Properties

Label 112.6.i.d.65.2
Level $112$
Weight $6$
Character 112.65
Analytic conductor $17.963$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{79})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 79x^{2} + 6241 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.2
Root \(4.44410 + 7.69740i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.6.i.d.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(12.3882 + 21.4570i) q^{3} +(18.0528 - 31.2683i) q^{5} +(124.435 + 36.3731i) q^{7} +(-185.435 + 321.182i) q^{9} +(77.7174 + 134.610i) q^{11} +1158.87 q^{13} +894.565 q^{15} +(-619.040 - 1072.21i) q^{17} +(-140.140 + 242.729i) q^{19} +(761.065 + 3120.59i) q^{21} +(-1741.20 + 3015.84i) q^{23} +(910.694 + 1577.37i) q^{25} -3168.14 q^{27} -5656.78 q^{29} +(-1157.35 - 2004.59i) q^{31} +(-1925.56 + 3335.16i) q^{33} +(3383.72 - 3234.23i) q^{35} +(1166.59 - 2020.59i) q^{37} +(14356.3 + 24865.8i) q^{39} +3812.61 q^{41} -3925.73 q^{43} +(6695.22 + 11596.5i) q^{45} +(-5558.23 + 9627.13i) q^{47} +(14161.0 + 9052.14i) q^{49} +(15337.6 - 26565.5i) q^{51} +(5593.10 + 9687.54i) q^{53} +5612.06 q^{55} -6944.31 q^{57} +(-3005.18 - 5205.12i) q^{59} +(7419.36 - 12850.7i) q^{61} +(-34756.9 + 33221.4i) q^{63} +(20920.8 - 36235.9i) q^{65} +(-21491.9 - 37225.1i) q^{67} -86281.1 q^{69} +19962.4 q^{71} +(-22775.3 - 39448.0i) q^{73} +(-22563.7 + 39081.5i) q^{75} +(4774.54 + 19577.0i) q^{77} +(54496.0 - 94389.9i) q^{79} +(5813.07 + 10068.5i) q^{81} -55829.0 q^{83} -44701.6 q^{85} +(-70077.3 - 121377. i) q^{87} +(47772.9 - 82745.1i) q^{89} +(144204. + 42151.6i) q^{91} +(28675.0 - 49666.5i) q^{93} +(5059.82 + 8763.86i) q^{95} +15004.9 q^{97} -57646.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 14 q^{3} - 70 q^{5} - 244 q^{9} + 62 q^{11} + 3640 q^{13} + 4076 q^{15} - 1694 q^{17} + 826 q^{19} + 3542 q^{21} - 2734 q^{23} - 6312 q^{25} - 14308 q^{27} - 5704 q^{29} - 2674 q^{31} - 4858 q^{33}+ \cdots - 139000 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.3882 + 21.4570i 0.794703 + 1.37647i 0.923028 + 0.384734i \(0.125707\pi\)
−0.128325 + 0.991732i \(0.540960\pi\)
\(4\) 0 0
\(5\) 18.0528 31.2683i 0.322938 0.559345i −0.658155 0.752883i \(-0.728663\pi\)
0.981093 + 0.193538i \(0.0619962\pi\)
\(6\) 0 0
\(7\) 124.435 + 36.3731i 0.959835 + 0.280566i
\(8\) 0 0
\(9\) −185.435 + 321.182i −0.763106 + 1.32174i
\(10\) 0 0
\(11\) 77.7174 + 134.610i 0.193658 + 0.335426i 0.946460 0.322821i \(-0.104631\pi\)
−0.752801 + 0.658248i \(0.771298\pi\)
\(12\) 0 0
\(13\) 1158.87 1.90185 0.950925 0.309422i \(-0.100136\pi\)
0.950925 + 0.309422i \(0.100136\pi\)
\(14\) 0 0
\(15\) 894.565 1.02656
\(16\) 0 0
\(17\) −619.040 1072.21i −0.519513 0.899823i −0.999743 0.0226804i \(-0.992780\pi\)
0.480230 0.877143i \(-0.340553\pi\)
\(18\) 0 0
\(19\) −140.140 + 242.729i −0.0890588 + 0.154254i −0.907114 0.420886i \(-0.861719\pi\)
0.818055 + 0.575140i \(0.195053\pi\)
\(20\) 0 0
\(21\) 761.065 + 3120.59i 0.376594 + 1.54415i
\(22\) 0 0
\(23\) −1741.20 + 3015.84i −0.686322 + 1.18874i 0.286698 + 0.958021i \(0.407443\pi\)
−0.973019 + 0.230723i \(0.925891\pi\)
\(24\) 0 0
\(25\) 910.694 + 1577.37i 0.291422 + 0.504758i
\(26\) 0 0
\(27\) −3168.14 −0.836364
\(28\) 0 0
\(29\) −5656.78 −1.24903 −0.624517 0.781011i \(-0.714704\pi\)
−0.624517 + 0.781011i \(0.714704\pi\)
\(30\) 0 0
\(31\) −1157.35 2004.59i −0.216302 0.374646i 0.737372 0.675486i \(-0.236066\pi\)
−0.953675 + 0.300840i \(0.902733\pi\)
\(32\) 0 0
\(33\) −1925.56 + 3335.16i −0.307802 + 0.533128i
\(34\) 0 0
\(35\) 3383.72 3234.23i 0.466900 0.446273i
\(36\) 0 0
\(37\) 1166.59 2020.59i 0.140092 0.242646i −0.787439 0.616392i \(-0.788594\pi\)
0.927531 + 0.373746i \(0.121927\pi\)
\(38\) 0 0
\(39\) 14356.3 + 24865.8i 1.51141 + 2.61783i
\(40\) 0 0
\(41\) 3812.61 0.354211 0.177106 0.984192i \(-0.443327\pi\)
0.177106 + 0.984192i \(0.443327\pi\)
\(42\) 0 0
\(43\) −3925.73 −0.323780 −0.161890 0.986809i \(-0.551759\pi\)
−0.161890 + 0.986809i \(0.551759\pi\)
\(44\) 0 0
\(45\) 6695.22 + 11596.5i 0.492872 + 0.853679i
\(46\) 0 0
\(47\) −5558.23 + 9627.13i −0.367022 + 0.635700i −0.989098 0.147256i \(-0.952956\pi\)
0.622077 + 0.782956i \(0.286289\pi\)
\(48\) 0 0
\(49\) 14161.0 + 9052.14i 0.842566 + 0.538594i
\(50\) 0 0
\(51\) 15337.6 26565.5i 0.825717 1.43018i
\(52\) 0 0
\(53\) 5593.10 + 9687.54i 0.273504 + 0.473722i 0.969757 0.244074i \(-0.0784841\pi\)
−0.696253 + 0.717797i \(0.745151\pi\)
\(54\) 0 0
\(55\) 5612.06 0.250159
\(56\) 0 0
\(57\) −6944.31 −0.283101
\(58\) 0 0
\(59\) −3005.18 5205.12i −0.112393 0.194671i 0.804342 0.594167i \(-0.202518\pi\)
−0.916735 + 0.399497i \(0.869185\pi\)
\(60\) 0 0
\(61\) 7419.36 12850.7i 0.255295 0.442183i −0.709681 0.704523i \(-0.751161\pi\)
0.964975 + 0.262340i \(0.0844942\pi\)
\(62\) 0 0
\(63\) −34756.9 + 33221.4i −1.10329 + 1.05455i
\(64\) 0 0
\(65\) 20920.8 36235.9i 0.614179 1.06379i
\(66\) 0 0
\(67\) −21491.9 37225.1i −0.584909 1.01309i −0.994887 0.100997i \(-0.967797\pi\)
0.409977 0.912096i \(-0.365537\pi\)
\(68\) 0 0
\(69\) −86281.1 −2.18169
\(70\) 0 0
\(71\) 19962.4 0.469967 0.234984 0.971999i \(-0.424496\pi\)
0.234984 + 0.971999i \(0.424496\pi\)
\(72\) 0 0
\(73\) −22775.3 39448.0i −0.500215 0.866398i −1.00000 0.000248463i \(-0.999921\pi\)
0.499785 0.866150i \(-0.333412\pi\)
\(74\) 0 0
\(75\) −22563.7 + 39081.5i −0.463188 + 0.802266i
\(76\) 0 0
\(77\) 4774.54 + 19577.0i 0.0917709 + 0.376288i
