - 35672.6i) q^{45} +(-5140.47 - 8903.56i) q^{47} +(8916.54 + 14246.8i) q^{49} +(-32704.9 - 56646.6i) q^{51} +(-6921.96 + 11989.2i) q^{53} +36386.1 q^{55} -20162.0 q^{57} +(-5361.58 + 9286.53i) q^{59} +(11075.5 + 19183.3i) q^{61} +(1189.67 + 66788.3i) q^{63} +(-23225.8 - 40228.2i) q^{65} +(-10021.2 + 17357.2i) q^{67} -16333.6 q^{69} +35780.7 q^{71} +(-27929.3 + 48374.9i) q^{73} +(44965.2 + 77882.0i) q^{75} +(-50567.8 + 30408.8i) q^{77} +(-27558.3 - 47732.4i) q^{79} +(-40616.8 + 70350.4i) q^{81} +87650.6 q^{83} +189896. q^{85} +(-12809.4 + 22186.6i) q^{87} +(37881.5 + 65612.6i) q^{89} +(65897.8 + 36497.0i) q^{91} +(8594.58 + 14886.3i) q^{93} +(29266.8 - 50691.6i) q^{95} +32072.1 q^{97} -234520. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 5 q^{3} + 81 q^{5} - 116 q^{7} - 390 q^{9} + 361 q^{11} - 684 q^{13} + 2098 q^{15} + 1809 q^{17} - 1277 q^{19} - 5253 q^{21} + 911 q^{23} - 3940 q^{25} - 9502 q^{27} + 10884 q^{29} - 2187 q^{31}+ \cdots - 499596 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 13.7682 23.8473i 0.883233 1.52980i 0.0355070 0.999369i \(-0.488695\pi\)
0.847726 0.530435i \(-0.177971\pi\)
\(4\) 0 0
\(5\) 39.9714 + 69.2326i 0.715031 + 1.23847i 0.962948 + 0.269688i \(0.0869207\pi\)
−0.247917 + 0.968781i \(0.579746\pi\)
\(6\) 0 0
\(7\) −113.410 62.8111i −0.874793 0.484497i
\(8\) 0 0
\(9\) −257.629 446.226i −1.06020 1.83632i
\(10\) 0 0
\(11\) 227.576 394.173i 0.567080 0.982212i −0.429773 0.902937i \(-0.641406\pi\)
0.996853 0.0792747i \(-0.0252604\pi\)
\(12\) 0 0
\(13\) −581.059 −0.953591 −0.476795 0.879014i \(-0.658202\pi\)
−0.476795 + 0.879014i \(0.658202\pi\)
\(14\) 0 0
\(15\) 2201.35 2.52615
\(16\) 0 0
\(17\) 1187.69 2057.15i 0.996742 1.72641i 0.428517 0.903534i \(-0.359036\pi\)
0.568224 0.822874i \(-0.307631\pi\)
\(18\) 0 0
\(19\) −366.096 634.097i −0.232654 0.402969i 0.725934 0.687764i \(-0.241408\pi\)
−0.958588 + 0.284795i \(0.908074\pi\)
\(20\) 0 0
\(21\) −3059.33 + 1839.72i −1.51383 + 0.910338i
\(22\) 0 0
\(23\) −296.582 513.695i −0.116903 0.202482i 0.801636 0.597813i \(-0.203963\pi\)
−0.918539 + 0.395331i \(0.870630\pi\)
\(24\) 0 0
\(25\) −1632.93 + 2828.32i −0.522538 + 0.905063i
\(26\) 0 0
\(27\) −7497.01 −1.97915
\(28\) 0 0
\(29\) −930.360 −0.205426 −0.102713 0.994711i \(-0.532752\pi\)
−0.102713 + 0.994711i \(0.532752\pi\)
\(30\) 0 0
\(31\) −312.116 + 540.601i −0.0583327 + 0.101035i −0.893717 0.448631i \(-0.851912\pi\)
0.835384 + 0.549666i \(0.185245\pi\)
\(32\) 0 0
\(33\) −6266.64 10854.1i −1.00173 1.73504i
\(34\) 0 0
\(35\) −184.578 10362.3i −0.0254689 1.42983i
\(36\) 0 0
\(37\) 2038.91 + 3531.50i 0.244847 + 0.424087i 0.962088 0.272737i \(-0.0879290\pi\)
−0.717242 + 0.696824i \(0.754596\pi\)
\(38\) 0 0
\(39\) −8000.16 + 13856.7i −0.842243 + 1.45881i
\(40\) 0 0
\(41\) 6674.36 0.620083 0.310042 0.950723i \(-0.399657\pi\)
0.310042 + 0.950723i \(0.399657\pi\)
\(42\) 0 0
\(43\) 8956.88 0.738730 0.369365 0.929284i \(-0.379575\pi\)
0.369365 + 0.929284i \(0.379575\pi\)
\(44\) 0 0
\(45\) 20595.6 35672.6i 1.51615 2.62605i
\(46\) 0 0
\(47\) −5140.47 8903.56i −0.339436 0.587921i 0.644891 0.764275i \(-0.276903\pi\)
−0.984327 + 0.176354i \(0.943570\pi\)
\(48\) 0 0
\(49\) 8916.54 + 14246.8i 0.530525 + 0.847669i
\(50\) 0 0
\(51\) −32704.9 56646.6i −1.76071 3.04964i
\(52\) 0 0
\(53\) −6921.96 + 11989.2i −0.338485 + 0.586273i −0.984148 0.177349i \(-0.943248\pi\)
0.645663 + 0.763622i \(0.276581\pi\)
\(54\) 0 0
\(55\) 36386.1 1.62192
\(56\) 0 0
\(57\) −20162.0 −0.821952
\(58\) 0 0
\(59\) −5361.58 + 9286.53i −0.200522 + 0.347315i −0.948697 0.316187i \(-0.897597\pi\)
0.748174 + 0.663502i \(0.230931\pi\)
\(60\) 0 0
\(61\) 11075.5 + 19183.3i 0.381099 + 0.660083i 0.991220 0.132225i \(-0.0422123\pi\)
−0.610120 + 0.792309i \(0.708879\pi\)
\(62\) 0 0
\(63\) 1189.67 + 66788.3i 0.0377636 + 2.12006i
\(64\) 0 0
\(65\) −23225.8 40228.2i −0.681847 1.18099i
\(66\) 0 0
\(67\) −10021.2 + 17357.2i −0.272730 + 0.472382i −0.969560 0.244854i \(-0.921260\pi\)
0.696830 + 0.717237i \(0.254593\pi\)
\(68\) 0 0
\(69\) −16333.6 −0.413010
\(70\) 0 0
\(71\) 35780.7 0.842370 0.421185 0.906975i \(-0.361614\pi\)
0.421185 + 0.906975i \(0.361614\pi\)
\(72\) 0 0
\(73\) −27929.3 + 48374.9i −0.613413 + 1.06246i 0.377248 + 0.926112i \(0.376870\pi\)
−0.990661 + 0.136350i \(0.956463\pi\)
\(74\) 0 0
\(75\) 44965.2 + 77882.0i 0.923046 + 1.59876i
\(76\) 0 0
\(77\) −50567.8 + 30408.8i −0.971957 + 0.584483i
\(78\) 0 0
\(79\) −27558.3 47732.4i −0.496804 0.860490i 0.503189 0.864176i \(-0.332160\pi\)
−0.999993 + 0.00368633i \(0.998827\pi\)
\(80\) 0 0
\(81\) −40616.8 + 70350.4i −0.687849 + 1.19139i
\(82\) 0 0
\(83\) 87650.6 1.39656 0.698280 0.715825i \(-0.253949\pi\)
0.698280 + 0.715825i \(0.253949\pi\)
\(84\) 0 0
\(85\) 189896. 2.85080
\(86\) 0 0
\(87\) −12809.4 + 22186.6i −0.181439 + 0.314262i
\(88\) 0 0
\(89\) 37881.5 + 65612.6i 0.506935 + 0.878036i 0.999968 + 0.00802590i \(0.00255475\pi\)
−0.493033 + 0.870010i \(0.664112\pi\)
\(90\) 0 0
\(91\) 65897.8 + 36497.0i 0.834194 + 0.462012i
\(92\) 0 0
\(93\) 8594.58 + 14886.3i 0.103043 + 0.178475i
\(94\) 0 0
\(95\) 29266.8 50691.6i 0.332710 0.576271i
\(96\) 0 0
\(97\) 32072.1 0.346097 0.173048 0.984913i \(-0.444638\pi\)
0.173048 + 0.984913i \(0.444638\pi\)
\(98\) 0 0
