Properties

Label 112.6.i.b.81.2
Level $112$
Weight $6$
Character 112.81
Analytic conductor $17.963$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,6,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{130})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 130x^{2} + 16900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 81.2
Root \(-5.70088 + 9.87421i\) of defining polynomial
Character \(\chi\) \(=\) 112.81
Dual form 112.6.i.b.65.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.90175 - 13.6862i) q^{3} +(10.5000 + 18.1865i) q^{5} +(-126.411 + 28.7642i) q^{7} +(-3.37544 - 5.84643i) q^{9} +(-312.937 + 542.023i) q^{11} -206.821 q^{13} +331.874 q^{15} +(-530.732 + 919.254i) q^{17} +(-941.989 - 1631.57i) q^{19} +(-605.191 + 1957.37i) q^{21} +(1858.68 + 3219.34i) q^{23} +(1342.00 - 2324.41i) q^{25} +3733.56 q^{27} -123.747 q^{29} +(-4554.63 + 7888.85i) q^{31} +(4945.50 + 8565.86i) q^{33} +(-1850.43 - 1996.95i) q^{35} +(3014.36 + 5221.03i) q^{37} +(-1634.25 + 2830.60i) q^{39} -17201.9 q^{41} -5401.98 q^{43} +(70.8843 - 122.775i) q^{45} +(937.621 + 1624.01i) q^{47} +(15152.2 - 7272.19i) q^{49} +(8387.42 + 14527.4i) q^{51} +(-9353.62 + 16200.9i) q^{53} -13143.3 q^{55} -29773.5 q^{57} +(-1267.39 + 2195.18i) q^{59} +(1047.35 + 1814.07i) q^{61} +(594.859 + 641.959i) q^{63} +(-2171.62 - 3761.36i) q^{65} +(29310.4 - 50767.1i) q^{67} +58747.5 q^{69} +31279.5 q^{71} +(3575.24 - 6192.49i) q^{73} +(-21208.3 - 36733.9i) q^{75} +(23967.7 - 77518.7i) q^{77} +(1489.91 + 2580.59i) q^{79} +(30321.9 - 52519.1i) q^{81} -45954.6 q^{83} -22290.7 q^{85} +(-977.821 + 1693.64i) q^{87} +(-49520.0 - 85771.1i) q^{89} +(26144.4 - 5949.04i) q^{91} +(71979.2 + 124672. i) q^{93} +(19781.8 - 34263.0i) q^{95} -115548. q^{97} +4225.20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{3} + 42 q^{5} - 232 q^{7} - 652 q^{9} - 294 q^{11} - 280 q^{13} - 588 q^{15} - 1302 q^{17} - 1442 q^{19} + 5150 q^{21} + 2646 q^{23} + 5368 q^{25} + 31444 q^{27} + 3336 q^{29} - 14798 q^{31}+ \cdots - 419832 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.90175 13.6862i 0.506898 0.877973i −0.493070 0.869989i \(-0.664125\pi\)
0.999968 0.00798326i \(-0.00254118\pi\)
\(4\) 0 0
\(5\) 10.5000 + 18.1865i 0.187830 + 0.325331i 0.944526 0.328436i \(-0.106521\pi\)
−0.756697 + 0.653766i \(0.773188\pi\)
\(6\) 0 0
\(7\) −126.411 + 28.7642i −0.975075 + 0.221874i
\(8\) 0 0
\(9\) −3.37544 5.84643i −0.0138907 0.0240594i
\(10\) 0 0
\(11\) −312.937 + 542.023i −0.779785 + 1.35063i 0.152280 + 0.988337i \(0.451338\pi\)
−0.932065 + 0.362290i \(0.881995\pi\)
\(12\) 0 0
\(13\) −206.821 −0.339419 −0.169710 0.985494i \(-0.554283\pi\)
−0.169710 + 0.985494i \(0.554283\pi\)
\(14\) 0 0
\(15\) 331.874 0.380842
\(16\) 0 0
\(17\) −530.732 + 919.254i −0.445402 + 0.771460i −0.998080 0.0619354i \(-0.980273\pi\)
0.552678 + 0.833395i \(0.313606\pi\)
\(18\) 0 0
\(19\) −941.989 1631.57i −0.598635 1.03687i −0.993023 0.117922i \(-0.962377\pi\)
0.394388 0.918944i \(-0.370957\pi\)
\(20\) 0 0
\(21\) −605.191 + 1957.37i −0.299464 + 0.968557i
\(22\) 0 0
\(23\) 1858.68 + 3219.34i 0.732632 + 1.26896i 0.955754 + 0.294166i \(0.0950418\pi\)
−0.223122 + 0.974790i \(0.571625\pi\)
\(24\) 0 0
\(25\) 1342.00 2324.41i 0.429440 0.743812i
\(26\) 0 0
\(27\) 3733.56 0.985631
\(28\) 0 0
\(29\) −123.747 −0.0273238 −0.0136619 0.999907i \(-0.504349\pi\)
−0.0136619 + 0.999907i \(0.504349\pi\)
\(30\) 0 0
\(31\) −4554.63 + 7888.85i −0.851234 + 1.47438i 0.0288611 + 0.999583i \(0.490812\pi\)
−0.880095 + 0.474797i \(0.842521\pi\)
\(32\) 0 0
\(33\) 4945.50 + 8565.86i 0.790543 + 1.36926i
\(34\) 0 0
\(35\) −1850.43 1996.95i −0.255331 0.275547i
\(36\) 0 0
\(37\) 3014.36 + 5221.03i 0.361986 + 0.626977i 0.988288 0.152603i \(-0.0487656\pi\)
−0.626302 + 0.779581i \(0.715432\pi\)
\(38\) 0 0
\(39\) −1634.25 + 2830.60i −0.172051 + 0.298001i
\(40\) 0 0
\(41\) −17201.9 −1.59814 −0.799071 0.601236i \(-0.794675\pi\)
−0.799071 + 0.601236i \(0.794675\pi\)
\(42\) 0 0
\(43\) −5401.98 −0.445535 −0.222767 0.974872i \(-0.571509\pi\)
−0.222767 + 0.974872i \(0.571509\pi\)
\(44\) 0 0
\(45\) 70.8843 122.775i 0.00521817 0.00903814i
\(46\) 0 0
\(47\) 937.621 + 1624.01i 0.0619131 + 0.107237i 0.895321 0.445422i \(-0.146946\pi\)
−0.833407 + 0.552659i \(0.813613\pi\)
\(48\) 0 0
\(49\) 15152.2 7272.19i 0.901544 0.432688i
\(50\) 0 0
\(51\) 8387.42 + 14527.4i 0.451547 + 0.782102i
\(52\) 0 0
\(53\) −9353.62 + 16200.9i −0.457393 + 0.792229i −0.998822 0.0485180i \(-0.984550\pi\)
0.541429 + 0.840747i \(0.317884\pi\)
\(54\) 0 0
\(55\) −13143.3 −0.585867
\(56\) 0 0
\(57\) −29773.5 −1.21379
\(58\) 0 0
\(59\) −1267.39 + 2195.18i −0.0474002 + 0.0820995i −0.888752 0.458388i \(-0.848427\pi\)
0.841352 + 0.540488i \(0.181760\pi\)
\(60\) 0 0
\(61\) 1047.35 + 1814.07i 0.0360386 + 0.0624208i 0.883482 0.468465i \(-0.155193\pi\)
−0.847444 + 0.530886i \(0.821859\pi\)
\(62\) 0 0
\(63\) 594.859 + 641.959i 0.0188826 + 0.0203777i
\(64\) 0 0
\(65\) −2171.62 3761.36i −0.0637530 0.110423i
\(66\) 0 0
\(67\) 29310.4 50767.1i 0.797691 1.38164i −0.123426 0.992354i \(-0.539388\pi\)
0.921117 0.389287i \(-0.127278\pi\)
\(68\) 0 0
\(69\) 58747.5 1.48548
\(70\) 0 0
\(71\) 31279.5 0.736401 0.368201 0.929746i \(-0.379974\pi\)