\(78\) 0 0
\(79\) 54496.0 94389.9i 0.982419 1.70160i 0.329534 0.944144i \(-0.393108\pi\)
0.652885 0.757457i \(-0.273558\pi\)
\(80\) 0 0
\(81\) 5813.07 + 10068.5i 0.0984448 + 0.170511i
\(82\) 0 0
\(83\) −55829.0 −0.889538 −0.444769 0.895645i \(-0.646714\pi\)
−0.444769 + 0.895645i \(0.646714\pi\)
\(84\) 0 0
\(85\) −44701.6 −0.671082
\(86\) 0 0
\(87\) −70077.3 121377.i −0.992611 1.71925i
\(88\) 0 0
\(89\) 47772.9 82745.1i 0.639303 1.10731i −0.346283 0.938130i \(-0.612556\pi\)
0.985586 0.169175i \(-0.0541103\pi\)
\(90\) 0 0
\(91\) 144204. + 42151.6i 1.82546 + 0.533594i
\(92\) 0 0
\(93\) 28675.0 49666.5i 0.343792 0.595465i
\(94\) 0 0
\(95\) 5059.82 + 8763.86i 0.0575209 + 0.0996292i
\(96\) 0 0
\(97\) 15004.9 0.161922 0.0809609 0.996717i \(-0.474201\pi\)
0.0809609 + 0.996717i \(0.474201\pi\)
\(98\) 0 0
\(99\) −57646.0 −0.591127
\(100\) 0 0
\(101\) −13438.1 23275.4i −0.131079 0.227036i 0.793014 0.609204i \(-0.208511\pi\)
−0.924093 + 0.382168i \(0.875178\pi\)
\(102\) 0 0
\(103\) −25957.6 + 44959.9i −0.241086 + 0.417573i −0.961024 0.276466i \(-0.910837\pi\)
0.719938 + 0.694038i \(0.244170\pi\)
\(104\) 0 0
\(105\) 111315. + 32538.1i 0.985327 + 0.288017i
\(106\) 0 0
\(107\) −12487.4 + 21628.8i −0.105442 + 0.182630i −0.913919 0.405898i \(-0.866959\pi\)
0.808477 + 0.588528i \(0.200292\pi\)
\(108\) 0 0
\(109\) 1818.07 + 3148.99i 0.0146570 + 0.0253867i 0.873261 0.487253i \(-0.162001\pi\)
−0.858604 + 0.512640i \(0.828668\pi\)
\(110\) 0 0
\(111\) 57807.7 0.445326
\(112\) 0 0
\(113\) 62175.0 0.458057 0.229028 0.973420i \(-0.426445\pi\)
0.229028 + 0.973420i \(0.426445\pi\)
\(114\) 0 0
\(115\) 62866.8 + 108889.i 0.443279 + 0.767781i
\(116\) 0 0
\(117\) −214895. + 372208.i −1.45131 + 2.51375i
\(118\) 0 0
\(119\) −38030.6 155936.i −0.246187 1.00944i
\(120\) 0 0
\(121\) 68445.5 118551.i 0.424993 0.736109i
\(122\) 0 0
\(123\) 47231.3 + 81807.1i 0.281493 + 0.487560i
\(124\) 0 0
\(125\) 178592. 1.02232
\(126\) 0 0
\(127\) −63550.3 −0.349630 −0.174815 0.984601i \(-0.555933\pi\)
−0.174815 + 0.984601i \(0.555933\pi\)
\(128\) 0 0
\(129\) −48632.7 84234.4i −0.257309 0.445672i
\(130\) 0 0
\(131\) 68148.5 118037.i 0.346959 0.600950i −0.638749 0.769415i \(-0.720548\pi\)
0.985708 + 0.168465i \(0.0538810\pi\)
\(132\) 0 0
\(133\) −26267.0 + 25106.6i −0.128760 + 0.123072i
\(134\) 0 0
\(135\) −57193.8 + 99062.5i −0.270094 + 0.467816i
\(136\) 0 0
\(137\) −167652. 290381.i −0.763144 1.32180i −0.941222 0.337788i \(-0.890321\pi\)
0.178078 0.984016i \(-0.443012\pi\)
\(138\) 0 0
\(139\) −58195.2 −0.255476 −0.127738 0.991808i \(-0.540772\pi\)
−0.127738 + 0.991808i \(0.540772\pi\)
\(140\) 0 0
\(141\) −275426. −1.16669
\(142\) 0 0
\(143\) 90064.3 + 155996.i 0.368309 + 0.637930i
\(144\) 0 0
\(145\) −102121. + 176878.i −0.403360 + 0.698641i
\(146\) 0 0
\(147\) −18802.5 + 415992.i −0.0717665 + 1.58779i
\(148\) 0 0
\(149\) −141529. + 245135.i −0.522251 + 0.904566i 0.477414 + 0.878679i \(0.341574\pi\)
−0.999665 + 0.0258870i \(0.991759\pi\)
\(150\) 0 0
\(151\) −120779. 209195.i −0.431071 0.746637i 0.565895 0.824477i \(-0.308531\pi\)
−0.996966 + 0.0778407i \(0.975197\pi\)
\(152\) 0 0
\(153\) 459166. 1.58577
\(154\) 0 0
\(155\) −83573.6 −0.279409
\(156\) 0 0
\(157\) 107014. + 185354.i 0.346492 + 0.600142i 0.985624 0.168956i \(-0.0540394\pi\)
−0.639132 + 0.769097i \(0.720706\pi\)
\(158\) 0 0
\(159\) −138577. + 240022.i −0.434708 + 0.752937i
\(160\) 0 0
\(161\) −326360. + 311942.i −0.992277 + 0.948440i
\(162\) 0 0
\(163\) 32233.0 55829.2i 0.0950237 0.164586i −0.814595 0.580030i \(-0.803041\pi\)
0.909619 + 0.415445i \(0.136374\pi\)
\(164\) 0 0
\(165\) 69523.3 + 120418.i 0.198802 + 0.344335i
\(166\) 0 0
\(167\) 442694. 1.22832 0.614162 0.789180i \(-0.289494\pi\)
0.614162 + 0.789180i \(0.289494\pi\)
\(168\) 0 0
\(169\) 971685. 2.61703
\(170\) 0 0
\(171\) −51973.5 90020.7i −0.135923 0.235425i
\(172\) 0 0
\(173\) 39299.5 68068.8i 0.0998325 0.172915i −0.811783 0.583960i \(-0.801503\pi\)
0.911615 + 0.411045i \(0.134836\pi\)
\(174\) 0 0
\(175\) 55948.3 + 229404.i 0.138099 + 0.566247i
\(176\) 0 0
\(177\) 74457.4 128964.i 0.178638 0.309411i
\(178\) 0 0
\(179\) −255214. 442043.i −0.595348 1.03117i −0.993498 0.113853i \(-0.963681\pi\)
0.398149 0.917321i \(-0.369653\pi\)
\(180\) 0 0
\(181\) −22051.8 −0.0500319 −0.0250160 0.999687i \(-0.507964\pi\)
−0.0250160 + 0.999687i \(0.507964\pi\)
\(182\) 0 0
\(183\) 367650. 0.811534
\(184\) 0 0
\(185\) −42120.3 72954.5i −0.0904820 0.156719i
\(186\) 0 0
\(187\) 96220.4 166659.i 0.201216 0.348517i
\(188\) 0 0
\(189\) −394227. 115235.i −0.802771 0.234655i
\(190\) 0 0
\(191\) −279076. + 483374.i −0.553528 + 0.958738i 0.444489 + 0.895784i \(0.353385\pi\)
−0.998016 + 0.0629535i \(0.979948\pi\)
\(192\) 0 0
\(193\) 24658.1 + 42709.1i 0.0476504 + 0.0825330i 0.888867 0.458166i \(-0.151493\pi\)
−0.841216 + 0.540699i \(0.818160\pi\)
\(194\) 0 0
\(195\) 1.03668e6 1.95236
\(196\) 0 0
\(197\) −941509. −1.72846 −0.864229 0.503099i \(-0.832193\pi\)
−0.864229 + 0.503099i \(0.832193\pi\)
\(198\) 0 0
\(199\) 320006. + 554267.i 0.572830 + 0.992170i 0.996274 + 0.0862477i \(0.0274876\pi\)
−0.423444 + 0.905922i \(0.639179\pi\)
\(200\) 0 0
\(201\) 532493. 922304.i 0.929658 1.61022i
\(202\) 0 0
\(203\) −703900. 205754.i −1.19887 0.350436i
\(204\) 0 0
\(205\) 68828.2 119214.i 0.114388 0.198126i
\(206\) 0 0
\(207\) −645756. 1.11848e6i −1.04747 1.81428i
\(208\) 0 0
\(209\) −43565.1 −0.0689879