\(99\) −234520. −2.40487
\(100\) 0 0
\(101\) 93930.1 162692.i 0.916223 1.58694i 0.111122 0.993807i \(-0.464555\pi\)
0.805101 0.593138i \(-0.202111\pi\)
\(102\) 0 0
\(103\) −80497.3 139425.i −0.747633 1.29494i −0.948954 0.315413i \(-0.897857\pi\)
0.201321 0.979525i \(-0.435476\pi\)
\(104\) 0 0
\(105\) −249654. 138269.i −2.20986 1.22391i
\(106\) 0 0
\(107\) 76668.2 + 132793.i 0.647375 + 1.12129i 0.983748 + 0.179557i \(0.0574663\pi\)
−0.336373 + 0.941729i \(0.609200\pi\)
\(108\) 0 0
\(109\) 21031.5 36427.6i 0.169552 0.293673i −0.768710 0.639597i \(-0.779101\pi\)
0.938263 + 0.345924i \(0.112434\pi\)
\(110\) 0 0
\(111\) 112289. 0.865026
\(112\) 0 0
\(113\) 92809.7 0.683750 0.341875 0.939745i \(-0.388938\pi\)
0.341875 + 0.939745i \(0.388938\pi\)
\(114\) 0 0
\(115\) 23709.6 41066.3i 0.167178 0.289561i
\(116\) 0 0
\(117\) 149698. + 259284.i 1.01100 + 1.75110i
\(118\) 0 0
\(119\) −263908. + 158700.i −1.70838 + 1.02733i
\(120\) 0 0
\(121\) −23056.1 39934.3i −0.143160 0.247961i
\(122\) 0 0
\(123\) 91894.2 159165.i 0.547678 0.948606i
\(124\) 0 0
\(125\) −11261.1 −0.0644622
\(126\) 0 0
\(127\) 59778.1 0.328877 0.164438 0.986387i \(-0.447419\pi\)
0.164438 + 0.986387i \(0.447419\pi\)
\(128\) 0 0
\(129\) 123320. 213597.i 0.652470 1.13011i
\(130\) 0 0
\(131\) 130861. + 226658.i 0.666243 + 1.15397i 0.978947 + 0.204116i \(0.0654321\pi\)
−0.312703 + 0.949851i \(0.601235\pi\)
\(132\) 0 0
\(133\) 1690.54 + 94907.7i 0.00828699 + 0.465235i
\(134\) 0 0
\(135\) −299666. 519037.i −1.41515 2.45112i
\(136\) 0 0
\(137\) −25937.8 + 44925.5i −0.118068 + 0.204499i −0.919002 0.394253i \(-0.871003\pi\)
0.800934 + 0.598752i \(0.204337\pi\)
\(138\) 0 0
\(139\) −299390. −1.31432 −0.657159 0.753752i \(-0.728242\pi\)
−0.657159 + 0.753752i \(0.728242\pi\)
\(140\) 0 0
\(141\) −283101. −1.19920
\(142\) 0 0
\(143\) −132235. + 229038.i −0.540762 + 0.936628i
\(144\) 0 0
\(145\) −37187.8 64411.2i −0.146886 0.254414i
\(146\) 0 0
\(147\) 462512. 16482.2i 1.76535 0.0629103i
\(148\) 0 0
\(149\) 140841. + 243944.i 0.519713 + 0.900170i 0.999737 + 0.0229145i \(0.00729454\pi\)
−0.480024 + 0.877255i \(0.659372\pi\)
\(150\) 0 0
\(151\) 111199. 192603.i 0.396881 0.687417i −0.596459 0.802644i \(-0.703426\pi\)
0.993339 + 0.115226i \(0.0367593\pi\)
\(152\) 0 0
\(153\) −1.22394e6 −4.22698
\(154\) 0 0
\(155\) −49902.9 −0.166839
\(156\) 0 0
\(157\) 29837.4 51680.0i 0.0966078 0.167330i −0.813671 0.581326i \(-0.802534\pi\)
0.910279 + 0.413996i \(0.135867\pi\)
\(158\) 0 0
\(159\) 190606. + 330140.i 0.597922 + 1.03563i
\(160\) 0 0
\(161\) 1369.54 + 76886.6i 0.00416400 + 0.233769i
\(162\) 0 0
\(163\) −189494. 328212.i −0.558631 0.967578i −0.997611 0.0690809i \(-0.977993\pi\)
0.438980 0.898497i \(-0.355340\pi\)
\(164\) 0 0
\(165\) 500973. 867711.i 1.43253 2.48122i
\(166\) 0 0
\(167\) 143609. 0.398465 0.199233 0.979952i \(-0.436155\pi\)
0.199233 + 0.979952i \(0.436155\pi\)
\(168\) 0 0
\(169\) −33663.2 −0.0906648
\(170\) 0 0
\(171\) −188634. + 326723.i −0.493321 + 0.854456i
\(172\) 0 0
\(173\) −387067. 670419.i −0.983265 1.70307i −0.649406 0.760442i \(-0.724982\pi\)
−0.333859 0.942623i \(-0.608351\pi\)
\(174\) 0 0
\(175\) 362840. 218193.i 0.895613 0.538574i
\(176\) 0 0
\(177\) 147639. + 255718.i 0.354216 + 0.613520i
\(178\) 0 0
\(179\) 233276. 404046.i 0.544173 0.942536i −0.454485 0.890754i \(-0.650177\pi\)
0.998658 0.0517815i \(-0.0164899\pi\)
\(180\) 0 0
\(181\) 575239. 1.30512 0.652562 0.757736i \(-0.273694\pi\)
0.652562 + 0.757736i \(0.273694\pi\)
\(182\) 0 0
\(183\) 609960. 1.34640
\(184\) 0 0
\(185\) −162997. + 282318.i −0.350146 + 0.606470i
\(186\) 0 0
\(187\) −540581. 936315.i −1.13047 1.95802i
\(188\) 0 0
\(189\) 850234. + 470895.i 1.73135 + 0.958892i
\(190\) 0 0
\(191\) 140023. + 242527.i 0.277726 + 0.481035i 0.970819 0.239813i \(-0.0770861\pi\)
−0.693094 + 0.720848i \(0.743753\pi\)
\(192\) 0 0
\(193\) −14380.9 + 24908.4i −0.0277902 + 0.0481341i −0.879586 0.475740i \(-0.842180\pi\)
0.851796 + 0.523874i \(0.175514\pi\)
\(194\) 0 0
\(195\) −1.27911e6 −2.40892
\(196\) 0 0
\(197\) −174264. −0.319921 −0.159960 0.987123i \(-0.551137\pi\)
−0.159960 + 0.987123i \(0.551137\pi\)
\(198\) 0 0
\(199\) −327203. + 566732.i −0.585713 + 1.01448i 0.409073 + 0.912502i \(0.365852\pi\)
−0.994786 + 0.101983i \(0.967481\pi\)
\(200\) 0 0
\(201\) 275949. + 477957.i 0.481768 + 0.834447i
\(202\) 0 0
\(203\) 105512. + 58436.9i 0.179705 + 0.0995284i
\(204\) 0 0
\(205\) 266784. + 462083.i 0.443379 + 0.767954i
\(206\) 0 0
\(207\) −152816. + 264685.i −0.247881 + 0.429342i
\(208\) 0 0
\(209\) −333259. −0.527735
\(210\) 0 0
\(211\) 610071. 0.943354 0.471677 0.881771i \(-0.343649\pi\)
0.471677 + 0.881771i \(0.343649\pi\)
\(212\) 0 0
\(213\) 492637. 853272.i 0.744009 1.28866i
\(214\) 0 0
\(215\) 358019. + 620108.i 0.528215 + 0.914894i
\(216\) 0 0
\(217\) 69352.8 41705.1i 0.0999803 0.0601229i
\(218\) 0 0
\(219\) 769074. + 1.33208e6i 1.08357 + 1.87680i
\(220\) 0 0
\(221\) −690121. + 1.19532e6i −0.950484 + 1.64629i
\(222\) 0 0
\(223\) −862752. −1.16178 −0.580890 0.813982i \(-0.697295\pi\)
−0.580890 + 0.813982i \(0.697295\pi\)
\(224\) 0 0
\(225\) 1.68276e6 2.21598
\(226\) 0 0
\(227\) −13389.2 + 23190.9i −0.0172461 + 0.0298712i −0.874520 0.484990i \(-0.838823\pi\)
0.857274 + 0.514861i \(0.172157\pi\)