0.368201 + 0.929746i \(0.379974\pi\)
\(72\) 0 0
\(73\) 3575.24 6192.49i 0.0785231 0.136006i −0.824090 0.566459i \(-0.808313\pi\)
0.902613 + 0.430453i \(0.141646\pi\)
\(74\) 0 0
\(75\) −21208.3 36733.9i −0.435364 0.754073i
\(76\) 0 0
\(77\) 23967.7 77518.7i 0.460680 1.48998i
\(78\) 0 0
\(79\) 1489.91 + 2580.59i 0.0268591 + 0.0465213i 0.879143 0.476559i \(-0.158116\pi\)
−0.852283 + 0.523080i \(0.824783\pi\)
\(80\) 0 0
\(81\) 30321.9 52519.1i 0.513505 0.889416i
\(82\) 0 0
\(83\) −45954.6 −0.732207 −0.366103 0.930574i \(-0.619308\pi\)
−0.366103 + 0.930574i \(0.619308\pi\)
\(84\) 0 0
\(85\) −22290.7 −0.334639
\(86\) 0 0
\(87\) −977.821 + 1693.64i −0.0138504 + 0.0239895i
\(88\) 0 0
\(89\) −49520.0 85771.1i −0.662682 1.14780i −0.979908 0.199450i \(-0.936085\pi\)
0.317226 0.948350i \(-0.397249\pi\)
\(90\) 0 0
\(91\) 26144.4 5949.04i 0.330959 0.0753084i
\(92\) 0 0
\(93\) 71979.2 + 124672.i 0.862977 + 1.49472i
\(94\) 0 0
\(95\) 19781.8 34263.0i 0.224883 0.389509i
\(96\) 0 0
\(97\) −115548. −1.24691 −0.623454 0.781860i \(-0.714271\pi\)
−0.623454 + 0.781860i \(0.714271\pi\)
\(98\) 0 0
\(99\) 4225.20 0.0433271
\(100\) 0 0
\(101\) −5475.73 + 9484.25i −0.0534120 + 0.0925123i −0.891495 0.453030i \(-0.850343\pi\)
0.838083 + 0.545542i \(0.183676\pi\)
\(102\) 0 0
\(103\) −68862.2 119273.i −0.639570 1.10777i −0.985527 0.169517i \(-0.945779\pi\)
0.345957 0.938250i \(-0.387554\pi\)
\(104\) 0 0
\(105\) −41952.3 + 9546.08i −0.371349 + 0.0844990i
\(106\) 0 0
\(107\) 37786.5 + 65448.1i 0.319064 + 0.552634i 0.980293 0.197550i \(-0.0632983\pi\)
−0.661229 + 0.750184i \(0.729965\pi\)
\(108\) 0 0
\(109\) −22263.1 + 38560.9i −0.179482 + 0.310871i −0.941703 0.336445i \(-0.890775\pi\)
0.762221 + 0.647316i \(0.224109\pi\)
\(110\) 0 0
\(111\) 95275.0 0.733959
\(112\) 0 0
\(113\) 90456.5 0.666413 0.333207 0.942854i \(-0.391869\pi\)
0.333207 + 0.942854i \(0.391869\pi\)
\(114\) 0 0
\(115\) −39032.4 + 67606.0i −0.275220 + 0.476695i
\(116\) 0 0
\(117\) 698.112 + 1209.17i 0.00471477 + 0.00816622i
\(118\) 0 0
\(119\) 40648.5 131469.i 0.263134 0.851055i
\(120\) 0 0
\(121\) −115333. 199763.i −0.716130 1.24037i
\(122\) 0 0
\(123\) −135925. + 235429.i −0.810095 + 1.40313i
\(124\) 0 0
\(125\) 121989. 0.698306
\(126\) 0 0
\(127\) −187707. −1.03269 −0.516346 0.856380i \(-0.672708\pi\)
−0.516346 + 0.856380i \(0.672708\pi\)
\(128\) 0 0
\(129\) −42685.1 + 73932.8i −0.225841 + 0.391167i
\(130\) 0 0
\(131\) 77206.1 + 133725.i 0.393073 + 0.680823i 0.992853 0.119342i \(-0.0380785\pi\)
−0.599780 + 0.800165i \(0.704745\pi\)
\(132\) 0 0
\(133\) 166008. + 179153.i 0.813768 + 0.878201i
\(134\) 0 0
\(135\) 39202.4 + 67900.6i 0.185131 + 0.320656i
\(136\) 0 0
\(137\) −54618.9 + 94602.7i −0.248623 + 0.430628i −0.963144 0.268986i \(-0.913311\pi\)
0.714521 + 0.699614i \(0.246645\pi\)
\(138\) 0 0
\(139\) 204695. 0.898609 0.449305 0.893379i \(-0.351672\pi\)
0.449305 + 0.893379i \(0.351672\pi\)
\(140\) 0 0
\(141\) 29635.4 0.125534
\(142\) 0 0
\(143\) 64721.9 112102.i 0.264674 0.458429i
\(144\) 0 0
\(145\) −1299.35 2250.54i −0.00513222 0.00888926i
\(146\) 0 0
\(147\) 20200.3 264840.i 0.0771018 1.01086i
\(148\) 0 0
\(149\) 203154. + 351873.i 0.749651 + 1.29843i 0.947990 + 0.318300i \(0.103112\pi\)
−0.198339 + 0.980134i \(0.563555\pi\)
\(150\) 0 0
\(151\) −208419. + 360992.i −0.743866 + 1.28841i 0.206856 + 0.978371i \(0.433677\pi\)
−0.950723 + 0.310043i \(0.899657\pi\)
\(152\) 0 0
\(153\) 7165.81 0.0247478
\(154\) 0 0
\(155\) −191295. −0.639548
\(156\) 0 0
\(157\) −59645.3 + 103309.i −0.193120 + 0.334493i −0.946283 0.323341i \(-0.895194\pi\)
0.753163 + 0.657834i \(0.228527\pi\)
\(158\) 0 0
\(159\) 147820. + 256032.i 0.463703 + 0.803158i
\(160\) 0 0
\(161\) −327559. 353494.i −0.995920 1.07478i
\(162\) 0 0
\(163\) 23686.2 + 41025.7i 0.0698275 + 0.120945i 0.898825 0.438307i \(-0.144422\pi\)
−0.828998 + 0.559252i \(0.811088\pi\)
\(164\) 0 0
\(165\) −103856. + 179883.i −0.296975 + 0.514375i
\(166\) 0 0
\(167\) 231669. 0.642802 0.321401 0.946943i \(-0.395846\pi\)
0.321401 + 0.946943i \(0.395846\pi\)
\(168\) 0 0
\(169\) −328518. −0.884795
\(170\) 0 0
\(171\) −6359.26 + 11014.6i −0.0166309 + 0.0288056i
\(172\) 0 0
\(173\) −67169.6 116341.i −0.170631 0.295541i 0.768010 0.640438i \(-0.221247\pi\)
−0.938641 + 0.344897i \(0.887914\pi\)
\(174\) 0 0
\(175\) −102783. + 332432.i −0.253704 + 0.820554i
\(176\) 0 0
\(177\) 20029.2 + 34691.6i 0.0480541 + 0.0832321i
\(178\) 0 0
\(179\) 23292.2 40343.2i 0.0543347 0.0941105i −0.837579 0.546317i \(-0.816030\pi\)
0.891913 + 0.452206i \(0.149363\pi\)
\(180\) 0 0
\(181\) 829210. 1.88134 0.940672 0.339317i \(-0.110196\pi\)
0.940672 + 0.339317i \(0.110196\pi\)
\(182\) 0 0
\(183\) 33103.7 0.0730716
\(184\) 0 0
\(185\) −63301.6 + 109642.i −0.135983 + 0.235530i
\(186\) 0 0
\(187\) −332171. 575337.i −0.694636 1.20315i
\(188\) 0 0
\(189\) −471962. + 107393.i −0.961064 + 0.218686i
\(190\) 0 0
\(191\) −235958. 408692.i −0.468006 0.810611i 0.531325 0.847168i \(-0.321694\pi\)
−0.999332 + 0.0365572i \(0.988361\pi\)
\(192\) 0 0
\(193\) −344177. + 596132.i −0.665103 + 1.15199i 0.314155 + 0.949372i \(0.398279\pi\)
−0.979257 + 0.202620i \(0.935054\pi\)
\(194\) 0 0