\(210\) 0 0
\(211\) −921869. −1.42549 −0.712743 0.701425i \(-0.752548\pi\)
−0.712743 + 0.701425i \(0.752548\pi\)
\(212\) 0 0
\(213\) 247298. + 428333.i 0.373484 + 0.646894i
\(214\) 0 0
\(215\) −70870.4 + 122751.i −0.104561 + 0.181105i
\(216\) 0 0
\(217\) −71101.5 291537.i −0.102501 0.420285i
\(218\) 0 0
\(219\) 564290. 977378.i 0.795045 1.37706i
\(220\) 0 0
\(221\) −717387. 1.24255e6i −0.988036 1.71133i
\(222\) 0 0
\(223\) 837700. 1.12805 0.564023 0.825759i \(-0.309253\pi\)
0.564023 + 0.825759i \(0.309253\pi\)
\(224\) 0 0
\(225\) −675497. −0.889544
\(226\) 0 0
\(227\) −665344. 1.15241e6i −0.857002 1.48437i −0.874775 0.484529i \(-0.838991\pi\)
0.0177731 0.999842i \(-0.494342\pi\)
\(228\) 0 0
\(229\) −505317. + 875234.i −0.636759 + 1.10290i 0.349381 + 0.936981i \(0.386392\pi\)
−0.986140 + 0.165918i \(0.946941\pi\)
\(230\) 0 0
\(231\) −360916. + 344971.i −0.445017 + 0.425357i
\(232\) 0 0
\(233\) −743050. + 1.28700e6i −0.896661 + 1.55306i −0.0649249 + 0.997890i \(0.520681\pi\)
−0.831736 + 0.555172i \(0.812653\pi\)
\(234\) 0 0
\(235\) 200683. + 347593.i 0.237050 + 0.410583i
\(236\) 0 0
\(237\) 2.70043e6 3.12293
\(238\) 0 0
\(239\) −875637. −0.991584 −0.495792 0.868441i \(-0.665122\pi\)
−0.495792 + 0.868441i \(0.665122\pi\)
\(240\) 0 0
\(241\) −726472. 1.25829e6i −0.805706 1.39552i −0.915814 0.401604i \(-0.868453\pi\)
0.110108 0.993920i \(-0.464880\pi\)
\(242\) 0 0
\(243\) −528956. + 916179.i −0.574651 + 0.995324i
\(244\) 0 0
\(245\) 538691. 279374.i 0.573356 0.297352i
\(246\) 0 0
\(247\) −162403. + 281291.i −0.169376 + 0.293369i
\(248\) 0 0
\(249\) −691621. 1.19792e6i −0.706919 1.22442i
\(250\) 0 0
\(251\) 198384. 0.198757 0.0993786 0.995050i \(-0.468315\pi\)
0.0993786 + 0.995050i \(0.468315\pi\)
\(252\) 0 0
\(253\) −541284. −0.531648
\(254\) 0 0
\(255\) −553772. 959161.i −0.533311 0.923722i
\(256\) 0 0
\(257\) −239786. + 415321.i −0.226460 + 0.392240i −0.956756 0.290890i \(-0.906048\pi\)
0.730297 + 0.683130i \(0.239382\pi\)
\(258\) 0 0
\(259\) 218659. 208999.i 0.202543 0.193595i
\(260\) 0 0
\(261\) 1.04896e6 1.81686e6i 0.953145 1.65090i
\(262\) 0 0
\(263\) 227471. + 393992.i 0.202786 + 0.351235i 0.949425 0.313994i \(-0.101667\pi\)
−0.746639 + 0.665229i \(0.768334\pi\)
\(264\) 0 0
\(265\) 403884. 0.353299
\(266\) 0 0
\(267\) 2.36728e6 2.03222
\(268\) 0 0
\(269\) 430068. + 744900.i 0.362374 + 0.627650i 0.988351 0.152192i \(-0.0486331\pi\)
−0.625977 + 0.779841i \(0.715300\pi\)
\(270\) 0 0
\(271\) 652790. 1.13067e6i 0.539946 0.935214i −0.458960 0.888457i \(-0.651778\pi\)
0.998906 0.0467569i \(-0.0148886\pi\)
\(272\) 0 0
\(273\) 881975. + 3.61636e6i 0.716226 + 2.93673i
\(274\) 0 0
\(275\) −141554. + 245178.i −0.112873 + 0.195501i
\(276\) 0 0
\(277\) 271554. + 470346.i 0.212646 + 0.368314i 0.952542 0.304408i \(-0.0984586\pi\)
−0.739896 + 0.672721i \(0.765125\pi\)
\(278\) 0 0
\(279\) 858452. 0.660246
\(280\) 0 0
\(281\) 998089. 0.754055 0.377028 0.926202i \(-0.376946\pi\)
0.377028 + 0.926202i \(0.376946\pi\)
\(282\) 0 0
\(283\) 888660. + 1.53920e6i 0.659583 + 1.14243i 0.980724 + 0.195400i \(0.0626005\pi\)
−0.321140 + 0.947032i \(0.604066\pi\)
\(284\) 0 0
\(285\) −125364. + 217137.i −0.0914241 + 0.158351i
\(286\) 0 0
\(287\) 474421. + 138676.i 0.339984 + 0.0993796i
\(288\) 0 0
\(289\) −56493.2 + 97849.1i −0.0397880 + 0.0689148i
\(290\) 0 0
\(291\) 185884. + 321961.i 0.128680 + 0.222880i
\(292\) 0 0
\(293\) −1.63987e6 −1.11594 −0.557969 0.829862i \(-0.688419\pi\)
−0.557969 + 0.829862i \(0.688419\pi\)
\(294\) 0 0
\(295\) −217007. −0.145184
\(296\) 0 0
\(297\) −246220. 426465.i −0.161969 0.280538i
\(298\) 0 0
\(299\) −2.01782e6 + 3.49496e6i −1.30528 + 2.26081i
\(300\) 0 0
\(301\) −488498. 142791.i −0.310775 0.0908415i
\(302\) 0 0
\(303\) 332947. 576681.i 0.208338 0.360852i
\(304\) 0 0
\(305\) −267880. 463982.i −0.164889 0.285595i
\(306\) 0 0
\(307\) −2.38130e6 −1.44201 −0.721006 0.692928i \(-0.756320\pi\)
−0.721006 + 0.692928i \(0.756320\pi\)
\(308\) 0 0
\(309\) −1.28627e6 −0.766366
\(310\) 0 0
\(311\) −622564. 1.07831e6i −0.364992 0.632184i 0.623783 0.781597i \(-0.285595\pi\)
−0.988775 + 0.149413i \(0.952262\pi\)
\(312\) 0 0
\(313\) −831495. + 1.44019e6i −0.479732 + 0.830921i −0.999730 0.0232470i \(-0.992600\pi\)
0.519997 + 0.854168i \(0.325933\pi\)
\(314\) 0 0
\(315\) 411319. + 1.68653e6i 0.233562 + 0.957673i
\(316\) 0 0
\(317\) 1.31243e6 2.27319e6i 0.733547 1.27054i −0.221812 0.975090i \(-0.571197\pi\)
0.955358 0.295450i \(-0.0954697\pi\)
\(318\) 0 0
\(319\) −439630. 761462.i −0.241886 0.418959i
\(320\) 0 0
\(321\) −618784. −0.335179
\(322\) 0 0
\(323\) 347008. 0.185069
\(324\) 0 0
\(325\) 1.05538e6 + 1.82796e6i 0.554241 + 0.959974i
\(326\) 0 0
\(327\) −45045.3 + 78020.7i −0.0232959 + 0.0403497i
\(328\) 0 0
\(329\) −1.04180e6 + 995780.i −0.530636 + 0.507193i
\(330\) 0 0
\(331\) 869428. 1.50589e6i 0.436178 0.755482i −0.561213 0.827671i \(-0.689665\pi\)
0.997391 + 0.0721894i \(0.0229986\pi\)
\(332\) 0 0
\(333\) 432652. + 749375.i 0.213810 + 0.370330i
\(334\) 0 0
\(335\) −1.55196e6 −0.755558
\(336\) 0 0
\(337\) 853564. 0.409413 0.204706 0.978823i \(-0.434376\pi\)
0.204706 + 0.978823i \(0.434376\pi\)
\(338\) 0 0
\(339\) 770236. + 1.33409e6i 0.364019 + 0.630500i
\(340\) 0 0
\(341\) 179892. 311583.i 0.0837774 0.145107i
\(342\) 0 0
\(343\) 1.43287e6 + 1.64148e6i 0.657613 + 0.753356i
\(344\) 0 0
\(345\) −1.55761e6 + 2.69786e6i −0.704550 + 1.22032i