\(228\) 0 0
\(229\) 406277. + 703692.i 0.511957 + 0.886736i 0.999904 + 0.0138624i \(0.00441266\pi\)
−0.487947 + 0.872873i \(0.662254\pi\)
\(230\) 0 0
\(231\) 28937.8 + 1.62458e6i 0.0356809 + 2.00314i
\(232\) 0 0
\(233\) −625018. 1.08256e6i −0.754228 1.30636i −0.945757 0.324875i \(-0.894678\pi\)
0.191529 0.981487i \(-0.438655\pi\)
\(234\) 0 0
\(235\) 410944. 711776.i 0.485415 0.840763i
\(236\) 0 0
\(237\) −1.51772e6 −1.75517
\(238\) 0 0
\(239\) −1.59397e6 −1.80504 −0.902518 0.430653i \(-0.858283\pi\)
−0.902518 + 0.430653i \(0.858283\pi\)
\(240\) 0 0
\(241\) −789579. + 1.36759e6i −0.875696 + 1.51675i −0.0196757 + 0.999806i \(0.506263\pi\)
−0.856020 + 0.516943i \(0.827070\pi\)
\(242\) 0 0
\(243\) 207557. + 359500.i 0.225487 + 0.390556i
\(244\) 0 0
\(245\) −629934. + 1.18678e6i −0.670471 + 1.26315i
\(246\) 0 0
\(247\) 212724. + 368448.i 0.221857 + 0.384268i
\(248\) 0 0
\(249\) 1.20679e6 2.09023e6i 1.23349 2.13646i
\(250\) 0 0
\(251\) −1.47838e6 −1.48116 −0.740581 0.671967i \(-0.765450\pi\)
−0.740581 + 0.671967i \(0.765450\pi\)
\(252\) 0 0
\(253\) −269980. −0.265173
\(254\) 0 0
\(255\) 2.61453e6 4.52849e6i 2.51792 4.36117i
\(256\) 0 0
\(257\) 524809. + 908997.i 0.495643 + 0.858478i 0.999987 0.00502401i \(-0.00159920\pi\)
−0.504345 + 0.863502i \(0.668266\pi\)
\(258\) 0 0
\(259\) −9415.19 528573.i −0.00872127 0.489616i
\(260\) 0 0
\(261\) 239687. + 415151.i 0.217793 + 0.377228i
\(262\) 0 0
\(263\) 79923.1 138431.i 0.0712497 0.123408i −0.828200 0.560433i \(-0.810635\pi\)
0.899449 + 0.437025i \(0.143968\pi\)
\(264\) 0 0
\(265\) −1.10672e6 −0.968109
\(266\) 0 0
\(267\) 2.08624e6 1.79096
\(268\) 0 0
\(269\) −113255. + 196163.i −0.0954280 + 0.165286i −0.909787 0.415075i \(-0.863755\pi\)
0.814359 + 0.580361i \(0.197089\pi\)
\(270\) 0 0
\(271\) 753214. + 1.30461e6i 0.623011 + 1.07909i 0.988922 + 0.148436i \(0.0474240\pi\)
−0.365911 + 0.930650i \(0.619243\pi\)
\(272\) 0 0
\(273\) 1.77765e6 1.06898e6i 1.44358 0.868090i
\(274\) 0 0
\(275\) 743232. + 1.28732e6i 0.592642 + 1.02649i
\(276\) 0 0
\(277\) 955820. 1.65553e6i 0.748474 1.29639i −0.200080 0.979780i \(-0.564120\pi\)
0.948554 0.316615i \(-0.102546\pi\)
\(278\) 0 0
\(279\) 321640. 0.247377
\(280\) 0 0
\(281\) 1.17933e6 0.890987 0.445493 0.895285i \(-0.353028\pi\)
0.445493 + 0.895285i \(0.353028\pi\)
\(282\) 0 0
\(283\) −176772. + 306178.i −0.131204 + 0.227252i −0.924141 0.382052i \(-0.875218\pi\)
0.792937 + 0.609304i \(0.208551\pi\)
\(284\) 0 0
\(285\) −805904. 1.39587e6i −0.587721 1.01796i
\(286\) 0 0
\(287\) −756937. 419224.i −0.542444 0.300428i
\(288\) 0 0
\(289\) −2.11131e6 3.65690e6i −1.48699 2.57554i
\(290\) 0 0
\(291\) 441576. 764831.i 0.305684 0.529460i
\(292\) 0 0
\(293\) 61933.0 0.0421457 0.0210728 0.999778i \(-0.493292\pi\)
0.0210728 + 0.999778i \(0.493292\pi\)
\(294\) 0 0
\(295\) −857240. −0.573519
\(296\) 0 0
\(297\) −1.70614e6 + 2.95512e6i −1.12234 + 1.94394i
\(298\) 0 0
\(299\) 172332. + 298487.i 0.111477 + 0.193085i
\(300\) 0 0
\(301\) −1.01580e6 562591.i −0.646235 0.357912i
\(302\) 0 0
\(303\) −2.58650e6 4.47995e6i −1.61848 2.80328i
\(304\) 0 0
\(305\) −885406. + 1.53357e6i −0.544996 + 0.943960i
\(306\) 0 0
\(307\) 1.90020e6 1.15068 0.575338 0.817915i \(-0.304870\pi\)
0.575338 + 0.817915i \(0.304870\pi\)
\(308\) 0 0
\(309\) −4.43323e6 −2.64134
\(310\) 0 0
\(311\) −1.31531e6 + 2.27819e6i −0.771131 + 1.33564i 0.165812 + 0.986157i \(0.446976\pi\)
−0.936943 + 0.349481i \(0.886358\pi\)
\(312\) 0 0
\(313\) 1.38022e6 + 2.39061e6i 0.796319 + 1.37926i 0.921998 + 0.387194i \(0.126556\pi\)
−0.125680 + 0.992071i \(0.540111\pi\)
\(314\) 0 0
\(315\) −4.57637e6 + 2.75199e6i −2.59863 + 1.56268i
\(316\) 0 0
\(317\) −310702. 538151.i −0.173658 0.300785i 0.766038 0.642795i \(-0.222225\pi\)
−0.939696 + 0.342010i \(0.888892\pi\)
\(318\) 0 0
\(319\) −211727. + 366723.i −0.116493 + 0.201772i
\(320\) 0 0
\(321\) 4.22234e6 2.28713
\(322\) 0 0
\(323\) −1.73924e6 −0.927586
\(324\) 0 0
\(325\) 948830. 1.64342e6i 0.498288 0.863059i
\(326\) 0 0
\(327\) −579133. 1.00309e6i −0.299509 0.518764i
\(328\) 0 0
\(329\) 23737.4 + 1.33263e6i 0.0120905 + 0.678765i
\(330\) 0 0
\(331\) −439158. 760644.i −0.220318 0.381603i 0.734586 0.678515i \(-0.237376\pi\)
−0.954905 + 0.296913i \(0.904043\pi\)
\(332\) 0 0
\(333\) 1.05056e6 1.81963e6i 0.519173 0.899234i
\(334\) 0 0
\(335\) −1.60225e6 −0.780042
\(336\) 0 0
\(337\) 1.72499e6 0.827392 0.413696 0.910415i \(-0.364238\pi\)
0.413696 + 0.910415i \(0.364238\pi\)
\(338\) 0 0
\(339\) 1.27783e6 2.21326e6i 0.603911 1.04600i
\(340\) 0 0
\(341\) 142060. + 246056.i 0.0661587 + 0.114590i
\(342\) 0 0
\(343\) −116367. 2.17578e6i −0.0534064 0.998573i
\(344\) 0 0
\(345\) −652879. 1.13082e6i −0.295315 0.511500i
\(346\) 0 0
\(347\) −462787. + 801571.i −0.206328 + 0.357370i −0.950555 0.310556i \(-0.899485\pi\)
0.744227 + 0.667926i \(0.232818\pi\)
\(348\) 0 0
\(349\) 3.27452e6 1.43908 0.719539 0.694452i \(-0.244353\pi\)
0.719539 + 0.694452i \(0.244353\pi\)
\(350\) 0 0
\(351\) 4.35621e6 1.88730
\(352\) 0 0
\(353\) 954155. 1.65265e6i 0.407551 0.705900i −0.587063 0.809541i \(-0.699716\pi\)
0.994615 + 0.103641i \(0.0330494\pi\)
\(354\) 0 0
\(355\) 1.43021e6 + 2.47719e6i 0.602320 + 1.04325i
\(356\) 0 0
\(357\) 151023. + 8.47851e6i 0.0627153 + 3.52086i