\(195\) −68638.5 −0.129265
\(196\) 0 0
\(197\) 311915. 0.572625 0.286313 0.958136i \(-0.407570\pi\)
0.286313 + 0.958136i \(0.407570\pi\)
\(198\) 0 0
\(199\) −143606. + 248733.i −0.257063 + 0.445246i −0.965454 0.260574i \(-0.916088\pi\)
0.708391 + 0.705820i \(0.249421\pi\)
\(200\) 0 0
\(201\) −463207. 802298.i −0.808695 1.40070i
\(202\) 0 0
\(203\) 15643.0 3559.49i 0.0266428 0.00606245i
\(204\) 0 0
\(205\) −180619. 312842.i −0.300179 0.519925i
\(206\) 0 0
\(207\) 12547.8 21733.4i 0.0203536 0.0352534i
\(208\) 0 0
\(209\) 1.17913e6 1.86723
\(210\) 0 0
\(211\) 460493. 0.712061 0.356031 0.934474i \(-0.384130\pi\)
0.356031 + 0.934474i \(0.384130\pi\)
\(212\) 0 0
\(213\) 247163. 428099.i 0.373280 0.646540i
\(214\) 0 0
\(215\) −56720.8 98243.3i −0.0836847 0.144946i
\(216\) 0 0
\(217\) 348837. 1.12824e6i 0.502890 1.62650i
\(218\) 0 0
\(219\) −56501.3 97863.1i −0.0796064 0.137882i
\(220\) 0 0
\(221\) 109766. 190121.i 0.151178 0.261848i
\(222\) 0 0
\(223\) 1.19776e6 1.61290 0.806449 0.591304i \(-0.201387\pi\)
0.806449 + 0.591304i \(0.201387\pi\)
\(224\) 0 0
\(225\) −18119.4 −0.0238609
\(226\) 0 0
\(227\) 447281. 774713.i 0.576123 0.997875i −0.419795 0.907619i \(-0.637898\pi\)
0.995919 0.0902559i \(-0.0287685\pi\)
\(228\) 0 0
\(229\) 129628. + 224522.i 0.163347 + 0.282925i 0.936067 0.351822i \(-0.114438\pi\)
−0.772720 + 0.634747i \(0.781104\pi\)
\(230\) 0 0
\(231\) −871553. 940561.i −1.07464 1.15973i
\(232\) 0 0
\(233\) −105657. 183004.i −0.127500 0.220836i 0.795207 0.606337i \(-0.207362\pi\)
−0.922707 + 0.385501i \(0.874029\pi\)
\(234\) 0 0
\(235\) −19690.0 + 34104.2i −0.0232582 + 0.0402845i
\(236\) 0 0
\(237\) 47091.5 0.0544592
\(238\) 0 0
\(239\) −463.018 −0.000524328 −0.000262164 1.00000i \(-0.500083\pi\)
−0.000262164 1.00000i \(0.500083\pi\)
\(240\) 0 0
\(241\) −143197. + 248025.i −0.158815 + 0.275076i −0.934442 0.356116i \(-0.884101\pi\)
0.775626 + 0.631192i \(0.217434\pi\)
\(242\) 0 0
\(243\) −25565.0 44279.8i −0.0277734 0.0481050i
\(244\) 0 0
\(245\) 291355. + 199209.i 0.310103 + 0.212028i
\(246\) 0 0
\(247\) 194823. + 337444.i 0.203188 + 0.351932i
\(248\) 0 0
\(249\) −363122. + 628946.i −0.371154 + 0.642858i
\(250\) 0 0
\(251\) 1.37168e6 1.37426 0.687129 0.726535i \(-0.258870\pi\)
0.687129 + 0.726535i \(0.258870\pi\)
\(252\) 0 0
\(253\) −2.32660e6 −2.28518
\(254\) 0 0
\(255\) −176136. + 305076.i −0.169628 + 0.293804i
\(256\) 0 0
\(257\) 379612. + 657507.i 0.358515 + 0.620965i 0.987713 0.156279i \(-0.0499500\pi\)
−0.629198 + 0.777245i \(0.716617\pi\)
\(258\) 0 0
\(259\) −531226. 573287.i −0.492073 0.531035i
\(260\) 0 0
\(261\) 417.702 + 723.481i 0.000379547 + 0.000657394i
\(262\) 0 0
\(263\) −536222. + 928764.i −0.478030 + 0.827973i −0.999683 0.0251852i \(-0.991982\pi\)
0.521652 + 0.853158i \(0.325316\pi\)
\(264\) 0 0
\(265\) −392852. −0.343648
\(266\) 0 0
\(267\) −1.56518e6 −1.34365
\(268\) 0 0
\(269\) 883056. 1.52950e6i 0.744059 1.28875i −0.206574 0.978431i \(-0.566231\pi\)
0.950633 0.310317i \(-0.100435\pi\)
\(270\) 0 0
\(271\) −1.02586e6 1.77684e6i −0.848522 1.46968i −0.882527 0.470262i \(-0.844159\pi\)
0.0340046 0.999422i \(-0.489174\pi\)
\(272\) 0 0
\(273\) 125166. 404826.i 0.101644 0.328747i
\(274\) 0 0
\(275\) 839922. + 1.45479e6i 0.669742 + 1.16003i
\(276\) 0 0
\(277\) −435341. + 754033.i −0.340903 + 0.590461i −0.984601 0.174819i \(-0.944066\pi\)
0.643698 + 0.765280i \(0.277399\pi\)
\(278\) 0 0
\(279\) 61495.6 0.0472970
\(280\) 0 0
\(281\) 2.35412e6 1.77854 0.889270 0.457383i \(-0.151213\pi\)
0.889270 + 0.457383i \(0.151213\pi\)
\(282\) 0 0
\(283\) −1.09518e6 + 1.89690e6i −0.812863 + 1.40792i 0.0979887 + 0.995188i \(0.468759\pi\)
−0.910852 + 0.412733i \(0.864574\pi\)
\(284\) 0 0
\(285\) −312622. 541476.i −0.227985 0.394882i
\(286\) 0 0
\(287\) 2.17450e6 494797.i 1.55831 0.354587i
\(288\) 0 0
\(289\) 146576. + 253878.i 0.103233 + 0.178805i
\(290\) 0 0
\(291\) −913035. + 1.58142e6i −0.632055 + 1.09475i
\(292\) 0 0
\(293\) −807700. −0.549644 −0.274822 0.961495i \(-0.588619\pi\)
−0.274822 + 0.961495i \(0.588619\pi\)
\(294\) 0 0
\(295\) −53230.4 −0.0356127
\(296\) 0 0
\(297\) −1.16837e6 + 2.02368e6i −0.768580 + 1.33122i
\(298\) 0 0
\(299\) −384415. 665826.i −0.248669 0.430708i
\(300\) 0 0
\(301\) 682867. 155384.i 0.434430 0.0988528i
\(302\) 0 0
\(303\) 86535.8 + 149884.i 0.0541488 + 0.0937885i
\(304\) 0 0
\(305\) −21994.4 + 38095.4i −0.0135383 + 0.0234489i
\(306\) 0 0
\(307\) −211516. −0.128085 −0.0640424 0.997947i \(-0.520399\pi\)
−0.0640424 + 0.997947i \(0.520399\pi\)
\(308\) 0 0
\(309\) −2.17653e6 −1.29679
\(310\) 0 0
\(311\) −145855. + 252627.i −0.0855104 + 0.148108i −0.905609 0.424114i \(-0.860585\pi\)
0.820098 + 0.572223i \(0.193919\pi\)
\(312\) 0 0
\(313\) 997988. + 1.72857e6i 0.575791 + 0.997299i 0.995955 + 0.0898507i \(0.0286390\pi\)
−0.420165 + 0.907448i \(0.638028\pi\)
\(314\) 0 0
\(315\) −5428.99 + 17559.0i −0.00308278 + 0.00997065i
\(316\) 0 0
\(317\) 1.40479e6 + 2.43316e6i 0.785167 + 1.35995i 0.928899 + 0.370332i \(0.120756\pi\)
−0.143733 + 0.989617i \(0.545911\pi\)
\(318\) 0 0
\(319\) 38725.1 67073.9i 0.0213067 0.0369043i
\(320\) 0 0
\(321\) 1.19432e6 0.646930
\(322\) 0 0
\(323\) 1.99977e6 1.06653
\(324\) 0 0