\(346\) 0 0
\(347\) −1.49250e6 2.58508e6i −0.665411 1.15253i −0.979174 0.203024i \(-0.934923\pi\)
0.313763 0.949501i \(-0.398410\pi\)
\(348\) 0 0
\(349\) 2.87467e6 1.26335 0.631676 0.775233i \(-0.282367\pi\)
0.631676 + 0.775233i \(0.282367\pi\)
\(350\) 0 0
\(351\) −3.67146e6 −1.59064
\(352\) 0 0
\(353\) −735546. 1.27400e6i −0.314176 0.544169i 0.665086 0.746767i \(-0.268395\pi\)
−0.979262 + 0.202598i \(0.935062\pi\)
\(354\) 0 0
\(355\) 360377. 624192.i 0.151770 0.262874i
\(356\) 0 0
\(357\) 2.87480e6 2.74779e6i 1.19381 1.14107i
\(358\) 0 0
\(359\) 1.53900e6 2.66562e6i 0.630233 1.09160i −0.357270 0.934001i \(-0.616293\pi\)
0.987504 0.157595i \(-0.0503741\pi\)
\(360\) 0 0
\(361\) 1.19877e6 + 2.07633e6i 0.484137 + 0.838550i
\(362\) 0 0
\(363\) 3.39167e6 1.35097
\(364\) 0 0
\(365\) −1.64463e6 −0.646154
\(366\) 0 0
\(367\) 808349. + 1.40010e6i 0.313281 + 0.542618i 0.979071 0.203521i \(-0.0652386\pi\)
−0.665790 + 0.746139i \(0.731905\pi\)
\(368\) 0 0
\(369\) −706990. + 1.22454e6i −0.270301 + 0.468175i
\(370\) 0 0
\(371\) 343611. + 1.40890e6i 0.129608 + 0.531431i
\(372\) 0 0
\(373\) 2.38059e6 4.12331e6i 0.885958 1.53452i 0.0413462 0.999145i \(-0.486835\pi\)
0.844612 0.535379i \(-0.179831\pi\)
\(374\) 0 0
\(375\) 2.21243e6 + 3.83205e6i 0.812442 + 1.40719i
\(376\) 0 0
\(377\) −6.55547e6 −2.37548
\(378\) 0 0
\(379\) −1.00193e6 −0.358294 −0.179147 0.983822i \(-0.557334\pi\)
−0.179147 + 0.983822i \(0.557334\pi\)
\(380\) 0 0
\(381\) −787273. 1.36360e6i −0.277852 0.481253i
\(382\) 0 0
\(383\) −1.41076e6 + 2.44351e6i −0.491424 + 0.851172i −0.999951 0.00987425i \(-0.996857\pi\)
0.508527 + 0.861046i \(0.330190\pi\)
\(384\) 0 0
\(385\) 698335. + 204128.i 0.240111 + 0.0701859i
\(386\) 0 0
\(387\) 727967. 1.26088e6i 0.247078 0.427952i
\(388\) 0 0
\(389\) 621198. + 1.07595e6i 0.208140 + 0.360510i 0.951129 0.308795i \(-0.0999256\pi\)
−0.742988 + 0.669304i \(0.766592\pi\)
\(390\) 0 0
\(391\) 4.31148e6 1.42621
\(392\) 0 0
\(393\) 3.37695e6 1.10292
\(394\) 0 0
\(395\) −1.96761e6 3.40800e6i −0.634521 1.09902i
\(396\) 0 0
\(397\) −1.37281e6 + 2.37778e6i −0.437154 + 0.757173i −0.997469 0.0711068i \(-0.977347\pi\)
0.560315 + 0.828280i \(0.310680\pi\)
\(398\) 0 0
\(399\) −864113. 252586.i −0.271730 0.0794285i
\(400\) 0 0
\(401\) 1.85668e6 3.21586e6i 0.576601 0.998702i −0.419265 0.907864i \(-0.637712\pi\)
0.995866 0.0908378i \(-0.0289545\pi\)
\(402\) 0 0
\(403\) −1.34122e6 2.32306e6i −0.411374 0.712521i
\(404\) 0 0
\(405\) 419768. 0.127166
\(406\) 0 0
\(407\) 362656. 0.108520
\(408\) 0 0
\(409\) −1.87970e6 3.25574e6i −0.555623 0.962367i −0.997855 0.0654664i \(-0.979146\pi\)
0.442232 0.896901i \(-0.354187\pi\)
\(410\) 0 0
\(411\) 4.15380e6 7.19460e6i 1.21295 2.10088i
\(412\) 0 0
\(413\) −184622. 757005.i −0.0532609 0.218385i
\(414\) 0 0
\(415\) −1.00787e6 + 1.74568e6i −0.287266 + 0.497559i
\(416\) 0 0
\(417\) −720934. 1.24869e6i −0.203028 0.351654i
\(418\) 0 0
\(419\) −4.60027e6 −1.28011 −0.640056 0.768328i \(-0.721089\pi\)
−0.640056 + 0.768328i \(0.721089\pi\)
\(420\) 0 0
\(421\) −404864. −0.111328 −0.0556639 0.998450i \(-0.517728\pi\)
−0.0556639 + 0.998450i \(0.517728\pi\)
\(422\) 0 0
\(423\) −2.06138e6 3.57041e6i −0.560153 0.970213i
\(424\) 0 0
\(425\) 1.12751e6 1.95291e6i 0.302795 0.524457i
\(426\) 0 0
\(427\) 1.39065e6 1.32921e6i 0.369102 0.352796i
\(428\) 0 0
\(429\) −2.23147e6 + 3.86502e6i −0.585393 + 1.01393i
\(430\) 0 0
\(431\) 47379.2 + 82063.2i 0.0122856 + 0.0212792i 0.872103 0.489323i \(-0.162756\pi\)
−0.859817 + 0.510602i \(0.829423\pi\)
\(432\) 0 0
\(433\) 4.31727e6 1.10660 0.553298 0.832983i \(-0.313369\pi\)
0.553298 + 0.832983i \(0.313369\pi\)
\(434\) 0 0
\(435\) −5.06036e6 −1.28221
\(436\) 0 0
\(437\) −488021. 845277.i −0.122246 0.211736i
\(438\) 0 0
\(439\) −1.11184e6 + 1.92576e6i −0.275346 + 0.476914i −0.970222 0.242216i \(-0.922126\pi\)
0.694876 + 0.719130i \(0.255459\pi\)
\(440\) 0 0
\(441\) −5.53333e6 + 2.86968e6i −1.35485 + 0.702647i
\(442\) 0 0
\(443\) −2.34213e6 + 4.05668e6i −0.567024 + 0.982114i 0.429835 + 0.902908i \(0.358572\pi\)
−0.996858 + 0.0792062i \(0.974761\pi\)
\(444\) 0 0
\(445\) −1.72487e6 2.98756e6i −0.412910 0.715182i
\(446\) 0 0
\(447\) −7.01315e6 −1.66014
\(448\) 0 0
\(449\) 897932. 0.210198 0.105099 0.994462i \(-0.466484\pi\)
0.105099 + 0.994462i \(0.466484\pi\)
\(450\) 0 0
\(451\) 296306. + 513217.i 0.0685960 + 0.118812i
\(452\) 0 0
\(453\) 2.99246e6 5.18310e6i 0.685147 1.18671i
\(454\) 0 0
\(455\) 3.92129e6 3.74805e6i 0.887974 0.848745i
\(456\) 0 0
\(457\) −2.99091e6 + 5.18040e6i −0.669903 + 1.16031i 0.308027 + 0.951377i \(0.400331\pi\)
−0.977931 + 0.208929i \(0.933002\pi\)
\(458\) 0 0
\(459\) 1.96121e6 + 3.39691e6i 0.434502 + 0.752580i
\(460\) 0 0
\(461\) 1.62507e6 0.356138 0.178069 0.984018i \(-0.443015\pi\)
0.178069 + 0.984018i \(0.443015\pi\)
\(462\) 0 0
\(463\) 8.46295e6 1.83472 0.917359 0.398060i \(-0.130317\pi\)
0.917359 + 0.398060i \(0.130317\pi\)
\(464\) 0 0
\(465\) −1.03533e6 1.79324e6i −0.222047 0.384596i
\(466\) 0 0
\(467\) 3.83297e6 6.63890e6i 0.813286 1.40865i −0.0972658 0.995258i \(-0.531010\pi\)
0.910552 0.413395i \(-0.135657\pi\)
\(468\) 0 0
\(469\) −1.32035e6 5.41383e6i −0.277177 1.13651i
\(470\) 0 0
\(471\) −2.65143e6 + 4.59241e6i −0.550717 + 0.953869i
\(472\) 0 0
\(473\) −305098. 528445.i −0.0627027 0.108604i
\(474\) 0 0
\(475\) −510497. −0.103815
\(476\) 0 0