\(358\) 0 0
\(359\) 724500. + 1.25487e6i 0.296690 + 0.513882i 0.975377 0.220546i \(-0.0707840\pi\)
−0.678687 + 0.734428i \(0.737451\pi\)
\(360\) 0 0
\(361\) 969996. 1.68008e6i 0.391744 0.678520i
\(362\) 0 0
\(363\) −1.26977e6 −0.505775
\(364\) 0 0
\(365\) −4.46550e6 −1.75444
\(366\) 0 0
\(367\) −939895. + 1.62795e6i −0.364262 + 0.630921i −0.988657 0.150188i \(-0.952012\pi\)
0.624395 + 0.781109i \(0.285345\pi\)
\(368\) 0 0
\(369\) −1.71951e6 2.97827e6i −0.657412 1.13867i
\(370\) 0 0
\(371\) 1.53807e6 924914.i 0.580152 0.348873i
\(372\) 0 0
\(373\) −2.25431e6 3.90457e6i −0.838959 1.45312i −0.890766 0.454463i \(-0.849831\pi\)
0.0518065 0.998657i \(-0.483502\pi\)
\(374\) 0 0
\(375\) −155045. + 268546.i −0.0569352 + 0.0986146i
\(376\) 0 0
\(377\) 540594. 0.195893
\(378\) 0 0
\(379\) 2.33971e6 0.836688 0.418344 0.908289i \(-0.362611\pi\)
0.418344 + 0.908289i \(0.362611\pi\)
\(380\) 0 0
\(381\) 823039. 1.42555e6i 0.290475 0.503117i
\(382\) 0 0
\(383\) 855907. + 1.48247e6i 0.298146 + 0.516405i 0.975712 0.219058i \(-0.0702983\pi\)
−0.677566 + 0.735462i \(0.736965\pi\)
\(384\) 0 0
\(385\) −4.12654e6 2.28545e6i −1.41884 0.785815i
\(386\) 0 0
\(387\) −2.30755e6 3.99679e6i −0.783201 1.35654i
\(388\) 0 0
\(389\) −538866. + 933344.i −0.180554 + 0.312729i −0.942069 0.335418i \(-0.891122\pi\)
0.761515 + 0.648147i \(0.224456\pi\)
\(390\) 0 0
\(391\) −1.40900e6 −0.466088
\(392\) 0 0
\(393\) 7.20691e6 2.35379
\(394\) 0 0
\(395\) 2.20309e6 3.81587e6i 0.710461 1.23055i
\(396\) 0 0
\(397\) 144041. + 249487.i 0.0458682 + 0.0794460i 0.888048 0.459751i \(-0.152061\pi\)
−0.842180 + 0.539197i \(0.818728\pi\)
\(398\) 0 0
\(399\) 2.28657e6 + 1.26640e6i 0.719038 + 0.398233i
\(400\) 0 0
\(401\) 2.73215e6 + 4.73223e6i 0.848485 + 1.46962i 0.882560 + 0.470200i \(0.155818\pi\)
−0.0340752 + 0.999419i \(0.510849\pi\)
\(402\) 0 0
\(403\) 181358. 314121.i 0.0556255 0.0963462i
\(404\) 0 0
\(405\) −6.49405e6 −1.96733
\(406\) 0 0
\(407\) 1.85603e6 0.555391
\(408\) 0 0
\(409\) 1.22838e6 2.12761e6i 0.363098 0.628904i −0.625371 0.780327i \(-0.715052\pi\)
0.988469 + 0.151424i \(0.0483858\pi\)
\(410\) 0 0
\(411\) 714234. + 1.23709e6i 0.208563 + 0.361241i
\(412\) 0 0
\(413\) 1.19135e6 716416.i 0.343689 0.206676i
\(414\) 0 0
\(415\) 3.50352e6 + 6.06827e6i 0.998583 + 1.72960i
\(416\) 0 0
\(417\) −4.12207e6 + 7.13964e6i −1.16085 + 2.01065i
\(418\) 0 0
\(419\) −267685. −0.0744884 −0.0372442 0.999306i \(-0.511858\pi\)
−0.0372442 + 0.999306i \(0.511858\pi\)
\(420\) 0 0
\(421\) −1.11613e6 −0.306908 −0.153454 0.988156i \(-0.549040\pi\)
−0.153454 + 0.988156i \(0.549040\pi\)
\(422\) 0 0
\(423\) −2.64867e6 + 4.58762e6i −0.719741 + 1.24663i
\(424\) 0 0
\(425\) 3.87885e6 + 6.71837e6i 1.04167 + 1.80423i
\(426\) 0 0
\(427\) −51143.9 2.87124e6i −0.0135745 0.762078i
\(428\) 0 0
\(429\) 3.64129e6 + 6.30689e6i 0.955238 + 1.65452i
\(430\) 0 0
\(431\) 780225. 1.35139e6i 0.202314 0.350419i −0.746959 0.664870i \(-0.768487\pi\)
0.949274 + 0.314451i \(0.101820\pi\)
\(432\) 0 0
\(433\) −2.91249e6 −0.746525 −0.373263 0.927726i \(-0.621761\pi\)
−0.373263 + 0.927726i \(0.621761\pi\)
\(434\) 0 0
\(435\) −2.04804e6 −0.518938
\(436\) 0 0
\(437\) −217155. + 376124.i −0.0543959 + 0.0942165i
\(438\) 0 0
\(439\) −552704. 957311.i −0.136877 0.237078i 0.789436 0.613833i \(-0.210373\pi\)
−0.926313 + 0.376755i \(0.877040\pi\)
\(440\) 0 0
\(441\) 4.06013e6 7.64917e6i 0.994130 1.87291i
\(442\) 0 0
\(443\) 894031. + 1.54851e6i 0.216443 + 0.374890i 0.953718 0.300703i \(-0.0972212\pi\)
−0.737275 + 0.675593i \(0.763888\pi\)
\(444\) 0 0
\(445\) −3.02835e6 + 5.24526e6i −0.724948 + 1.25565i
\(446\) 0 0
\(447\) 7.75654e6 1.83611
\(448\) 0 0
\(449\) −4.24314e6 −0.993279 −0.496639 0.867957i \(-0.665433\pi\)
−0.496639 + 0.867957i \(0.665433\pi\)
\(450\) 0 0
\(451\) 1.51892e6 2.63085e6i 0.351637 0.609053i
\(452\) 0 0
\(453\) −3.06204e6 5.30361e6i −0.701076 1.21430i
\(454\) 0 0
\(455\) 107251. + 6.02111e6i 0.0242869 + 1.36348i
\(456\) 0 0
\(457\) −829873. 1.43738e6i −0.185875 0.321945i 0.757996 0.652259i \(-0.226179\pi\)
−0.943871 + 0.330314i \(0.892845\pi\)
\(458\) 0 0
\(459\) −8.90416e6 + 1.54225e7i −1.97270 + 3.41682i
\(460\) 0 0
\(461\) 8.34155e6 1.82808 0.914038 0.405628i \(-0.132947\pi\)
0.914038 + 0.405628i \(0.132947\pi\)
\(462\) 0 0
\(463\) −487990. −0.105793 −0.0528967 0.998600i \(-0.516845\pi\)
−0.0528967 + 0.998600i \(0.516845\pi\)
\(464\) 0 0
\(465\) −687076. + 1.19005e6i −0.147357 + 0.255231i
\(466\) 0 0
\(467\) −2.99457e6 5.18674e6i −0.635392 1.10053i −0.986432 0.164171i \(-0.947505\pi\)
0.351040 0.936360i \(-0.385828\pi\)
\(468\) 0 0
\(469\) 2.22673e6 1.33904e6i 0.467450 0.281100i
\(470\) 0 0
\(471\) −821618. 1.42308e6i −0.170654 0.295582i
\(472\) 0 0
\(473\) 2.03837e6 3.53056e6i 0.418919 0.725589i
\(474\) 0 0
\(475\) 2.39124e6 0.486283
\(476\) 0 0
\(477\) 7.13318e6 1.43545
\(478\) 0 0
\(479\) −1.98540e6 + 3.43882e6i −0.395375 + 0.684810i −0.993149 0.116855i \(-0.962719\pi\)
0.597774 + 0.801665i \(0.296052\pi\)
\(480\) 0 0
\(481\) −1.18473e6 2.05201e6i −0.233483 0.404405i
\(482\) 0 0
\(483\) 1.85239e6 + 1.02593e6i 0.361298 + 0.200102i
\(484\) 0 0
\(485\) 1.28197e6 + 2.22043e6i 0.247470 + 0.428630i
\(486\) 0 0
\(487\) 3.81911e6 6.61489e6i 0.729692 1.26386i −0.227321 0.973820i \(-0.572997\pi\)