\(325\) −277554. + 480737.i −0.145760 + 0.252464i
\(326\) 0 0
\(327\) 351836. + 609397.i 0.181958 + 0.315160i
\(328\) 0 0
\(329\) −165238. 178322.i −0.0841630 0.0908269i
\(330\) 0 0
\(331\) 690248. + 1.19554e6i 0.346286 + 0.599785i 0.985587 0.169172i \(-0.0541093\pi\)
−0.639301 + 0.768957i \(0.720776\pi\)
\(332\) 0 0
\(333\) 20349.6 35246.6i 0.0100565 0.0174183i
\(334\) 0 0
\(335\) 1.23104e6 0.599320
\(336\) 0 0
\(337\) 566429. 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(338\) 0 0
\(339\) 714765. 1.23801e6i 0.337803 0.585092i
\(340\) 0 0
\(341\) −2.85062e6 4.93743e6i −1.32756 2.29940i
\(342\) 0 0
\(343\) −1.70622e6 + 1.35512e6i −0.783070 + 0.621933i
\(344\) 0 0
\(345\) 616848. + 1.06841e6i 0.279017 + 0.483272i
\(346\) 0 0
\(347\) 270104. 467833.i 0.120422 0.208577i −0.799512 0.600650i \(-0.794908\pi\)
0.919934 + 0.392073i \(0.128242\pi\)
\(348\) 0 0
\(349\) 1.73807e6 0.763841 0.381921 0.924195i \(-0.375263\pi\)
0.381921 + 0.924195i \(0.375263\pi\)
\(350\) 0 0
\(351\) −772180. −0.334542
\(352\) 0 0
\(353\) −537109. + 930300.i −0.229417 + 0.397362i −0.957635 0.287983i \(-0.907015\pi\)
0.728219 + 0.685345i \(0.240349\pi\)
\(354\) 0 0
\(355\) 328435. + 568866.i 0.138318 + 0.239574i
\(356\) 0 0
\(357\) −1.47813e6 1.59516e6i −0.613821 0.662422i
\(358\) 0 0
\(359\) 60601.9 + 104966.i 0.0248170 + 0.0429844i 0.878167 0.478354i \(-0.158766\pi\)
−0.853350 + 0.521338i \(0.825433\pi\)
\(360\) 0 0
\(361\) −536639. + 929486.i −0.216728 + 0.375383i
\(362\) 0 0
\(363\) −3.64535e6 −1.45202
\(364\) 0 0
\(365\) 150160. 0.0589959
\(366\) 0 0
\(367\) −276914. + 479630.i −0.107320 + 0.185884i −0.914684 0.404171i \(-0.867560\pi\)
0.807364 + 0.590054i \(0.200894\pi\)
\(368\) 0 0
\(369\) 58063.8 + 100570.i 0.0221993 + 0.0384504i
\(370\) 0 0
\(371\) 716389. 2.31702e6i 0.270218 0.873966i
\(372\) 0 0
\(373\) 250739. + 434293.i 0.0933146 + 0.161626i 0.908904 0.417006i \(-0.136920\pi\)
−0.815589 + 0.578631i \(0.803587\pi\)
\(374\) 0 0
\(375\) 963927. 1.66957e6i 0.353970 0.613093i
\(376\) 0 0
\(377\) 25593.6 0.00927422
\(378\) 0 0
\(379\) −999004. −0.357248 −0.178624 0.983917i \(-0.557165\pi\)
−0.178624 + 0.983917i \(0.557165\pi\)
\(380\) 0 0
\(381\) −1.48321e6 + 2.56900e6i −0.523469 + 0.906676i
\(382\) 0 0
\(383\) 326232. + 565050.i 0.113640 + 0.196829i 0.917235 0.398346i \(-0.130416\pi\)
−0.803596 + 0.595176i \(0.797082\pi\)
\(384\) 0 0
\(385\) 1.66146e6 378058.i 0.571265 0.129989i
\(386\) 0 0
\(387\) 18234.1 + 31582.3i 0.00618879 + 0.0107193i
\(388\) 0 0
\(389\) 39626.5 68635.1i 0.0132774 0.0229971i −0.859310 0.511454i \(-0.829107\pi\)
0.872588 + 0.488457i \(0.162440\pi\)
\(390\) 0 0
\(391\) −3.94585e6 −1.30526
\(392\) 0 0
\(393\) 2.44026e6 0.796992
\(394\) 0 0
\(395\) −31288.0 + 54192.4i −0.0100899 + 0.0174762i
\(396\) 0 0
\(397\) −2.00443e6 3.47177e6i −0.638284 1.10554i −0.985809 0.167870i \(-0.946311\pi\)
0.347525 0.937671i \(-0.387022\pi\)
\(398\) 0 0
\(399\) 3.76368e6 856410.i 1.18353 0.269308i
\(400\) 0 0
\(401\) −337209. 584063.i −0.104722 0.181384i 0.808903 0.587943i \(-0.200062\pi\)
−0.913625 + 0.406559i \(0.866729\pi\)
\(402\) 0 0
\(403\) 941994. 1.63158e6i 0.288925 0.500433i
\(404\) 0 0
\(405\) 1.27352e6 0.385806
\(406\) 0 0
\(407\) −3.77322e6 −1.12908
\(408\) 0 0
\(409\) 1.42706e6 2.47175e6i 0.421828 0.730627i −0.574291 0.818652i \(-0.694722\pi\)
0.996118 + 0.0880244i \(0.0280553\pi\)
\(410\) 0 0
\(411\) 863171. + 1.49506e6i 0.252053 + 0.436569i
\(412\) 0 0
\(413\) 97068.7 313950.i 0.0280030 0.0905701i
\(414\) 0 0
\(415\) −482523. 835755.i −0.137530 0.238209i
\(416\) 0 0
\(417\) 1.61745e6 2.80151e6i 0.455503 0.788954i
\(418\) 0 0
\(419\) 4.66553e6 1.29827 0.649136 0.760672i \(-0.275130\pi\)
0.649136 + 0.760672i \(0.275130\pi\)
\(420\) 0 0
\(421\) −3.73317e6 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(422\) 0 0
\(423\) 6329.77 10963.5i 0.00172003 0.00297919i
\(424\) 0 0
\(425\) 1.42448e6 + 2.46728e6i 0.382547 + 0.662591i
\(426\) 0 0
\(427\) −184577. 199191.i −0.0489899 0.0528689i
\(428\) 0 0
\(429\) −1.02283e6 1.77160e6i −0.268325 0.464753i
\(430\) 0 0
\(431\) 482335. 835429.i 0.125071 0.216629i −0.796690 0.604388i \(-0.793418\pi\)
0.921761 + 0.387760i \(0.126751\pi\)
\(432\) 0 0
\(433\) −6.18096e6 −1.58429 −0.792147 0.610330i \(-0.791037\pi\)
−0.792147 + 0.610330i \(0.791037\pi\)
\(434\) 0 0
\(435\) −41068.5 −0.0104060
\(436\) 0 0
\(437\) 3.50172e6 6.06516e6i 0.877158 1.51928i
\(438\) 0 0
\(439\) −107567. 186312.i −0.0266391 0.0461402i 0.852399 0.522893i \(-0.175147\pi\)
−0.879038 + 0.476752i \(0.841814\pi\)
\(440\) 0 0
\(441\) −93661.9 64039.7i −0.0229333 0.0156803i
\(442\) 0 0
\(443\) −3.59934e6 6.23423e6i −0.871391 1.50929i −0.860558 0.509353i \(-0.829885\pi\)
−0.0108335 0.999941i \(-0.503448\pi\)
\(444\) 0 0
\(445\) 1.03992e6 1.80119e6i 0.248943 0.431182i
\(446\) 0 0
\(447\) 6.42109e6 1.51999
\(448\) 0 0
\(449\) 3.92153e6 0.917994 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(450\) 0 0
\(451\) 5.38309e6 9.32379e6i 1.24621 2.15850i
\(452\) 0 0
\(453\) 3.29375e6 + 5.70494e6i 0.754128 + 1.30619i
\(454\) 0 0
\(455\) 382708. + 413010.i 0.0866641 + 0.0935260i
\(456\) 0 0
\(457\) −660839. 1.14461e6i −0.148015 0.256369i 0.782479 0.622677i \(-0.213955\pi\)