\(477\) −4.14862e6 −0.834849
\(478\) 0 0
\(479\) −1.20146e6 2.08099e6i −0.239261 0.414412i 0.721242 0.692683i \(-0.243572\pi\)
−0.960502 + 0.278272i \(0.910238\pi\)
\(480\) 0 0
\(481\) 1.35192e6 2.34160e6i 0.266434 0.461477i
\(482\) 0 0
\(483\) −1.07364e7 3.13831e6i −2.09406 0.612107i
\(484\) 0 0
\(485\) 270881. 469180.i 0.0522907 0.0905701i
\(486\) 0 0
\(487\) −85150.8 147486.i −0.0162692 0.0281791i 0.857776 0.514023i \(-0.171846\pi\)
−0.874045 + 0.485844i \(0.838512\pi\)
\(488\) 0 0
\(489\) 1.59724e6 0.302063
\(490\) 0 0
\(491\) 5.77628e6 1.08130 0.540648 0.841249i \(-0.318179\pi\)
0.540648 + 0.841249i \(0.318179\pi\)
\(492\) 0 0
\(493\) 3.50177e6 + 6.06525e6i 0.648890 + 1.12391i
\(494\) 0 0
\(495\) −1.04067e6 + 1.80249e6i −0.190897 + 0.330644i
\(496\) 0 0
\(497\) 2.48402e6 + 726095.i 0.451091 + 0.131857i
\(498\) 0 0
\(499\) 271801. 470773.i 0.0488652 0.0846369i −0.840558 0.541721i \(-0.817773\pi\)
0.889423 + 0.457084i \(0.151106\pi\)
\(500\) 0 0
\(501\) 5.48418e6 + 9.49888e6i 0.976152 + 1.69075i
\(502\) 0 0
\(503\) 5.40086e6 0.951794 0.475897 0.879501i \(-0.342124\pi\)
0.475897 + 0.879501i \(0.342124\pi\)
\(504\) 0 0
\(505\) −970378. −0.169322
\(506\) 0 0
\(507\) 1.20374e7 + 2.08494e7i 2.07976 + 3.60225i
\(508\) 0 0
\(509\) −4.17209e6 + 7.22628e6i −0.713772 + 1.23629i 0.249659 + 0.968334i \(0.419681\pi\)
−0.963431 + 0.267955i \(0.913652\pi\)
\(510\) 0 0
\(511\) −1.39919e6 5.73710e6i −0.237042 0.971942i
\(512\) 0 0
\(513\) 443982. 769000.i 0.0744856 0.129013i
\(514\) 0 0
\(515\) 937213. + 1.62330e6i 0.155711 + 0.269700i
\(516\) 0 0
\(517\) −1.72788e6 −0.284307
\(518\) 0 0
\(519\) 1.94740e6 0.317349
\(520\) 0 0
\(521\) 5.73919e6 + 9.94057e6i 0.926310 + 1.60442i 0.789441 + 0.613827i \(0.210371\pi\)
0.136870 + 0.990589i \(0.456296\pi\)
\(522\) 0 0
\(523\) −2.19367e6 + 3.79955e6i −0.350685 + 0.607404i −0.986370 0.164545i \(-0.947384\pi\)
0.635685 + 0.771949i \(0.280718\pi\)
\(524\) 0 0
\(525\) −4.22922e6 + 4.04238e6i −0.669673 + 0.640088i
\(526\) 0 0
\(527\) −1.43289e6 + 2.48184e6i −0.224744 + 0.389267i
\(528\) 0 0
\(529\) −2.84535e6 4.92829e6i −0.442075 0.765697i
\(530\) 0 0
\(531\) 2.22906e6 0.343071
\(532\) 0 0
\(533\) 4.41832e6 0.673657
\(534\) 0 0
\(535\) 450864. + 780919.i 0.0681022 + 0.117956i
\(536\) 0 0
\(537\) 6.32327e6 1.09522e7i 0.946250 1.63895i
\(538\) 0 0
\(539\) −117957. + 2.60973e6i −0.0174885 + 0.386922i
\(540\) 0 0
\(541\) −3.61153e6 + 6.25535e6i −0.530515 + 0.918879i 0.468851 + 0.883277i \(0.344668\pi\)
−0.999366 + 0.0356020i \(0.988665\pi\)
\(542\) 0 0
\(543\) −273182. 473165.i −0.0397605 0.0688673i
\(544\) 0 0
\(545\) 131285. 0.0189332
\(546\) 0 0
\(547\) −3.54529e6 −0.506622 −0.253311 0.967385i \(-0.581520\pi\)
−0.253311 + 0.967385i \(0.581520\pi\)
\(548\) 0 0
\(549\) 2.75161e6 + 4.76593e6i 0.389634 + 0.674865i
\(550\) 0 0
\(551\) 792739. 1.37306e6i 0.111237 0.192669i
\(552\) 0 0
\(553\) 1.02144e7 9.76319e6i 1.42037 1.35762i
\(554\) 0 0
\(555\) 1.04359e6 1.80755e6i 0.143813 0.249091i
\(556\) 0 0
\(557\) −5.18314e6 8.97747e6i −0.707873 1.22607i −0.965645 0.259866i \(-0.916322\pi\)
0.257772 0.966206i \(-0.417012\pi\)
\(558\) 0 0
\(559\) −4.54941e6 −0.615780
\(560\) 0 0
\(561\) 4.76799e6 0.639628
\(562\) 0 0
\(563\) −2.24141e6 3.88223e6i −0.298023 0.516191i 0.677660 0.735375i \(-0.262994\pi\)
−0.975684 + 0.219184i \(0.929661\pi\)
\(564\) 0 0
\(565\) 1.12243e6 1.94411e6i 0.147924 0.256212i
\(566\) 0 0
\(567\) 357124. + 1.46431e6i 0.0466511 + 0.191283i
\(568\) 0 0
\(569\) −3.24668e6 + 5.62341e6i −0.420396 + 0.728147i −0.995978 0.0895969i \(-0.971442\pi\)
0.575582 + 0.817744i \(0.304775\pi\)
\(570\) 0 0
\(571\) −248754. 430854.i −0.0319286 0.0553019i 0.849620 0.527396i \(-0.176832\pi\)
−0.881548 + 0.472094i \(0.843498\pi\)
\(572\) 0 0
\(573\) −1.38290e7 −1.75956
\(574\) 0 0
\(575\) −6.34279e6 −0.800038
\(576\) 0 0
\(577\) 3.27561e6 + 5.67353e6i 0.409594 + 0.709437i 0.994844 0.101416i \(-0.0323372\pi\)
−0.585250 + 0.810853i \(0.699004\pi\)
\(578\) 0 0
\(579\) −610939. + 1.05818e6i −0.0757359 + 0.131178i
\(580\) 0 0
\(581\) −6.94707e6 2.03067e6i −0.853810 0.249574i
\(582\) 0 0
\(583\) −869363. + 1.50578e6i −0.105933 + 0.183481i
\(584\) 0 0
\(585\) 7.75889e6 + 1.34388e7i 0.937368 + 1.62357i
\(586\) 0 0
\(587\) 30793.5 0.00368862 0.00184431 0.999998i \(-0.499413\pi\)
0.00184431 + 0.999998i \(0.499413\pi\)
\(588\) 0 0
\(589\) 648763. 0.0770544
\(590\) 0 0
\(591\) −1.16636e7 2.02019e7i −1.37361 2.37916i
\(592\) 0 0
\(593\) −285468. + 494446.i −0.0333366 + 0.0577407i −0.882212 0.470852i \(-0.843947\pi\)
0.848876 + 0.528592i \(0.177280\pi\)
\(594\) 0 0
\(595\) −5.56243e6 1.62593e6i −0.644128 0.188283i
\(596\) 0 0
\(597\) −7.92859e6 + 1.37327e7i −0.910459 + 1.57696i
\(598\) 0 0
\(599\) 4.53555e6 + 7.85581e6i 0.516492 + 0.894590i 0.999817 + 0.0191488i \(0.00609561\pi\)
−0.483325 + 0.875441i \(0.660571\pi\)
\(600\) 0 0
\(601\) −1.36309e7 −1.53936 −0.769679 0.638431i \(-0.779584\pi\)
−0.769679 + 0.638431i \(0.779584\pi\)
\(602\) 0 0
\(603\) 1.59414e7 1.78539
\(604\) 0 0
\(605\) −2.47126e6 4.28035e6i −0.274493 0.475435i
\(606\) 0 0
\(607\) −1.97825e6 + 3.42644e6i −0.217927 + 0.377460i −0.954174 0.299253i \(-0.903263\pi\)
0.736247 + 0.676713i \(0.236596\pi\)
\(608\) 0 0
\(609\) −4.30518e6 1.76525e7i −0.470379 1.92869i
\(610\) 0 0
\(611\) −6.44126e6 + 1.11566e7i −0.698020 + 1.20901i
\(612\) 0 0