0.957013 0.290045i \(-0.0936701\pi\)
\(488\) 0 0
\(489\) −1.04360e7 −1.97361
\(490\) 0 0
\(491\) −8.30768e6 −1.55516 −0.777581 0.628782i \(-0.783554\pi\)
−0.777581 + 0.628782i \(0.783554\pi\)
\(492\) 0 0
\(493\) −1.10498e6 + 1.91389e6i −0.204757 + 0.354649i
\(494\) 0 0
\(495\) −9.37411e6 1.62364e7i −1.71956 2.97836i
\(496\) 0 0
\(497\) −4.05788e6 2.24742e6i −0.736899 0.408126i
\(498\) 0 0
\(499\) −2.85191e6 4.93966e6i −0.512725 0.888066i −0.999891 0.0147567i \(-0.995303\pi\)
0.487166 0.873309i \(-0.338031\pi\)
\(500\) 0 0
\(501\) 1.97724e6 3.42468e6i 0.351937 0.609573i
\(502\) 0 0
\(503\) −58117.5 −0.0102421 −0.00512103 0.999987i \(-0.501630\pi\)
−0.00512103 + 0.999987i \(0.501630\pi\)
\(504\) 0 0
\(505\) 1.50181e7 2.62051
\(506\) 0 0
\(507\) −463483. + 802776.i −0.0800781 + 0.138699i
\(508\) 0 0
\(509\) −884060. 1.53124e6i −0.151247 0.261968i 0.780439 0.625232i \(-0.214996\pi\)
−0.931686 + 0.363264i \(0.881662\pi\)
\(510\) 0 0
\(511\) 6.20594e6 3.73192e6i 1.05137 0.632237i
\(512\) 0 0
\(513\) 2.74463e6 + 4.75383e6i 0.460458 + 0.797536i
\(514\) 0 0
\(515\) 6.43519e6 1.11461e7i 1.06916 1.85184i
\(516\) 0 0
\(517\) −4.67939e6 −0.769950
\(518\) 0 0
\(519\) −2.13169e7 −3.47381
\(520\) 0 0
\(521\) −3.97041e6 + 6.87695e6i −0.640827 + 1.10994i 0.344422 + 0.938815i \(0.388075\pi\)
−0.985248 + 0.171130i \(0.945258\pi\)
\(522\) 0 0
\(523\) 3.88419e6 + 6.72762e6i 0.620936 + 1.07549i 0.989312 + 0.145815i \(0.0465805\pi\)
−0.368376 + 0.929677i \(0.620086\pi\)
\(524\) 0 0
\(525\) −207638. 1.16569e7i −0.0328783 1.84580i
\(526\) 0 0
\(527\) 741398. + 1.28414e6i 0.116285 + 0.201412i
\(528\) 0 0
\(529\) 3.04225e6 5.26933e6i 0.472667 0.818684i
\(530\) 0 0
\(531\) 5.52519e6 0.850376
\(532\) 0 0
\(533\) −3.87820e6 −0.591306
\(534\) 0 0
\(535\) −6.12907e6 + 1.06159e7i −0.925785 + 1.60351i
\(536\) 0 0
\(537\) −6.42359e6 1.11260e7i −0.961263 1.66496i
\(538\) 0 0
\(539\) 7.64488e6 272435.i 1.13344 0.0403916i
\(540\) 0 0
\(541\) 2.44250e6 + 4.23053e6i 0.358791 + 0.621444i 0.987759 0.155987i \(-0.0498558\pi\)
−0.628968 + 0.777431i \(0.716522\pi\)
\(542\) 0 0
\(543\) 7.92002e6 1.37179e7i 1.15273 1.99658i
\(544\) 0 0
\(545\) 3.36264e6 0.484941
\(546\) 0 0
\(547\) 8.12743e6 1.16141 0.580704 0.814115i \(-0.302777\pi\)
0.580704 + 0.814115i \(0.302777\pi\)
\(548\) 0 0
\(549\) 5.70673e6 9.88434e6i 0.808083 1.39964i
\(550\) 0 0
\(551\) 340601. + 589939.i 0.0477933 + 0.0827805i
\(552\) 0 0
\(553\) 127258. + 7.14429e6i 0.0176958 + 0.993451i
\(554\) 0 0
\(555\) 4.48835e6 + 7.77405e6i 0.618521 + 1.07131i
\(556\) 0 0
\(557\) 3.04614e6 5.27608e6i 0.416018 0.720565i −0.579516 0.814961i \(-0.696759\pi\)
0.995535 + 0.0943956i \(0.0300919\pi\)
\(558\) 0 0
\(559\) −5.20448e6 −0.704446
\(560\) 0 0
\(561\) −2.97714e7 −3.99386
\(562\) 0 0
\(563\) −1.67191e6 + 2.89583e6i −0.222301 + 0.385037i −0.955506 0.294971i \(-0.904690\pi\)
0.733205 + 0.680007i \(0.238023\pi\)
\(564\) 0 0
\(565\) 3.70974e6 + 6.42546e6i 0.488903 + 0.846804i
\(566\) 0 0
\(567\) 9.02513e6 5.42723e6i 1.17895 0.708958i
\(568\) 0 0
\(569\) −3.96694e6 6.87094e6i −0.513659 0.889683i −0.999874 0.0158445i \(-0.994956\pi\)
0.486215 0.873839i \(-0.338377\pi\)
\(570\) 0 0
\(571\) −2.99931e6 + 5.19496e6i −0.384974 + 0.666794i −0.991766 0.128067i \(-0.959123\pi\)
0.606792 + 0.794861i \(0.292456\pi\)
\(572\) 0 0
\(573\) 7.71148e6 0.981185
\(574\) 0 0
\(575\) 1.93719e6 0.244345
\(576\) 0 0
\(577\) −1.71465e6 + 2.96985e6i −0.214405 + 0.371360i −0.953088 0.302692i \(-0.902115\pi\)
0.738683 + 0.674053i \(0.235448\pi\)
\(578\) 0 0
\(579\) 395999. + 685890.i 0.0490905 + 0.0850272i
\(580\) 0 0
\(581\) −9.94043e6 5.50543e6i −1.22170 0.676629i
\(582\) 0 0
\(583\) 3.15054e6 + 5.45690e6i 0.383896 + 0.664928i
\(584\) 0 0
\(585\) −1.19673e7 + 2.07279e7i −1.44579 + 2.50418i
\(586\) 0 0
\(587\) −4.04291e6 −0.484282 −0.242141 0.970241i \(-0.577850\pi\)
−0.242141 + 0.970241i \(0.577850\pi\)
\(588\) 0 0
\(589\) 457058. 0.0542855
\(590\) 0 0
\(591\) −2.39931e6 + 4.15573e6i −0.282565 + 0.489416i
\(592\) 0 0
\(593\) 734686. + 1.27251e6i 0.0857956 + 0.148602i 0.905730 0.423855i \(-0.139323\pi\)
−0.819934 + 0.572458i \(0.805990\pi\)
\(594\) 0 0
\(595\) −2.15360e7 1.19275e7i −2.49386 1.38121i
\(596\) 0 0
\(597\) 9.01002e6 + 1.56058e7i 1.03464 + 1.79205i
\(598\) 0 0
\(599\) −4.67617e6 + 8.09936e6i −0.532504 + 0.922324i 0.466776 + 0.884376i \(0.345416\pi\)
−0.999280 + 0.0379483i \(0.987918\pi\)
\(600\) 0 0
\(601\) −4.19824e6 −0.474112 −0.237056 0.971496i \(-0.576182\pi\)
−0.237056 + 0.971496i \(0.576182\pi\)
\(602\) 0 0
\(603\) 1.03270e7 1.15659
\(604\) 0 0
\(605\) 1.84317e6 3.19246e6i 0.204728 0.354599i
\(606\) 0 0
\(607\) −6.07004e6 1.05136e7i −0.668683 1.15819i −0.978273 0.207322i \(-0.933525\pi\)
0.309590 0.950870i \(-0.399808\pi\)
\(608\) 0 0
\(609\) 2.84627e6 1.71160e6i 0.310981 0.187007i
\(610\) 0 0
\(611\) 2.98692e6 + 5.17349e6i 0.323683 + 0.560636i
\(612\) 0 0
\(613\) −3.49542e6 + 6.05425e6i −0.375706 + 0.650742i −0.990432 0.137998i \(-0.955933\pi\)
0.614726 + 0.788741i \(0.289266\pi\)
\(614\) 0 0
\(615\) 1.46926e7 1.56643
\(616\) 0 0
\(617\) −9.72855e6 −1.02881 −0.514405 0.857547i \(-0.671987\pi\)
−0.514405 + 0.857547i \(0.671987\pi\)
\(618\) 0 0