−0.930494 + 0.366308i \(0.880622\pi\)
\(458\) 0 0
\(459\) −1.98152e6 + 3.43209e6i −0.439002 + 0.760375i
\(460\) 0 0
\(461\) −75459.1 −0.0165371 −0.00826855 0.999966i \(-0.502632\pi\)
−0.00826855 + 0.999966i \(0.502632\pi\)
\(462\) 0 0
\(463\) 3.28757e6 0.712727 0.356363 0.934347i \(-0.384016\pi\)
0.356363 + 0.934347i \(0.384016\pi\)
\(464\) 0 0
\(465\) −1.51156e6 + 2.61810e6i −0.324186 + 0.561506i
\(466\) 0 0
\(467\) −321691. 557185.i −0.0682569 0.118224i 0.829877 0.557946i \(-0.188410\pi\)
−0.898134 + 0.439722i \(0.855077\pi\)
\(468\) 0 0
\(469\) −2.24487e6 + 7.26058e6i −0.471258 + 1.52419i
\(470\) 0 0
\(471\) 942605. + 1.63264e6i 0.195784 + 0.339108i
\(472\) 0 0
\(473\) 1.69048e6 2.92799e6i 0.347422 0.601752i
\(474\) 0 0
\(475\) −5.05660e6 −1.02831
\(476\) 0 0
\(477\) 126290. 0.0254141
\(478\) 0 0
\(479\) −3.71324e6 + 6.43152e6i −0.739459 + 1.28078i 0.213280 + 0.976991i \(0.431585\pi\)
−0.952739 + 0.303790i \(0.901748\pi\)
\(480\) 0 0
\(481\) −623434. 1.07982e6i −0.122865 0.212808i
\(482\) 0 0
\(483\) −7.42630e6 + 1.68982e6i −1.44845 + 0.329590i
\(484\) 0 0
\(485\) −1.21326e6 2.10143e6i −0.234207 0.405658i
\(486\) 0 0
\(487\) −2.08542e6 + 3.61206e6i −0.398448 + 0.690132i −0.993535 0.113529i \(-0.963784\pi\)
0.595087 + 0.803662i \(0.297118\pi\)
\(488\) 0 0
\(489\) 748651. 0.141582
\(490\) 0 0
\(491\) 3.73674e6 0.699502 0.349751 0.936843i \(-0.386266\pi\)
0.349751 + 0.936843i \(0.386266\pi\)
\(492\) 0 0
\(493\) 65676.6 113755.i 0.0121701 0.0210792i
\(494\) 0 0
\(495\) 44364.6 + 76841.7i 0.00813811 + 0.0140956i
\(496\) 0 0
\(497\) −3.95406e6 + 899731.i −0.718047 + 0.163389i
\(498\) 0 0
\(499\) 4.35431e6 + 7.54188e6i 0.782831 + 1.35590i 0.930286 + 0.366834i \(0.119558\pi\)
−0.147456 + 0.989069i \(0.547108\pi\)
\(500\) 0 0
\(501\) 1.83059e6 3.17068e6i 0.325835 0.564363i
\(502\) 0 0
\(503\) −3.28384e6 −0.578711 −0.289355 0.957222i \(-0.593441\pi\)
−0.289355 + 0.957222i \(0.593441\pi\)
\(504\) 0 0
\(505\) −229981. −0.0401294
\(506\) 0 0
\(507\) −2.59587e6 + 4.49618e6i −0.448500 + 0.776826i
\(508\) 0 0
\(509\) 4.71851e6 + 8.17271e6i 0.807255 + 1.39821i 0.914758 + 0.404002i \(0.132381\pi\)
−0.107503 + 0.994205i \(0.534286\pi\)
\(510\) 0 0
\(511\) −273826. + 885635.i −0.0463897 + 0.150038i
\(512\) 0 0
\(513\) −3.51698e6 6.09159e6i −0.590033 1.02197i
\(514\) 0 0
\(515\) 1.44611e6 2.50473e6i 0.240260 0.416143i
\(516\) 0 0
\(517\) −1.17366e6 −0.193116
\(518\) 0 0
\(519\) −2.12303e6 −0.345970
\(520\) 0 0
\(521\) −2.95363e6 + 5.11584e6i −0.476719 + 0.825701i −0.999644 0.0266776i \(-0.991507\pi\)
0.522926 + 0.852378i \(0.324841\pi\)
\(522\) 0 0
\(523\) 327168. + 566672.i 0.0523019 + 0.0905895i 0.890991 0.454021i \(-0.150011\pi\)
−0.838689 + 0.544610i \(0.816678\pi\)
\(524\) 0 0
\(525\) 3.73757e6 + 4.03351e6i 0.591823 + 0.638682i
\(526\) 0 0
\(527\) −4.83457e6 8.37373e6i −0.758284 1.31339i
\(528\) 0 0
\(529\) −3.69124e6 + 6.39342e6i −0.573500 + 0.993331i
\(530\) 0 0
\(531\) 17112.0 0.00263369
\(532\) 0 0
\(533\) 3.55771e6 0.542440
\(534\) 0 0
\(535\) −793516. + 1.37441e6i −0.119859 + 0.207602i
\(536\) 0 0
\(537\) −368098. 637565.i −0.0550843 0.0954088i
\(538\) 0 0
\(539\) −800002. + 1.04886e7i −0.118609 + 1.55505i
\(540\) 0 0
\(541\) 431558. + 747480.i 0.0633936 + 0.109801i 0.895980 0.444094i \(-0.146474\pi\)
−0.832587 + 0.553895i \(0.813141\pi\)
\(542\) 0 0
\(543\) 6.55222e6 1.13488e7i 0.953649 1.65177i
\(544\) 0 0
\(545\) −935052. −0.134848
\(546\) 0 0
\(547\) 5.45692e6 0.779794 0.389897 0.920859i \(-0.372511\pi\)
0.389897 + 0.920859i \(0.372511\pi\)
\(548\) 0 0
\(549\) 7070.55 12246.6i 0.00100120 0.00173414i
\(550\) 0 0
\(551\) 116569. + 201903.i 0.0163570 + 0.0283311i
\(552\) 0 0
\(553\) −262568. 283358.i −0.0365115 0.0394024i
\(554\) 0 0
\(555\) 1.00039e6 + 1.73272e6i 0.137859 + 0.238779i
\(556\) 0 0
\(557\) −5.58881e6 + 9.68010e6i −0.763275 + 1.32203i 0.177879 + 0.984052i \(0.443077\pi\)
−0.941154 + 0.337979i \(0.890257\pi\)
\(558\) 0 0
\(559\) 1.11724e6 0.151223
\(560\) 0 0
\(561\) −1.04989e7 −1.40844
\(562\) 0 0
\(563\) 440132. 762332.i 0.0585211 0.101361i −0.835281 0.549824i \(-0.814695\pi\)
0.893802 + 0.448462i \(0.148028\pi\)
\(564\) 0 0
\(565\) 949793. + 1.64509e6i 0.125172 + 0.216805i
\(566\) 0 0
\(567\) −2.32234e6 + 7.51116e6i −0.303367 + 0.981181i
\(568\) 0 0
\(569\) 774858. + 1.34209e6i 0.100332 + 0.173781i 0.911822 0.410587i \(-0.134676\pi\)
−0.811489 + 0.584367i \(0.801343\pi\)
\(570\) 0 0
\(571\) −5.48507e6 + 9.50043e6i −0.704032 + 1.21942i 0.263008 + 0.964794i \(0.415285\pi\)
−0.967040 + 0.254625i \(0.918048\pi\)
\(572\) 0 0
\(573\) −7.45794e6 −0.948926
\(574\) 0 0
\(575\) 9.97742e6 1.25849
\(576\) 0 0
\(577\) 6.29341e6 1.09005e7i 0.786948 1.36303i −0.140880 0.990027i \(-0.544993\pi\)
0.927828 0.373008i \(-0.121674\pi\)
\(578\) 0 0
\(579\) 5.43921e6 + 9.42098e6i 0.674278 + 1.16788i
\(580\) 0 0
\(581\) 5.80915e6 1.32185e6i 0.713957 0.162458i
\(582\) 0 0
\(583\) −5.85418e6 1.01397e7i −0.713337 1.23554i
\(584\) 0 0
\(585\) −14660.4 + 25392.5i −0.00177115 + 0.00306772i
\(586\) 0 0
\(587\) −1.19962e7 −1.43697 −0.718484 0.695544i \(-0.755164\pi\)
−0.718484 + 0.695544i \(0.755164\pi\)
\(588\) 0 0