\(613\) −661552. 1.14584e6i −0.0711070 0.123161i 0.828280 0.560315i \(-0.189320\pi\)
−0.899387 + 0.437154i \(0.855987\pi\)
\(614\) 0 0
\(615\) 3.41063e6 0.363619
\(616\) 0 0
\(617\) 9.26370e6 0.979651 0.489826 0.871820i \(-0.337060\pi\)
0.489826 + 0.871820i \(0.337060\pi\)
\(618\) 0 0
\(619\) 334693. + 579705.i 0.0351091 + 0.0608107i 0.883046 0.469286i \(-0.155489\pi\)
−0.847937 + 0.530097i \(0.822155\pi\)
\(620\) 0 0
\(621\) 5.51636e6 9.55461e6i 0.574015 0.994223i
\(622\) 0 0
\(623\) 8.95430e6 8.55872e6i 0.924297 0.883463i
\(624\) 0 0
\(625\) 378164. 654999.i 0.0387240 0.0670719i
\(626\) 0 0
\(627\) −539693. 934776.i −0.0548249 0.0949595i
\(628\) 0 0
\(629\) −2.88866e6 −0.291118
\(630\) 0 0
\(631\) 666246. 0.0666133 0.0333067 0.999445i \(-0.489396\pi\)
0.0333067 + 0.999445i \(0.489396\pi\)
\(632\) 0 0
\(633\) −1.14203e7 1.97805e7i −1.13284 1.96213i
\(634\) 0 0
\(635\) −1.14726e6 + 1.98711e6i −0.112909 + 0.195564i
\(636\) 0 0
\(637\) 1.64108e7 + 1.04903e7i 1.60243 + 1.02432i
\(638\) 0 0
\(639\) −3.70173e6 + 6.41158e6i −0.358635 + 0.621173i
\(640\) 0 0
\(641\) 1.05439e6 + 1.82625e6i 0.101357 + 0.175556i 0.912244 0.409647i \(-0.134348\pi\)
−0.810887 + 0.585203i \(0.801015\pi\)
\(642\) 0 0
\(643\) −1.25977e7 −1.20161 −0.600806 0.799395i \(-0.705154\pi\)
−0.600806 + 0.799395i \(0.705154\pi\)
\(644\) 0 0
\(645\) −3.51182e6 −0.332379
\(646\) 0 0
\(647\) 8.56496e6 + 1.48349e7i 0.804386 + 1.39324i 0.916705 + 0.399565i \(0.130839\pi\)
−0.112319 + 0.993672i \(0.535828\pi\)
\(648\) 0 0
\(649\) 467109. 809056.i 0.0435318 0.0753992i
\(650\) 0 0
\(651\) 5.37469e6 5.13724e6i 0.497051 0.475092i
\(652\) 0 0
\(653\) 4.12762e6 7.14925e6i 0.378806 0.656112i −0.612083 0.790794i \(-0.709668\pi\)
0.990889 + 0.134682i \(0.0430013\pi\)
\(654\) 0 0
\(655\) −2.46054e6 4.26178e6i −0.224092 0.388139i
\(656\) 0 0
\(657\) 1.68933e7 1.52687
\(658\) 0 0
\(659\) 1.05417e7 0.945581 0.472790 0.881175i \(-0.343247\pi\)
0.472790 + 0.881175i \(0.343247\pi\)
\(660\) 0 0
\(661\) −2.23820e6 3.87668e6i −0.199249 0.345109i 0.749036 0.662529i \(-0.230517\pi\)
−0.948285 + 0.317420i \(0.897184\pi\)
\(662\) 0 0
\(663\) 1.77743e7 3.07859e7i 1.57039 2.72000i
\(664\) 0 0
\(665\) 310848. + 1.27457e6i 0.0272580 + 0.111766i
\(666\) 0 0
\(667\) 9.84956e6 1.70599e7i 0.857240 1.48478i
\(668\) 0 0
\(669\) 1.03776e7 + 1.79745e7i 0.896461 + 1.55272i
\(670\) 0 0
\(671\) 2.30645e6 0.197760
\(672\) 0 0
\(673\) −1.87165e7 −1.59289 −0.796447 0.604708i \(-0.793290\pi\)
−0.796447 + 0.604708i \(0.793290\pi\)
\(674\) 0 0
\(675\) −2.88521e6 4.99733e6i −0.243735 0.422162i
\(676\) 0 0
\(677\) −2.08116e6 + 3.60467e6i −0.174515 + 0.302270i −0.939993 0.341192i \(-0.889169\pi\)
0.765478 + 0.643462i \(0.222503\pi\)
\(678\) 0 0
\(679\) 1.86714e6 + 545776.i 0.155418 + 0.0454297i
\(680\) 0 0
\(681\) 1.64848e7 2.85526e7i 1.36212 2.35927i
\(682\) 0 0
\(683\) −6.43455e6 1.11450e7i −0.527796 0.914170i −0.999475 0.0323992i \(-0.989685\pi\)
0.471679 0.881770i \(-0.343648\pi\)
\(684\) 0 0
\(685\) −1.21063e7 −0.985793
\(686\) 0 0
\(687\) −2.50398e7 −2.02414
\(688\) 0 0
\(689\) 6.48168e6 + 1.12266e7i 0.520163 + 0.900949i
\(690\) 0 0
\(691\) −4.64518e6 + 8.04569e6i −0.370090 + 0.641015i −0.989579 0.143990i \(-0.954007\pi\)
0.619489 + 0.785006i \(0.287340\pi\)
\(692\) 0 0
\(693\) −7.17316e6 2.09676e6i −0.567385 0.165850i
\(694\) 0 0
\(695\) −1.05059e6 + 1.81967e6i −0.0825029 + 0.142899i
\(696\) 0 0
\(697\) −2.36016e6 4.08791e6i −0.184018 0.318728i
\(698\) 0 0
\(699\) −3.68202e7 −2.85032
\(700\) 0 0
\(701\) 2.50809e7 1.92774 0.963870 0.266375i \(-0.0858258\pi\)
0.963870 + 0.266375i \(0.0858258\pi\)
\(702\) 0 0
\(703\) 326970. + 566329.i 0.0249528 + 0.0432196i
\(704\) 0 0
\(705\) −4.97220e6 + 8.61210e6i −0.376769 + 0.652584i
\(706\) 0 0
\(707\) −825564. 3.38505e6i −0.0621158 0.254693i
\(708\) 0 0
\(709\) −4.96890e6 + 8.60639e6i −0.371231 + 0.642991i −0.989755 0.142774i \(-0.954398\pi\)
0.618524 + 0.785766i \(0.287731\pi\)
\(710\) 0 0
\(711\) 2.02109e7 + 3.50063e7i 1.49938 + 2.59700i
\(712\) 0 0
\(713\) 8.06069e6 0.593811
\(714\) 0 0
\(715\) 6.50364e6 0.475764
\(716\) 0 0
\(717\) −1.08476e7 1.87885e7i −0.788015 1.36488i
\(718\) 0 0
\(719\) −7.00047e6 + 1.21252e7i −0.505016 + 0.874713i 0.494968 + 0.868911i \(0.335180\pi\)
−0.999983 + 0.00580117i \(0.998153\pi\)
\(720\) 0 0
\(721\) −4.86536e6 + 4.65041e6i −0.348559 + 0.333160i
\(722\) 0 0
\(723\) 1.79994e7 3.11758e7i 1.28059 2.21805i
\(724\) 0 0
\(725\) −5.15160e6 8.92283e6i −0.363996 0.630460i
\(726\) 0 0
\(727\) −8.27315e6 −0.580544 −0.290272 0.956944i \(-0.593746\pi\)
−0.290272 + 0.956944i \(0.593746\pi\)
\(728\) 0 0
\(729\) −2.33861e7 −1.62982
\(730\) 0 0
\(731\) 2.43019e6 + 4.20921e6i 0.168208 + 0.291345i
\(732\) 0 0
\(733\) 1.64295e6 2.84568e6i 0.112945 0.195626i −0.804012 0.594614i \(-0.797305\pi\)
0.916956 + 0.398988i \(0.130638\pi\)
\(734\) 0 0
\(735\) 1.26679e7 + 8.09773e6i 0.864943 + 0.552898i
\(736\) 0 0
\(737\) 3.34059e6 5.78608e6i 0.226545 0.392388i
\(738\) 0 0
\(739\) 5.04564e6 + 8.73930e6i 0.339864 + 0.588662i 0.984407 0.175907i \(-0.0562857\pi\)
−0.644543 + 0.764568i \(0.722952\pi\)
\(740\) 0 0
\(741\) −8.04754e6 −0.538416
\(742\) 0 0
\(743\) −1.73443e7 −1.15261 −0.576307 0.817233i \(-0.695507\pi\)
−0.576307 + 0.817233i \(0.695507\pi\)
\(744\) 0 0
\(745\) 5.10998e6 + 8.85074e6i 0.337309 + 0.584237i
\(746\) 0 0
\(747\) 1.03526e7 1.79313e7i 0.678812 1.17574i
\(748\) 0 0