\(619\) −4.33404e6 + 7.50678e6i −0.454639 + 0.787457i −0.998667 0.0516095i \(-0.983565\pi\)
0.544029 + 0.839067i \(0.316898\pi\)
\(620\) 0 0
\(621\) 2.22348e6 + 3.85118e6i 0.231368 + 0.400742i
\(622\) 0 0
\(623\) −174927. 9.82049e6i −0.0180567 1.01371i
\(624\) 0 0
\(625\) 4.65279e6 + 8.05887e6i 0.476446 + 0.825228i
\(626\) 0 0
\(627\) −4.58839e6 + 7.94732e6i −0.466113 + 0.807331i
\(628\) 0 0
\(629\) 9.68642e6 0.976195
\(630\) 0 0
\(631\) −4.83557e6 −0.483476 −0.241738 0.970342i \(-0.577717\pi\)
−0.241738 + 0.970342i \(0.577717\pi\)
\(632\) 0 0
\(633\) 8.39961e6 1.45485e7i 0.833201 1.44315i
\(634\) 0 0
\(635\) 2.38942e6 + 4.13859e6i 0.235157 + 0.407304i
\(636\) 0 0
\(637\) −5.18104e6 8.27822e6i −0.505904 0.808329i
\(638\) 0 0
\(639\) −9.21813e6 1.59663e7i −0.893081 1.54686i
\(640\) 0 0
\(641\) 8.91094e6 1.54342e7i 0.856601 1.48368i −0.0185516 0.999828i \(-0.505906\pi\)
0.875152 0.483848i \(-0.160761\pi\)
\(642\) 0 0
\(643\) 1.58095e7 1.50796 0.753980 0.656897i \(-0.228132\pi\)
0.753980 + 0.656897i \(0.228132\pi\)
\(644\) 0 0
\(645\) 1.97172e7 1.86615
\(646\) 0 0
\(647\) 393188. 681021.i 0.0369266 0.0639587i −0.846971 0.531638i \(-0.821577\pi\)
0.883898 + 0.467680i \(0.154910\pi\)
\(648\) 0 0
\(649\) 2.44033e6 + 4.22678e6i 0.227425 + 0.393911i
\(650\) 0 0
\(651\) −39687.7 2.22808e6i −0.00367031 0.206053i
\(652\) 0 0
\(653\) −592559. 1.02634e6i −0.0543812 0.0941910i 0.837553 0.546356i \(-0.183985\pi\)
−0.891934 + 0.452165i \(0.850652\pi\)
\(654\) 0 0
\(655\) −1.04614e7 + 1.81197e7i −0.952769 + 1.65024i
\(656\) 0 0
\(657\) 2.87815e7 2.60136
\(658\) 0 0
\(659\) 2.81475e6 0.252479 0.126240 0.992000i \(-0.459709\pi\)
0.126240 + 0.992000i \(0.459709\pi\)
\(660\) 0 0
\(661\) −147788. + 255976.i −0.0131564 + 0.0227875i −0.872529 0.488563i \(-0.837521\pi\)
0.859372 + 0.511350i \(0.170855\pi\)
\(662\) 0 0
\(663\) 1.90035e7 + 3.29150e7i 1.67900 + 2.90811i
\(664\) 0 0
\(665\) −6.50313e6 + 3.91064e6i −0.570254 + 0.342921i
\(666\) 0 0
\(667\) 275928. + 477921.i 0.0240149 + 0.0415950i
\(668\) 0 0
\(669\) −1.18786e7 + 2.05743e7i −1.02612 + 1.77729i
\(670\) 0 0
\(671\) 1.00821e7 0.864456
\(672\) 0 0
\(673\) −3.29325e6 −0.280277 −0.140138 0.990132i \(-0.544755\pi\)
−0.140138 + 0.990132i \(0.544755\pi\)
\(674\) 0 0
\(675\) 1.22421e7 2.12039e7i 1.03418 1.79125i
\(676\) 0 0
\(677\) −7.49208e6 1.29767e7i −0.628248 1.08816i −0.987903 0.155072i \(-0.950439\pi\)
0.359656 0.933085i \(-0.382894\pi\)
\(678\) 0 0
\(679\) −3.63728e6 2.01448e6i −0.302763 0.167683i
\(680\) 0 0
\(681\) 368693. + 638594.i 0.0304647 + 0.0527664i
\(682\) 0 0
\(683\) 1.37102e6 2.37467e6i 0.112458 0.194783i −0.804303 0.594220i \(-0.797461\pi\)
0.916761 + 0.399436i \(0.130794\pi\)
\(684\) 0 0
\(685\) −4.14708e6 −0.337688
\(686\) 0 0
\(687\) 2.23749e7 1.80871
\(688\) 0 0
\(689\) 4.02207e6 6.96643e6i 0.322776 0.559065i
\(690\) 0 0
\(691\) −9.76449e6 1.69126e7i −0.777955 1.34746i −0.933119 0.359568i \(-0.882924\pi\)
0.155164 0.987889i \(-0.450409\pi\)
\(692\) 0 0
\(693\) 2.65969e7 + 1.47305e7i 2.10377 + 1.16515i
\(694\) 0 0
\(695\) −1.19670e7 2.07275e7i −0.939777 1.62774i
\(696\) 0 0
\(697\) 7.92710e6 1.37301e7i 0.618063 1.07052i
\(698\) 0 0
\(699\) −3.44216e7 −2.66464
\(700\) 0 0
\(701\) 7.97976e6 0.613331 0.306665 0.951817i \(-0.400787\pi\)
0.306665 + 0.951817i \(0.400787\pi\)
\(702\) 0 0
\(703\) 1.49288e6 2.58574e6i 0.113929 0.197331i
\(704\) 0 0
\(705\) −1.13159e7 1.95998e7i −0.857469 1.48518i
\(706\) 0 0
\(707\) −2.08714e7 + 1.25510e7i −1.57038 + 0.944341i
\(708\) 0 0
\(709\) −4.10494e6 7.10996e6i −0.306684 0.531192i 0.670951 0.741502i \(-0.265886\pi\)
−0.977635 + 0.210310i \(0.932553\pi\)
\(710\) 0 0
\(711\) −1.41996e7 + 2.45945e7i −1.05342 + 1.82458i
\(712\) 0 0
\(713\) 370272. 0.0272770
\(714\) 0 0
\(715\) −2.11425e7 −1.54665
\(716\) 0 0
\(717\) −2.19462e7 + 3.80119e7i −1.59427 + 2.76135i
\(718\) 0 0
\(719\) 4.94472e6 + 8.56451e6i 0.356714 + 0.617846i 0.987410 0.158184i \(-0.0505639\pi\)
−0.630696 + 0.776030i \(0.717231\pi\)
\(720\) 0 0
\(721\) 371717. + 2.08683e7i 0.0266302 + 1.49503i
\(722\) 0 0
\(723\) 2.17422e7 + 3.76586e7i 1.54689 + 2.67929i
\(724\) 0 0
\(725\) 1.51921e6 2.63136e6i 0.107343 0.185924i
\(726\) 0 0
\(727\) 1.40610e7 0.986691 0.493345 0.869834i \(-0.335774\pi\)
0.493345 + 0.869834i \(0.335774\pi\)
\(728\) 0 0
\(729\) −8.30898e6 −0.579067
\(730\) 0 0
\(731\) 1.06380e7 1.84256e7i 0.736323 1.27535i
\(732\) 0 0
\(733\) 1.13209e7 + 1.96085e7i 0.778257 + 1.34798i 0.932946 + 0.360017i \(0.117229\pi\)
−0.154689 + 0.987963i \(0.549438\pi\)
\(734\) 0 0
\(735\) 1.96284e7 + 3.13621e7i 1.34019 + 2.14134i
\(736\) 0 0
\(737\) 4.56117e6 + 7.90018e6i 0.309320 + 0.535758i
\(738\) 0 0
\(739\) 9.71787e6 1.68318e7i 0.654576 1.13376i −0.327424 0.944877i \(-0.606181\pi\)
0.982000 0.188881i \(-0.0604861\pi\)
\(740\) 0 0
\(741\) 1.17153e7 0.783806
\(742\) 0 0
\(743\) −6.54899e6 −0.435214 −0.217607 0.976037i \(-0.569825\pi\)
−0.217607 + 0.976037i \(0.569825\pi\)
\(744\) 0 0
\(745\) −1.12592e7 + 1.95016e7i −0.743222 + 1.28730i
\(746\) 0 0
\(747\) −2.25813e7 3.91120e7i −1.48063 2.56453i
\(748\) 0 0
\(749\) −354035. 1.98756e7i −0.0230590 1.29454i
\(750\) 0 0
\(751\) −5.07859e6 8.79638e6i −0.328582 0.569120i 0.653649 0.756798i \(-0.273237\pi\)
−0.982231 + 0.187678i \(0.939904\pi\)