\(589\) 1.71617e7 2.03831
\(590\) 0 0
\(591\) 2.46467e6 4.26894e6i 0.290262 0.502749i
\(592\) 0 0
\(593\) −2.66154e6 4.60993e6i −0.310811 0.538341i 0.667727 0.744406i \(-0.267267\pi\)
−0.978538 + 0.206065i \(0.933934\pi\)
\(594\) 0 0
\(595\) 2.81778e6 641175.i 0.326298 0.0742479i
\(596\) 0 0
\(597\) 2.26948e6 + 3.93085e6i 0.260609 + 0.451388i
\(598\) 0 0
\(599\) 3.77757e6 6.54293e6i 0.430175 0.745085i −0.566713 0.823915i \(-0.691785\pi\)
0.996888 + 0.0788305i \(0.0251186\pi\)
\(600\) 0 0
\(601\) 4.44758e6 0.502270 0.251135 0.967952i \(-0.419196\pi\)
0.251135 + 0.967952i \(0.419196\pi\)
\(602\) 0 0
\(603\) −395742. −0.0443219
\(604\) 0 0
\(605\) 2.42200e6 4.19503e6i 0.269021 0.465958i
\(606\) 0 0
\(607\) 2.78660e6 + 4.82653e6i 0.306975 + 0.531696i 0.977699 0.210011i \(-0.0673499\pi\)
−0.670724 + 0.741707i \(0.734017\pi\)
\(608\) 0 0
\(609\) 74890.8 242220.i 0.00818249 0.0264647i
\(610\) 0 0
\(611\) −193920. 335879.i −0.0210145 0.0363982i
\(612\) 0 0
\(613\) 5.56323e6 9.63580e6i 0.597965 1.03571i −0.395156 0.918614i \(-0.629309\pi\)
0.993121 0.117092i \(-0.0373573\pi\)
\(614\) 0 0
\(615\) −5.70884e6 −0.608640
\(616\) 0 0
\(617\) −1.07454e7 −1.13634 −0.568170 0.822911i \(-0.692349\pi\)
−0.568170 + 0.822911i \(0.692349\pi\)
\(618\) 0 0
\(619\) 6.78781e6 1.17568e7i 0.712038 1.23329i −0.252053 0.967713i \(-0.581106\pi\)
0.964091 0.265572i \(-0.0855610\pi\)
\(620\) 0 0
\(621\) 6.93952e6 + 1.20196e7i 0.722105 + 1.25072i
\(622\) 0 0
\(623\) 8.72698e6 + 9.41797e6i 0.900833 + 0.972159i
\(624\) 0 0
\(625\) −2.91287e6 5.04523e6i −0.298277 0.516632i
\(626\) 0 0
\(627\) 9.31722e6 1.61379e7i 0.946493 1.63937i
\(628\) 0 0
\(629\) −6.39927e6 −0.644917
\(630\) 0 0
\(631\) −1.27986e7 −1.27964 −0.639820 0.768525i \(-0.720991\pi\)
−0.639820 + 0.768525i \(0.720991\pi\)
\(632\) 0 0
\(633\) 3.63871e6 6.30242e6i 0.360942 0.625170i
\(634\) 0 0
\(635\) −1.97092e6 3.41374e6i −0.193970 0.335966i
\(636\) 0 0
\(637\) −3.13380e6 + 1.50404e6i −0.306001 + 0.146863i
\(638\) 0 0
\(639\) −105582. 182874.i −0.0102291 0.0177174i
\(640\) 0 0
\(641\) 442417. 766288.i 0.0425291 0.0736626i −0.843977 0.536379i \(-0.819792\pi\)
0.886506 + 0.462716i \(0.153125\pi\)
\(642\) 0 0
\(643\) −6.66271e6 −0.635511 −0.317756 0.948173i \(-0.602929\pi\)
−0.317756 + 0.948173i \(0.602929\pi\)
\(644\) 0 0
\(645\) −1.79277e6 −0.169678
\(646\) 0 0
\(647\) −8.45887e6 + 1.46512e7i −0.794423 + 1.37598i 0.128782 + 0.991673i \(0.458893\pi\)
−0.923205 + 0.384308i \(0.874440\pi\)
\(648\) 0 0
\(649\) −793226. 1.37391e6i −0.0739239 0.128040i
\(650\) 0 0
\(651\) −1.26850e7 1.36894e7i −1.17311 1.26599i
\(652\) 0 0
\(653\) −4.74654e6 8.22124e6i −0.435606 0.754492i 0.561739 0.827315i \(-0.310133\pi\)
−0.997345 + 0.0728230i \(0.976799\pi\)
\(654\) 0 0
\(655\) −1.62133e6 + 2.80822e6i −0.147662 + 0.255758i
\(656\) 0 0
\(657\) −48272.0 −0.00436297
\(658\) 0 0
\(659\) 4.97563e6 0.446308 0.223154 0.974783i \(-0.428365\pi\)
0.223154 + 0.974783i \(0.428365\pi\)
\(660\) 0 0
\(661\) −1.05765e7 + 1.83191e7i −0.941543 + 1.63080i −0.179013 + 0.983847i \(0.557290\pi\)
−0.762530 + 0.646953i \(0.776043\pi\)
\(662\) 0 0
\(663\) −1.73470e6 3.00458e6i −0.153264 0.265461i
\(664\) 0 0
\(665\) −1.51508e6 + 4.90022e6i −0.132856 + 0.429696i
\(666\) 0 0
\(667\) −230007. 398384.i −0.0200183 0.0346727i
\(668\) 0 0
\(669\) 9.46438e6 1.63928e7i 0.817574 1.41608i
\(670\) 0 0
\(671\) −1.31102e6 −0.112410
\(672\) 0 0
\(673\) 417573. 0.0355382 0.0177691 0.999842i \(-0.494344\pi\)
0.0177691 + 0.999842i \(0.494344\pi\)
\(674\) 0 0
\(675\) 5.01044e6 8.67834e6i 0.423269 0.733124i
\(676\) 0 0
\(677\) −1.31234e6 2.27304e6i −0.110046 0.190605i 0.805743 0.592266i \(-0.201767\pi\)
−0.915789 + 0.401661i \(0.868433\pi\)
\(678\) 0 0
\(679\) 1.46065e7 3.32366e6i 1.21583 0.276657i
\(680\) 0 0
\(681\) −7.06860e6 1.22432e7i −0.584071 1.01164i
\(682\) 0 0
\(683\) −4.37227e6 + 7.57300e6i −0.358637 + 0.621178i −0.987733 0.156149i \(-0.950092\pi\)
0.629096 + 0.777328i \(0.283425\pi\)
\(684\) 0 0
\(685\) −2.29399e6 −0.186795
\(686\) 0 0
\(687\) 4.09716e6 0.331200
\(688\) 0 0
\(689\) 1.93452e6 3.35069e6i 0.155248 0.268898i
\(690\) 0 0
\(691\) 2.19834e6 + 3.80763e6i 0.175146 + 0.303361i 0.940212 0.340591i \(-0.110627\pi\)
−0.765066 + 0.643952i \(0.777294\pi\)
\(692\) 0 0
\(693\) −534110. + 121534.i −0.0422471 + 0.00961316i
\(694\) 0 0
\(695\) 2.14930e6 + 3.72270e6i 0.168786 + 0.292345i
\(696\) 0 0
\(697\) 9.12957e6 1.58129e7i 0.711817 1.23290i
\(698\) 0 0
\(699\) −3.33951e6 −0.258518
\(700\) 0 0
\(701\) 6.51339e6 0.500624 0.250312 0.968165i \(-0.419467\pi\)
0.250312 + 0.968165i \(0.419467\pi\)
\(702\) 0 0
\(703\) 5.67900e6 9.83631e6i 0.433394 0.750661i
\(704\) 0 0
\(705\) 311172. + 538965.i 0.0235791 + 0.0408402i
\(706\) 0 0
\(707\) 419383. 1.35641e6i 0.0315546 0.102057i
\(708\) 0 0
\(709\) 5.23256e6 + 9.06305e6i 0.390929 + 0.677110i 0.992572 0.121655i \(-0.0388203\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(710\) 0 0
\(711\) 10058.2 17421.3i 0.000746183 0.00129243i
\(712\) 0 0
\(713\) −3.38625e7 −2.49457
\(714\) 0 0
\(715\) 2.71832e6 0.198855
\(716\) 0 0
\(717\) −3658.66 + 6336.98i −0.000265781 + 0.000460346i
\(718\) 0 0