\(749\) −2.34057e6 + 2.23717e6i −0.152446 + 0.145711i
\(750\) 0 0
\(751\) −8.79857e6 + 1.52396e7i −0.569262 + 0.985990i 0.427377 + 0.904073i \(0.359438\pi\)
−0.996639 + 0.0819170i \(0.973896\pi\)
\(752\) 0 0
\(753\) 2.45762e6 + 4.25673e6i 0.157953 + 0.273583i
\(754\) 0 0
\(755\) −8.72158e6 −0.556836
\(756\) 0 0
\(757\) −4.66480e6 −0.295865 −0.147932 0.988997i \(-0.547262\pi\)
−0.147932 + 0.988997i \(0.547262\pi\)
\(758\) 0 0
\(759\) −6.70554e6 1.16143e7i −0.422502 0.731795i
\(760\) 0 0
\(761\) −9.13585e6 + 1.58238e7i −0.571857 + 0.990485i 0.424518 + 0.905419i \(0.360443\pi\)
−0.996375 + 0.0850658i \(0.972890\pi\)
\(762\) 0 0
\(763\) 111693. + 457973.i 0.00694566 + 0.0284792i
\(764\) 0 0
\(765\) 8.28923e6 1.43574e7i 0.512107 0.886995i
\(766\) 0 0
\(767\) −3.48261e6 6.03205e6i −0.213755 0.370234i
\(768\) 0 0
\(769\) −2.31895e7 −1.41409 −0.707043 0.707171i \(-0.749971\pi\)
−0.707043 + 0.707171i \(0.749971\pi\)
\(770\) 0 0
\(771\) −1.18821e7 −0.719873
\(772\) 0 0
\(773\) −1.01074e6 1.75066e6i −0.0608405 0.105379i 0.834001 0.551763i \(-0.186045\pi\)
−0.894841 + 0.446384i \(0.852711\pi\)
\(774\) 0 0
\(775\) 2.10799e6 3.65114e6i 0.126070 0.218360i
\(776\) 0 0
\(777\) 7.19328e6 + 2.10264e6i 0.427439 + 0.124943i
\(778\) 0 0
\(779\) −534297. + 925430.i −0.0315456 + 0.0546387i
\(780\) 0 0
\(781\) 1.55143e6 + 2.68715e6i 0.0910131 + 0.157639i
\(782\) 0 0
\(783\) 1.79215e7 1.04465
\(784\) 0 0
\(785\) 7.72763e6 0.447582
\(786\) 0 0
\(787\) 7.88722e6 + 1.36611e7i 0.453928 + 0.786227i 0.998626 0.0524059i \(-0.0166889\pi\)
−0.544698 + 0.838632i \(0.683356\pi\)
\(788\) 0 0
\(789\) −5.63592e6 + 9.76170e6i −0.322309 + 0.558255i
\(790\) 0 0
\(791\) 7.73672e6 + 2.26149e6i 0.439659 + 0.128515i
\(792\) 0 0
\(793\) 8.59807e6 1.48923e7i 0.485532 0.840966i
\(794\) 0 0
\(795\) 5.00340e6 + 8.66614e6i 0.280768 + 0.486304i
\(796\) 0 0
\(797\) 1.22436e6 0.0682750 0.0341375 0.999417i \(-0.489132\pi\)
0.0341375 + 0.999417i \(0.489132\pi\)
\(798\) 0 0
\(799\) 1.37631e7 0.762690
\(800\) 0 0
\(801\) 1.77175e7 + 3.06876e7i 0.975712 + 1.68998i
\(802\) 0 0
\(803\) 3.54007e6 6.13158e6i 0.193742 0.335571i
\(804\) 0 0
\(805\) 3.86221e6 + 1.58362e7i 0.210061 + 0.861312i
\(806\) 0 0
\(807\) −1.06555e7 + 1.84559e7i −0.575959 + 0.997590i
\(808\) 0 0
\(809\) 1.38662e7 + 2.40170e7i 0.744882 + 1.29017i 0.950250 + 0.311489i \(0.100828\pi\)
−0.205368 + 0.978685i \(0.565839\pi\)
\(810\) 0 0
\(811\) 1.19246e7 0.636636 0.318318 0.947984i \(-0.396882\pi\)
0.318318 + 0.947984i \(0.396882\pi\)
\(812\) 0 0
\(813\) 3.23476e7 1.71639
\(814\) 0 0
\(815\) −1.16379e6 2.01575e6i −0.0613735 0.106302i
\(816\) 0 0
\(817\) 550151. 952889.i 0.0288354 0.0499444i
\(818\) 0 0
\(819\) −4.02787e7 + 3.84993e7i −2.09829 + 2.00559i
\(820\) 0 0
\(821\) −8.02312e6 + 1.38965e7i −0.415418 + 0.719525i −0.995472 0.0950526i \(-0.969698\pi\)
0.580054 + 0.814578i \(0.303031\pi\)
\(822\) 0 0
\(823\) −5.61533e6 9.72603e6i −0.288985 0.500537i 0.684583 0.728935i \(-0.259984\pi\)
−0.973568 + 0.228398i \(0.926651\pi\)
\(824\) 0 0
\(825\) −7.01437e6 −0.358801
\(826\) 0 0
\(827\) 2.68427e7 1.36478 0.682389 0.730989i \(-0.260941\pi\)
0.682389 + 0.730989i \(0.260941\pi\)
\(828\) 0 0
\(829\) −1.40210e7 2.42850e7i −0.708584 1.22730i −0.965382 0.260839i \(-0.916001\pi\)
0.256798 0.966465i \(-0.417332\pi\)
\(830\) 0 0
\(831\) −6.72813e6 + 1.16535e7i −0.337981 + 0.585400i
\(832\) 0 0
\(833\) 939564. 2.07872e7i 0.0469152 1.03797i
\(834\) 0 0
\(835\) 7.99186e6 1.38423e7i 0.396672 0.687056i
\(836\) 0 0
\(837\) 3.66665e6 + 6.35083e6i 0.180907 + 0.313341i
\(838\) 0 0
\(839\) 3.30603e7 1.62145 0.810723 0.585430i \(-0.199074\pi\)
0.810723 + 0.585430i \(0.199074\pi\)
\(840\) 0 0
\(841\) 1.14880e7 0.560086
\(842\) 0 0
\(843\) 1.23645e7 + 2.14160e7i 0.599250 + 1.03793i
\(844\) 0 0
\(845\) 1.75416e7 3.03830e7i 0.845139 1.46382i
\(846\) 0 0
\(847\) 1.28291e7 1.22623e7i 0.614450 0.587305i
\(848\) 0 0
\(849\) −2.20178e7 + 3.81359e7i −1.04835 + 1.81579i
\(850\) 0 0
\(851\) 4.06251e6 + 7.03648e6i 0.192296 + 0.333067i
\(852\) 0 0
\(853\) 2.73897e7 1.28889 0.644444 0.764652i \(-0.277089\pi\)
0.644444 + 0.764652i \(0.277089\pi\)
\(854\) 0 0
\(855\) −3.75306e6 −0.175578
\(856\) 0 0
\(857\) 1.48360e6 + 2.56968e6i 0.0690027 + 0.119516i 0.898463 0.439050i \(-0.144685\pi\)
−0.829460 + 0.558566i \(0.811352\pi\)
\(858\) 0 0
\(859\) −1.98980e7 + 3.44643e7i −0.920081 + 1.59363i −0.120794 + 0.992678i \(0.538544\pi\)
−0.799287 + 0.600949i \(0.794789\pi\)
\(860\) 0 0
\(861\) 2.90164e6 + 1.18976e7i 0.133394 + 0.546954i
\(862\) 0 0
\(863\) 3.59799e6 6.23190e6i 0.164450 0.284835i −0.772010 0.635610i \(-0.780749\pi\)
0.936460 + 0.350775i \(0.114082\pi\)
\(864\) 0 0
\(865\) −1.41893e6 2.45766e6i −0.0644794 0.111682i
\(866\) 0 0
\(867\) −2.79940e6 −0.126478
\(868\) 0 0
\(869\) 1.69411e7 0.761015
\(870\) 0 0
\(871\) −2.49063e7 4.31391e7i −1.11241 1.92675i
\(872\) 0 0
\(873\) −2.78244e6 + 4.81932e6i −0.123563 + 0.214018i
\(874\) 0 0
\(875\) 2.22231e7 + 6.49594e6i 0.981259 + 0.286828i
\(876\) 0 0
\(877\) −1.25621e7 + 2.17582e7i −0.551523 + 0.955266i 0.446642 + 0.894713i \(0.352620\pi\)
−0.998165 + 0.0605532i \(0.980714\pi\)
\(878\) 0 0
\(879\) −2.03150e7 3.51866e7i −0.886839 1.53605i
\(880\) 0 0
\(881\) 120262. 0.00522022 0.00261011 0.999997i \(-0.499169\pi\)
0.00261011 + 0.999997i \(0.499169\pi\)
\(882\) 0 0
\(883\) −2.43497e7 −1.05097 −0.525487 0.850802i \(-0.676117\pi\)