\(752\) 0 0
\(753\) −2.03547e7 + 3.52554e7i −1.30821 + 2.26589i
\(754\) 0 0
\(755\) 1.77792e7 1.13513
\(756\) 0 0
\(757\) −8.02731e6 −0.509132 −0.254566 0.967055i \(-0.581933\pi\)
−0.254566 + 0.967055i \(0.581933\pi\)
\(758\) 0 0
\(759\) −3.71714e6 + 6.43828e6i −0.234210 + 0.405663i
\(760\) 0 0
\(761\) 2.65668e6 + 4.60150e6i 0.166294 + 0.288030i 0.937114 0.349023i \(-0.113487\pi\)
−0.770820 + 0.637053i \(0.780153\pi\)
\(762\) 0 0
\(763\) −4.67324e6 + 2.81024e6i −0.290607 + 0.174756i
\(764\) 0 0
\(765\) −4.89225e7 8.47363e7i −3.02242 5.23499i
\(766\) 0 0
\(767\) 3.11540e6 5.39602e6i 0.191216 0.331196i
\(768\) 0 0
\(769\) −6.32376e6 −0.385620 −0.192810 0.981236i \(-0.561760\pi\)
−0.192810 + 0.981236i \(0.561760\pi\)
\(770\) 0 0
\(771\) 2.89028e7 1.75107
\(772\) 0 0
\(773\) −1.51512e6 + 2.62427e6i −0.0912009 + 0.157965i −0.908017 0.418934i \(-0.862404\pi\)
0.816816 + 0.576899i \(0.195737\pi\)
\(774\) 0 0
\(775\) −1.01933e6 1.76553e6i −0.0609621 0.105590i
\(776\) 0 0
\(777\) −1.27347e7 7.05299e6i −0.756719 0.419103i
\(778\) 0 0
\(779\) −2.44346e6 4.23219e6i −0.144265 0.249874i
\(780\) 0 0
\(781\) 8.14282e6 1.41038e7i 0.477691 0.827386i
\(782\) 0 0
\(783\) 6.97491e6 0.406569
\(784\) 0 0
\(785\) 4.77058e6 0.276310
\(786\) 0 0
\(787\) −1.22311e6 + 2.11849e6i −0.0703930 + 0.121924i −0.899074 0.437798i \(-0.855759\pi\)
0.828681 + 0.559722i \(0.189092\pi\)
\(788\) 0 0
\(789\) −2.20080e6 3.81190e6i −0.125860 0.217996i
\(790\) 0 0
\(791\) −1.05255e7 5.82948e6i −0.598140 0.331275i
\(792\) 0 0
\(793\) −6.43551e6 1.11466e7i −0.363413 0.629449i
\(794\) 0 0
\(795\) −1.52376e7 + 2.63923e7i −0.855065 + 1.48102i
\(796\) 0 0
\(797\) −6.16846e6 −0.343978 −0.171989 0.985099i \(-0.555019\pi\)
−0.171989 + 0.985099i \(0.555019\pi\)
\(798\) 0 0
\(799\) −2.44212e7 −1.35332
\(800\) 0 0
\(801\) 1.95187e7 3.38074e7i 1.07490 1.86179i
\(802\) 0 0
\(803\) 1.27121e7 + 2.20179e7i 0.695708 + 1.20500i
\(804\) 0 0
\(805\) −5.26832e6 + 3.16809e6i −0.286538 + 0.172309i
\(806\) 0 0
\(807\) 3.11864e6 + 5.40164e6i 0.168570 + 0.291972i
\(808\) 0 0
\(809\) −1.54494e7 + 2.67592e7i −0.829930 + 1.43748i 0.0681631 + 0.997674i \(0.478286\pi\)
−0.898093 + 0.439806i \(0.855047\pi\)
\(810\) 0 0
\(811\) 8.16479e6 0.435906 0.217953 0.975959i \(-0.430062\pi\)
0.217953 + 0.975959i \(0.430062\pi\)
\(812\) 0 0
\(813\) 4.14817e7 2.20105
\(814\) 0 0
\(815\) 1.51487e7 2.62382e7i 0.798877 1.38370i
\(816\) 0 0
\(817\) −3.27908e6 5.67953e6i −0.171869 0.297685i
\(818\) 0 0
\(819\) −691266. 3.88080e7i −0.0360110 2.02167i
\(820\) 0 0
\(821\) −8.89643e6 1.54091e7i −0.460636 0.797845i 0.538357 0.842717i \(-0.319045\pi\)
−0.998993 + 0.0448721i \(0.985712\pi\)
\(822\) 0 0
\(823\) 1.04562e7 1.81107e7i 0.538116 0.932044i −0.460890 0.887457i \(-0.652470\pi\)
0.999006 0.0445863i \(-0.0141970\pi\)
\(824\) 0 0
\(825\) 4.09320e7 2.09376
\(826\) 0 0
\(827\) 2.17379e7 1.10523 0.552617 0.833435i \(-0.313629\pi\)
0.552617 + 0.833435i \(0.313629\pi\)
\(828\) 0 0
\(829\) −1.75768e7 + 3.04439e7i −0.888287 + 1.53856i −0.0463888 + 0.998923i \(0.514771\pi\)
−0.841899 + 0.539636i \(0.818562\pi\)
\(830\) 0 0
\(831\) −2.63199e7 4.55874e7i −1.32215 2.29004i
\(832\) 0 0
\(833\) 3.98979e7 1.42181e6i 1.99222 0.0709953i
\(834\) 0 0
\(835\) 5.74025e6 + 9.94241e6i 0.284915 + 0.493487i
\(836\) 0 0
\(837\) 2.33994e6 4.05289e6i 0.115449 0.199964i
\(838\) 0 0
\(839\) −8.68616e6 −0.426013 −0.213007 0.977051i \(-0.568326\pi\)
−0.213007 + 0.977051i \(0.568326\pi\)
\(840\) 0 0
\(841\) −1.96456e7 −0.957800
\(842\) 0 0
\(843\) 1.62374e7 2.81239e7i 0.786949 1.36303i
\(844\) 0 0
\(845\) −1.34557e6 2.33059e6i −0.0648281 0.112286i
\(846\) 0 0
\(847\) 106467. + 5.97711e6i 0.00509926 + 0.286275i
\(848\) 0 0
\(849\) 4.86768e6 + 8.43107e6i 0.231768 + 0.401433i
\(850\) 0 0
\(851\) 1.20941e6 2.09476e6i 0.0572465 0.0991539i
\(852\) 0 0
\(853\) 125857. 0.00592247 0.00296124 0.999996i \(-0.499057\pi\)
0.00296124 + 0.999996i \(0.499057\pi\)
\(854\) 0 0
\(855\) −3.01599e7 −1.41096
\(856\) 0 0
\(857\) 7.45717e6 1.29162e7i 0.346834 0.600735i −0.638851 0.769331i \(-0.720590\pi\)
0.985685 + 0.168596i \(0.0539232\pi\)
\(858\) 0 0
\(859\) 2.03433e7 + 3.52356e7i 0.940672 + 1.62929i 0.764193 + 0.644988i \(0.223137\pi\)
0.176479 + 0.984304i \(0.443529\pi\)
\(860\) 0 0
\(861\) −2.04190e7 + 1.22789e7i −0.938701 + 0.564485i
\(862\) 0 0
\(863\) −1.57204e7 2.72286e7i −0.718518 1.24451i −0.961587 0.274501i \(-0.911487\pi\)
0.243069 0.970009i \(-0.421846\pi\)
\(864\) 0 0
\(865\) 3.09432e7 5.35952e7i 1.40613 2.43549i
\(866\) 0 0
\(867\) −1.16276e8 −5.25343
\(868\) 0 0
\(869\) −2.50864e7 −1.12691
\(870\) 0 0
\(871\) 5.82292e6 1.00856e7i 0.260073 0.450459i
\(872\) 0 0
\(873\) −8.26268e6 1.43114e7i −0.366932 0.635545i
\(874\) 0 0
\(875\) 1.27712e6 + 707321.i 0.0563911 + 0.0312318i
\(876\) 0 0
\(877\) 1.35823e7 + 2.35253e7i 0.596315 + 1.03285i 0.993360 + 0.115049i \(0.0367024\pi\)
−0.397045 + 0.917799i \(0.629964\pi\)
\(878\) 0 0
\(879\) 852708. 1.47693e6i 0.0372244 0.0644746i
\(880\) 0 0
\(881\) 1.03892e6 0.0450966 0.0225483 0.999746i \(-0.492822\pi\)
0.0225483 + 0.999746i \(0.492822\pi\)
\(882\) 0 0
\(883\) −2.29747e7 −0.991625 −0.495812 0.868430i \(-0.665130\pi\)
−0.495812 + 0.868430i \(0.665130\pi\)
\(884\) 0 0