\(719\) −8.40746e6 1.45621e7i −0.606516 1.05052i −0.991810 0.127723i \(-0.959233\pi\)
0.385294 0.922794i \(-0.374100\pi\)
\(720\) 0 0
\(721\) 1.21357e7 + 1.30966e7i 0.869414 + 0.938252i
\(722\) 0 0
\(723\) 2.26302e6 + 3.91967e6i 0.161006 + 0.278871i
\(724\) 0 0
\(725\) −166069. + 287640.i −0.0117339 + 0.0203238i
\(726\) 0 0
\(727\) 1.71928e7 1.20646 0.603228 0.797569i \(-0.293881\pi\)
0.603228 + 0.797569i \(0.293881\pi\)
\(728\) 0 0
\(729\) 1.39284e7 0.970696
\(730\) 0 0
\(731\) 2.86700e6 4.96579e6i 0.198442 0.343712i
\(732\) 0 0
\(733\) −9.86827e6 1.70923e7i −0.678393 1.17501i −0.975465 0.220155i \(-0.929344\pi\)
0.297072 0.954855i \(-0.403990\pi\)
\(734\) 0 0
\(735\) 5.02863e6 2.41345e6i 0.343345 0.164786i
\(736\) 0 0
\(737\) 1.83446e7 + 3.17738e7i 1.24405 + 2.15477i
\(738\) 0 0
\(739\) 6.43593e6 1.11474e7i 0.433511 0.750863i −0.563662 0.826006i \(-0.690608\pi\)
0.997173 + 0.0751426i \(0.0239412\pi\)
\(740\) 0 0
\(741\) 6.15778e6 0.411983
\(742\) 0 0
\(743\) −2.45606e7 −1.63218 −0.816089 0.577927i \(-0.803862\pi\)
−0.816089 + 0.577927i \(0.803862\pi\)
\(744\) 0 0
\(745\) −4.26623e6 + 7.38933e6i −0.281614 + 0.487769i
\(746\) 0 0
\(747\) 155117. + 268671.i 0.0101709 + 0.0176165i
\(748\) 0 0
\(749\) −6.65917e6 7.18643e6i −0.433726 0.468068i
\(750\) 0 0
\(751\) −162983. 282294.i −0.0105449 0.0182643i 0.860705 0.509104i \(-0.170023\pi\)
−0.871250 + 0.490840i \(0.836690\pi\)
\(752\) 0 0
\(753\) 1.08387e7 1.87731e7i 0.696609 1.20656i
\(754\) 0 0
\(755\) −8.75360e6 −0.558881
\(756\) 0 0
\(757\) 1.84659e7 1.17120 0.585599 0.810601i \(-0.300859\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(758\) 0 0
\(759\) −1.83842e7 + 3.18424e7i −1.15835 + 2.00633i
\(760\) 0 0
\(761\) −2.56313e6 4.43947e6i −0.160439 0.277888i 0.774587 0.632467i \(-0.217958\pi\)
−0.935026 + 0.354579i \(0.884624\pi\)
\(762\) 0 0
\(763\) 1.70512e6 5.51488e6i 0.106034 0.342945i
\(764\) 0 0
\(765\) 75241.0 + 130321.i 0.00464837 + 0.00805122i
\(766\) 0 0
\(767\) 262123. 454010.i 0.0160885 0.0278662i
\(768\) 0 0
\(769\) 1.63432e6 0.0996602 0.0498301 0.998758i \(-0.484132\pi\)
0.0498301 + 0.998758i \(0.484132\pi\)
\(770\) 0 0
\(771\) 1.19984e7 0.726921
\(772\) 0 0
\(773\) 2.14128e6 3.70881e6i 0.128892 0.223247i −0.794356 0.607453i \(-0.792191\pi\)
0.923248 + 0.384206i \(0.125525\pi\)
\(774\) 0 0
\(775\) 1.22246e7 + 2.11737e7i 0.731108 + 1.26632i
\(776\) 0 0
\(777\) −1.20438e7 + 2.74051e6i −0.715665 + 0.162847i
\(778\) 0 0
\(779\) 1.62040e7 + 2.80661e7i 0.956704 + 1.65706i
\(780\) 0 0
\(781\) −9.78852e6 + 1.69542e7i −0.574235 + 0.994604i
\(782\) 0 0
\(783\) −462019. −0.0269312
\(784\) 0 0
\(785\) −2.50510e6 −0.145095
\(786\) 0 0
\(787\) −3.91482e6 + 6.78066e6i −0.225307 + 0.390243i −0.956411 0.292022i \(-0.905672\pi\)
0.731105 + 0.682265i \(0.239005\pi\)
\(788\) 0 0
\(789\) 8.47419e6 + 1.46777e7i 0.484625 + 0.839395i
\(790\) 0 0
\(791\) −1.14346e7 + 2.60191e6i −0.649803 + 0.147860i
\(792\) 0 0
\(793\) −216615. 375187.i −0.0122322 0.0211868i
\(794\) 0 0
\(795\) −3.10422e6 + 5.37666e6i −0.174195 + 0.301714i
\(796\) 0 0
\(797\) −3.68238e6 −0.205344 −0.102672 0.994715i \(-0.532739\pi\)
−0.102672 + 0.994715i \(0.532739\pi\)
\(798\) 0 0
\(799\) −1.99050e6 −0.110305
\(800\) 0 0
\(801\) −334304. + 579031.i −0.0184102 + 0.0318875i
\(802\) 0 0
\(803\) 2.23765e6 + 3.87572e6i 0.122462 + 0.212111i
\(804\) 0 0
\(805\) 2.98947e6 9.66885e6i 0.162594 0.525878i
\(806\) 0 0
\(807\) −1.39554e7 2.41714e7i −0.754324 1.30653i
\(808\) 0 0
\(809\) −1.04091e7 + 1.80290e7i −0.559165 + 0.968502i 0.438402 + 0.898779i \(0.355545\pi\)
−0.997566 + 0.0697227i \(0.977789\pi\)
\(810\) 0 0
\(811\) −3.03542e7 −1.62057 −0.810283 0.586039i \(-0.800687\pi\)
−0.810283 + 0.586039i \(0.800687\pi\)
\(812\) 0 0
\(813\) −3.24243e7 −1.72046
\(814\) 0 0
\(815\) −497410. + 861540.i −0.0262314 + 0.0454341i
\(816\) 0 0
\(817\) 5.08861e6 + 8.81373e6i 0.266713 + 0.461960i
\(818\) 0 0
\(819\) −123029. 132771.i −0.00640913 0.00691659i
\(820\) 0 0
\(821\) −1.37193e7 2.37626e7i −0.710355 1.23037i −0.964724 0.263264i \(-0.915201\pi\)
0.254369 0.967107i \(-0.418132\pi\)
\(822\) 0 0
\(823\) 7.95629e6 1.37807e7i 0.409459 0.709204i −0.585370 0.810766i \(-0.699051\pi\)
0.994829 + 0.101562i \(0.0323840\pi\)
\(824\) 0 0
\(825\) 2.65474e7 1.35796
\(826\) 0 0
\(827\) −1.40824e7 −0.716001 −0.358001 0.933721i \(-0.616541\pi\)
−0.358001 + 0.933721i \(0.616541\pi\)
\(828\) 0 0
\(829\) −1.09441e7 + 1.89558e7i −0.553089 + 0.957978i 0.444960 + 0.895550i \(0.353218\pi\)
−0.998049 + 0.0624281i \(0.980116\pi\)
\(830\) 0 0
\(831\) 6.87992e6 + 1.19164e7i 0.345605 + 0.598606i
\(832\) 0 0
\(833\) −1.35678e6 + 1.77883e7i −0.0677480 + 0.888225i
\(834\) 0 0
\(835\) 2.43253e6 + 4.21326e6i 0.120737 + 0.209123i
\(836\) 0 0
\(837\) −1.70050e7 + 2.94535e7i −0.839003 + 1.45320i
\(838\) 0 0
\(839\) 1.98669e7 0.974372 0.487186 0.873298i \(-0.338023\pi\)
0.487186 + 0.873298i \(0.338023\pi\)
\(840\) 0 0
\(841\) −2.04958e7 −0.999253
\(842\) 0 0
\(843\) 1.86017e7 3.22191e7i 0.901538 1.56151i
\(844\) 0 0
\(845\) −3.44944e6 5.97460e6i −0.166191 0.287851i
\(846\) 0 0
\(847\) 2.03254e7 + 2.19347e7i 0.973488 + 1.05057i
\(848\) 0 0
\(849\) 1.73076e7 + 2.99777e7i 0.824077 + 1.42734i
\(850\) 0 0