−0.525487 + 0.850802i \(0.676117\pi\)
\(884\) 0 0
\(885\) −2.68833e6 4.65632e6i −0.115378 0.199841i
\(886\) 0 0
\(887\) −1.41383e7 + 2.44883e7i −0.603377 + 1.04508i 0.388929 + 0.921268i \(0.372845\pi\)
−0.992306 + 0.123812i \(0.960488\pi\)
\(888\) 0 0
\(889\) −7.90786e6 2.31152e6i −0.335587 0.0980941i
\(890\) 0 0
\(891\) −903552. + 1.56500e6i −0.0381293 + 0.0660419i
\(892\) 0 0
\(893\) −1.55786e6 2.69828e6i −0.0653730 0.113229i
\(894\) 0 0
\(895\) −1.84293e7 −0.769042
\(896\) 0 0
\(897\) −9.99885e7 −4.14924
\(898\) 0 0
\(899\) 6.54688e6 + 1.13395e7i 0.270169 + 0.467946i
\(900\) 0 0
\(901\) 6.92471e6 1.19940e7i 0.284178 0.492210i
\(902\) 0 0
\(903\) −2.98774e6 1.22506e7i −0.121934 0.499963i
\(904\) 0 0
\(905\) −398096. + 689523.i −0.0161572 + 0.0279851i
\(906\) 0 0
\(907\) −1.21584e7 2.10590e7i −0.490748 0.850000i 0.509195 0.860651i \(-0.329943\pi\)
−0.999943 + 0.0106507i \(0.996610\pi\)
\(908\) 0 0
\(909\) 9.96754e6 0.400109
\(910\) 0 0
\(911\) 3.36224e7 1.34225 0.671123 0.741346i \(-0.265812\pi\)
0.671123 + 0.741346i \(0.265812\pi\)
\(912\) 0 0
\(913\) −4.33888e6 7.51517e6i −0.172267 0.298374i
\(914\) 0 0
\(915\) 6.63710e6 1.14958e7i 0.262075 0.453927i
\(916\) 0 0
\(917\) 1.27734e7 1.22091e7i 0.501629 0.479468i
\(918\) 0 0
\(919\) −4.06874e6 + 7.04727e6i −0.158917 + 0.275253i −0.934479 0.356019i \(-0.884134\pi\)
0.775561 + 0.631272i \(0.217467\pi\)
\(920\) 0 0
\(921\) −2.95001e7 5.10956e7i −1.14597 1.98488i
\(922\) 0 0
\(923\) 2.31338e7 0.893807
\(924\) 0 0
\(925\) 4.24962e6 0.163304
\(926\) 0 0
\(927\) −9.62688e6 1.66742e7i −0.367948 0.637304i
\(928\) 0 0
\(929\) −1.79027e7 + 3.10084e7i −0.680580 + 1.17880i 0.294224 + 0.955736i \(0.404939\pi\)
−0.974804 + 0.223063i \(0.928395\pi\)
\(930\) 0 0
\(931\) −4.18173e6 + 2.16872e6i −0.158118 + 0.0820029i
\(932\) 0 0
\(933\) 1.54249e7 2.67167e7i 0.580120 1.00480i
\(934\) 0 0
\(935\) −3.47409e6 6.01730e6i −0.129961 0.225098i
\(936\) 0 0
\(937\) 4.65849e7 1.73339 0.866694 0.498840i \(-0.166241\pi\)
0.866694 + 0.498840i \(0.166241\pi\)
\(938\) 0 0
\(939\) −4.12029e7 −1.52498
\(940\) 0 0
\(941\) 1.03362e6 + 1.79029e6i 0.0380529 + 0.0659096i 0.884425 0.466683i \(-0.154551\pi\)
−0.846372 + 0.532593i \(0.821218\pi\)
\(942\) 0 0
\(943\) −6.63850e6 + 1.14982e7i −0.243103 + 0.421067i
\(944\) 0 0
\(945\) −1.07201e7 + 1.02465e7i −0.390498 + 0.373247i
\(946\) 0 0
\(947\) 1.18386e7 2.05051e7i 0.428970 0.742998i −0.567812 0.823158i \(-0.692210\pi\)
0.996782 + 0.0801602i \(0.0255432\pi\)
\(948\) 0 0
\(949\) −2.63936e7 4.57150e7i −0.951334 1.64776i
\(950\) 0 0
\(951\) 6.50345e7 2.33181
\(952\) 0 0
\(953\) −3.40521e6 −0.121454 −0.0607270 0.998154i \(-0.519342\pi\)
−0.0607270 + 0.998154i \(0.519342\pi\)
\(954\) 0 0
\(955\) 1.00762e7 + 1.74525e7i 0.357510 + 0.619226i
\(956\) 0 0
\(957\) 1.08924e7 1.88663e7i 0.384455 0.665896i
\(958\) 0 0
\(959\) −1.02996e7 4.22315e7i −0.361639 1.48283i
\(960\) 0 0
\(961\) 1.16357e7 2.01535e7i 0.406427 0.703952i
\(962\) 0 0
\(963\) −4.63119e6 8.02145e6i −0.160926 0.278732i
\(964\) 0 0
\(965\) 1.78059e6 0.0615525
\(966\) 0 0
\(967\) −1.44238e6 −0.0496036 −0.0248018 0.999692i \(-0.507895\pi\)
−0.0248018 + 0.999692i \(0.507895\pi\)
\(968\) 0 0
\(969\) 4.29880e6 + 7.44575e6i 0.147075 + 0.254741i
\(970\) 0 0
\(971\) −2.57977e6 + 4.46830e6i −0.0878078 + 0.152088i −0.906584 0.422025i \(-0.861319\pi\)
0.818776 + 0.574113i \(0.194653\pi\)
\(972\) 0 0
\(973\) −7.24151e6 2.11674e6i −0.245215 0.0716779i
\(974\) 0 0
\(975\) −2.61484e7 + 4.52904e7i −0.880914 + 1.52579i
\(976\) 0 0
\(977\) 3.48825e6 + 6.04183e6i 0.116915 + 0.202503i 0.918544 0.395319i \(-0.129366\pi\)
−0.801628 + 0.597823i \(0.796033\pi\)
\(978\) 0 0
\(979\) 1.48511e7 0.495225
\(980\) 0 0
\(981\) −1.34853e6 −0.0447394
\(982\) 0 0
\(983\) −1.40784e7 2.43845e7i −0.464696 0.804878i 0.534491 0.845174i \(-0.320503\pi\)
−0.999188 + 0.0402961i \(0.987170\pi\)
\(984\) 0 0
\(985\) −1.69968e7 + 2.94394e7i −0.558184 + 0.966804i
\(986\) 0 0
\(987\) −3.42725e7 1.00181e7i −1.11983 0.327334i
\(988\) 0 0
\(989\) 6.83547e6 1.18394e7i 0.222217 0.384891i
\(990\) 0 0
\(991\) −1.17022e7 2.02687e7i −0.378514 0.655606i 0.612332 0.790601i \(-0.290232\pi\)
−0.990846 + 0.134995i \(0.956898\pi\)
\(992\) 0 0
\(993\) 4.30825e7 1.38653
\(994\) 0 0
\(995\) 2.31080e7 0.739954
\(996\) 0 0
\(997\) 2.15142e7 + 3.72637e7i 0.685468 + 1.18727i 0.973290 + 0.229581i \(0.0737356\pi\)
−0.287822 + 0.957684i \(0.592931\pi\)
\(998\) 0 0
\(999\) −3.69592e6 + 6.40151e6i −0.117168 + 0.202941i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.i.d.65.2 4
4.3 odd 2 14.6.c.a.9.1 4
7.2 even 3 784.6.a.s.1.1 2
7.4 even 3 inner 112.6.i.d.81.2 4
7.5 odd 6 784.6.a.bb.1.2 2
12.11 even 2 126.6.g.j.37.1 4
28.3 even 6 98.6.c.e.67.2 4
28.11 odd 6 14.6.c.a.11.1 yes 4
28.19 even 6 98.6.a.g.1.1 2
28.23 odd 6 98.6.a.h.1.2 2
28.27 even 2 98.6.c.e.79.2 4
84.11 even 6 126.6.g.j.109.1 4
84.23 even 6 882.6.a.ba.1.2 2
84.47 odd 6 882.6.a.bi.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.1 4 4.3 odd 2
14.6.c.a.11.1 yes 4 28.11 odd 6
98.6.a.g.1.1 2 28.19 even 6
98.6.a.h.1.2 2 28.23 odd 6
98.6.c.e.67.2 4 28.3 even 6
98.6.c.e.79.2 4 28.27 even 2
112.6.i.d.65.2 4 1.1 even 1 trivial
112.6.i.d.81.2 4 7.4 even 3 inner
126.6.g.j.37.1 4 12.11 even 2
126.6.g.j.109.1 4 84.11 even 6
784.6.a.s.1.1 2 7.2 even 3
784.6.a.bb.1.2 2 7.5 odd 6
882.6.a.ba.1.2 2 84.23 even 6
882.6.a.bi.1.1 2 84.47 odd 6