\(885\) −1.18027e7 + 2.04429e7i −0.506551 + 0.877371i
\(886\) 0 0
\(887\) 1.71339e7 + 2.96767e7i 0.731217 + 1.26651i 0.956363 + 0.292180i \(0.0943807\pi\)
−0.225146 + 0.974325i \(0.572286\pi\)
\(888\) 0 0
\(889\) −6.77942e6 3.75473e6i −0.287699 0.159340i
\(890\) 0 0
\(891\) 1.84868e7 + 3.20201e7i 0.780132 + 1.35123i
\(892\) 0 0
\(893\) −3.76381e6 + 6.51912e6i −0.157943 + 0.273565i
\(894\) 0 0
\(895\) 3.72975e7 1.55640
\(896\) 0 0
\(897\) 9.49081e6 0.393842
\(898\) 0 0
\(899\) 290380. 502953.i 0.0119831 0.0207553i
\(900\) 0 0
\(901\) 1.64423e7 + 2.84790e7i 0.674764 + 1.16873i
\(902\) 0 0
\(903\) −2.74020e7 + 1.64781e7i −1.11831 + 0.672494i
\(904\) 0 0
\(905\) 2.29931e7 + 3.98252e7i 0.933204 + 1.61636i
\(906\) 0 0
\(907\) −1.64911e7 + 2.85635e7i −0.665630 + 1.15290i 0.313485 + 0.949593i \(0.398504\pi\)
−0.979114 + 0.203311i \(0.934830\pi\)
\(908\) 0 0
\(909\) −9.67963e7 −3.88552
\(910\) 0 0
\(911\) 1.04563e7 0.417429 0.208714 0.977977i \(-0.433072\pi\)
0.208714 + 0.977977i \(0.433072\pi\)
\(912\) 0 0
\(913\) 1.99472e7 3.45495e7i 0.791961 1.37172i
\(914\) 0 0
\(915\) 2.43810e7 + 4.22291e7i 0.962716 + 1.66747i
\(916\) 0 0
\(917\) −604285. 3.39248e7i −0.0237311 1.33228i
\(918\) 0 0
\(919\) 3.03257e6 + 5.25257e6i 0.118446 + 0.205155i 0.919152 0.393903i \(-0.128875\pi\)
−0.800706 + 0.599058i \(0.795542\pi\)
\(920\) 0 0
\(921\) 2.61624e7 4.53146e7i 1.01632 1.76031i
\(922\) 0 0
\(923\) −2.07907e7 −0.803276
\(924\) 0 0
\(925\) −1.33176e7 −0.511767
\(926\) 0 0
\(927\) −4.14769e7 + 7.18400e7i −1.58528 + 2.74579i
\(928\) 0 0
\(929\) 1.71630e7 + 2.97271e7i 0.652459 + 1.13009i 0.982524 + 0.186134i \(0.0595959\pi\)
−0.330065 + 0.943958i \(0.607071\pi\)
\(930\) 0 0
\(931\) 5.76953e6 1.08696e7i 0.218156 0.410999i
\(932\) 0 0
\(933\) 3.62191e7 + 6.27333e7i 1.36218 + 2.35936i
\(934\) 0 0
\(935\) 4.32156e7 7.48517e7i 1.61663 2.80009i
\(936\) 0 0
\(937\) −1.21642e7 −0.452621 −0.226310 0.974055i \(-0.572666\pi\)
−0.226310 + 0.974055i \(0.572666\pi\)
\(938\) 0 0
\(939\) 7.60127e7 2.81334
\(940\) 0 0
\(941\) 1.14188e7 1.97780e7i 0.420385 0.728128i −0.575592 0.817737i \(-0.695228\pi\)
0.995977 + 0.0896089i \(0.0285617\pi\)
\(942\) 0 0
\(943\) −1.97949e6 3.42859e6i −0.0724895 0.125555i
\(944\) 0 0
\(945\) 1.38378e6 + 7.76862e7i 0.0504068 + 2.82986i
\(946\) 0 0
\(947\) 9.24007e6 + 1.60043e7i 0.334811 + 0.579910i 0.983449 0.181187i \(-0.0579941\pi\)
−0.648637 + 0.761098i \(0.724661\pi\)
\(948\) 0 0
\(949\) 1.62286e7 2.81087e7i 0.584945 1.01315i
\(950\) 0 0
\(951\) −1.71113e7 −0.613523
\(952\) 0 0
\(953\) −1.03848e7 −0.370394 −0.185197 0.982701i \(-0.559292\pi\)
−0.185197 + 0.982701i \(0.559292\pi\)
\(954\) 0 0
\(955\) −1.11938e7 + 1.93883e7i −0.397165 + 0.687909i
\(956\) 0 0
\(957\) 5.83023e6 + 1.00982e7i 0.205781 + 0.356423i
\(958\) 0 0
\(959\) 5.76342e6 3.46581e6i 0.202364 0.121691i
\(960\) 0 0
\(961\) 1.41197e7 + 2.44561e7i 0.493195 + 0.854238i
\(962\) 0 0
\(963\) 3.95038e7 6.84226e7i 1.37269 2.37757i
\(964\) 0 0
\(965\) −2.29930e6 −0.0794835
\(966\) 0 0
\(967\) 5.47893e7 1.88421 0.942105 0.335318i \(-0.108844\pi\)
0.942105 + 0.335318i \(0.108844\pi\)
\(968\) 0 0
\(969\) −2.39463e7 + 4.14762e7i −0.819274 + 1.41902i
\(970\) 0 0
\(971\) −8.34954e6 1.44618e7i −0.284194 0.492238i 0.688220 0.725502i \(-0.258393\pi\)
−0.972413 + 0.233264i \(0.925059\pi\)
\(972\) 0 0
\(973\) 3.39537e7 + 1.88050e7i 1.14976 + 0.636783i
\(974\) 0 0
\(975\) −2.61274e7 4.52541e7i −0.880208 1.52456i
\(976\) 0 0
\(977\) 1.49764e7 2.59398e7i 0.501961 0.869422i −0.498036 0.867156i \(-0.665945\pi\)
0.999997 0.00226593i \(-0.000721267\pi\)
\(978\) 0 0
\(979\) 3.44836e7 1.14989
\(980\) 0 0
\(981\) −2.16733e7 −0.719038
\(982\) 0 0
\(983\) −2.71288e7 + 4.69884e7i −0.895460 + 1.55098i −0.0622265 + 0.998062i \(0.519820\pi\)
−0.833234 + 0.552921i \(0.813513\pi\)
\(984\) 0 0
\(985\) −6.96559e6 1.20648e7i −0.228753 0.396212i
\(986\) 0 0
\(987\) 3.21064e7 + 1.77819e7i 1.04906 + 0.581011i
\(988\) 0 0
\(989\) −2.65645e6 4.60110e6i −0.0863596 0.149579i
\(990\) 0 0
\(991\) −2.96948e7 + 5.14329e7i −0.960497 + 1.66363i −0.239242 + 0.970960i \(0.576899\pi\)
−0.721255 + 0.692670i \(0.756434\pi\)
\(992\) 0 0
\(993\) −2.41857e7 −0.778370
\(994\) 0 0
\(995\) −5.23151e7 −1.67521
\(996\) 0 0
\(997\) 1.33985e7 2.32069e7i 0.426893 0.739401i −0.569702 0.821851i \(-0.692941\pi\)
0.996595 + 0.0824508i \(0.0262747\pi\)
\(998\) 0 0
\(999\) −1.52857e7 2.64757e7i −0.484588 0.839331i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.i.f.81.5 10
4.3 odd 2 56.6.i.b.25.1 yes 10
7.2 even 3 inner 112.6.i.f.65.5 10
7.3 odd 6 784.6.a.bl.1.5 5
7.4 even 3 784.6.a.bk.1.1 5
12.11 even 2 504.6.s.b.361.2 10
28.3 even 6 392.6.a.j.1.1 5
28.11 odd 6 392.6.a.k.1.5 5
28.19 even 6 392.6.i.o.177.5 10
28.23 odd 6 56.6.i.b.9.1 10
28.27 even 2 392.6.i.o.361.5 10
84.23 even 6 504.6.s.b.289.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.i.b.9.1 10 28.23 odd 6
56.6.i.b.25.1 yes 10 4.3 odd 2
112.6.i.f.65.5 10 7.2 even 3 inner
112.6.i.f.81.5 10 1.1 even 1 trivial
392.6.a.j.1.1 5 28.3 even 6
392.6.a.k.1.5 5 28.11 odd 6
392.6.i.o.177.5 10 28.19 even 6
392.6.i.o.361.5 10 28.27 even 2
504.6.s.b.289.2 10 84.23 even 6
504.6.s.b.361.2 10 12.11 even 2
784.6.a.bk.1.1 5 7.4 even 3
784.6.a.bl.1.5 5 7.3 odd 6