\(851\) −1.12055e7 + 1.94085e7i −0.530405 + 0.918688i
\(852\) 0 0
\(853\) 8.75258e6 0.411873 0.205937 0.978565i \(-0.433976\pi\)
0.205937 + 0.978565i \(0.433976\pi\)
\(854\) 0 0
\(855\) −267089. −0.0124951
\(856\) 0 0
\(857\) 977384. 1.69288e6i 0.0454583 0.0787361i −0.842401 0.538851i \(-0.818859\pi\)
0.887859 + 0.460115i \(0.152192\pi\)
\(858\) 0 0
\(859\) 2.49225e6 + 4.31670e6i 0.115241 + 0.199604i 0.917876 0.396867i \(-0.129902\pi\)
−0.802635 + 0.596471i \(0.796569\pi\)
\(860\) 0 0
\(861\) 1.04104e7 3.36704e7i 0.478586 1.54789i
\(862\) 0 0
\(863\) −8.49654e6 1.47164e7i −0.388343 0.672629i 0.603884 0.797072i \(-0.293619\pi\)
−0.992227 + 0.124443i \(0.960286\pi\)
\(864\) 0 0
\(865\) 1.41056e6 2.44316e6i 0.0640991 0.111023i
\(866\) 0 0
\(867\) 4.63285e6 0.209315
\(868\) 0 0
\(869\) −1.86498e6 −0.0837772
\(870\) 0 0
\(871\) −6.06200e6 + 1.04997e7i −0.270751 + 0.468955i
\(872\) 0 0
\(873\) 390027. + 675546.i 0.0173204 + 0.0299999i
\(874\) 0 0
\(875\) −1.54207e7 + 3.50892e6i −0.680901 + 0.154936i
\(876\) 0 0
\(877\) −9.09797e6 1.57581e7i −0.399434 0.691840i 0.594222 0.804301i \(-0.297460\pi\)
−0.993656 + 0.112461i \(0.964127\pi\)
\(878\) 0 0
\(879\) −6.38225e6 + 1.10544e7i −0.278613 + 0.482572i
\(880\) 0 0
\(881\) 1.77637e7 0.771068 0.385534 0.922694i \(-0.374017\pi\)
0.385534 + 0.922694i \(0.374017\pi\)
\(882\) 0 0
\(883\) −1.71479e6 −0.0740131 −0.0370065 0.999315i \(-0.511782\pi\)
−0.0370065 + 0.999315i \(0.511782\pi\)
\(884\) 0 0
\(885\) −420613. + 728523.i −0.0180520 + 0.0312669i
\(886\) 0 0
\(887\) −1.21218e7 2.09955e7i −0.517318 0.896021i −0.999798 0.0201139i \(-0.993597\pi\)
0.482480 0.875907i \(-0.339736\pi\)
\(888\) 0 0
\(889\) 2.37281e7 5.39924e6i 1.00695 0.229128i
\(890\) 0 0
\(891\) 1.89777e7 + 3.28704e7i 0.800847 + 1.38711i
\(892\) 0 0
\(893\) 1.76646e6 3.05960e6i 0.0741267 0.128391i
\(894\) 0 0
\(895\) 978272. 0.0408227
\(896\) 0 0
\(897\) −1.21502e7 −0.504200
\(898\) 0 0
\(899\) 563624. 976225.i 0.0232589 0.0402857i
\(900\) 0 0
\(901\) −9.92852e6 1.71967e7i −0.407448 0.705721i
\(902\) 0 0
\(903\) 3.26923e6 1.05737e7i 0.133422 0.431526i
\(904\) 0 0
\(905\) 8.70671e6 + 1.50805e7i 0.353372 + 0.612059i
\(906\) 0 0
\(907\) −9.52161e6 + 1.64919e7i −0.384319 + 0.665661i −0.991675 0.128770i \(-0.958897\pi\)
0.607355 + 0.794430i \(0.292231\pi\)
\(908\) 0 0
\(909\) 73932.0 0.00296772
\(910\) 0 0
\(911\) 3.18731e7 1.27242 0.636208 0.771518i \(-0.280502\pi\)
0.636208 + 0.771518i \(0.280502\pi\)
\(912\) 0 0
\(913\) 1.43809e7 2.49084e7i 0.570964 0.988939i
\(914\) 0 0
\(915\) 347589. + 602041.i 0.0137250 + 0.0237724i
\(916\) 0 0
\(917\) −1.36062e7 1.46835e7i −0.534333 0.576641i
\(918\) 0 0
\(919\) −1.47429e7 2.55355e7i −0.575830 0.997367i −0.995951 0.0898988i \(-0.971346\pi\)
0.420121 0.907468i \(-0.361988\pi\)
\(920\) 0 0
\(921\) −1.67135e6 + 2.89486e6i −0.0649259 + 0.112455i
\(922\) 0 0
\(923\) −6.46927e6 −0.249949
\(924\) 0 0
\(925\) 1.61811e7 0.621804
\(926\) 0 0
\(927\) −464881. + 805197.i −0.0177681 + 0.0307753i
\(928\) 0 0
\(929\) 4.86935e6 + 8.43397e6i 0.185111 + 0.320621i 0.943614 0.331048i \(-0.107402\pi\)
−0.758503 + 0.651670i \(0.774069\pi\)
\(930\) 0 0
\(931\) −2.61384e7 1.78717e7i −0.988335 0.675757i
\(932\) 0 0
\(933\) 2.30501e6 + 3.99240e6i 0.0866901 + 0.150152i
\(934\) 0 0
\(935\) 6.97559e6 1.20821e7i 0.260947 0.451973i
\(936\) 0 0
\(937\) 2.66734e7 0.992498 0.496249 0.868180i \(-0.334710\pi\)
0.496249 + 0.868180i \(0.334710\pi\)
\(938\) 0 0
\(939\) 3.15434e7 1.16747
\(940\) 0 0
\(941\) −1.61432e6 + 2.79609e6i −0.0594315 + 0.102938i −0.894210 0.447647i \(-0.852262\pi\)
0.834779 + 0.550585i \(0.185595\pi\)
\(942\) 0 0
\(943\) −3.19728e7 5.53785e7i −1.17085 2.02797i
\(944\) 0 0
\(945\) −6.90871e6 7.45572e6i −0.251662 0.271588i
\(946\) 0 0
\(947\) −2.29622e6 3.97717e6i −0.0832029 0.144112i 0.821421 0.570322i \(-0.193182\pi\)
−0.904624 + 0.426210i \(0.859848\pi\)
\(948\) 0 0
\(949\) −739434. + 1.28074e6i −0.0266523 + 0.0461631i
\(950\) 0 0
\(951\) 4.44011e7 1.59200
\(952\) 0 0
\(953\) 2.97125e7 1.05976 0.529880 0.848073i \(-0.322237\pi\)
0.529880 + 0.848073i \(0.322237\pi\)
\(954\) 0 0
\(955\) 4.95512e6 8.58253e6i 0.175811 0.304514i
\(956\) 0 0
\(957\) −611993. 1.06000e6i −0.0216006 0.0374134i
\(958\) 0 0
\(959\) 4.18323e6 1.35299e7i 0.146881 0.475058i
\(960\) 0 0
\(961\) −2.71748e7 4.70681e7i −0.949199 1.64406i
\(962\) 0 0
\(963\) 255092. 441833.i 0.00886403 0.0153530i
\(964\) 0 0
\(965\) −1.44554e7 −0.499704
\(966\) 0 0
\(967\) −7.64435e6 −0.262890 −0.131445 0.991323i \(-0.541962\pi\)
−0.131445 + 0.991323i \(0.541962\pi\)
\(968\) 0 0
\(969\) 1.58017e7 2.73694e7i 0.540624 0.936388i
\(970\) 0 0
\(971\) −2.49810e7 4.32684e7i −0.850281 1.47273i −0.880955 0.473200i \(-0.843099\pi\)
0.0306743 0.999529i \(-0.490235\pi\)
\(972\) 0 0
\(973\) −2.58756e7 + 5.88790e6i −0.876212 + 0.199378i
\(974\) 0 0
\(975\) 4.38632e6 + 7.59734e6i 0.147771 + 0.255947i
\(976\) 0 0
\(977\) −2.02697e7 + 3.51082e7i −0.679378 + 1.17672i 0.295791 + 0.955253i \(0.404417\pi\)
−0.975169 + 0.221464i \(0.928916\pi\)
\(978\) 0 0
\(979\) 6.19865e7 2.06700
\(980\) 0 0
\(981\) 300592. 0.00997251
\(982\) 0 0
\(983\) −2.06528e7 + 3.57717e7i −0.681703 + 1.18074i 0.292757 + 0.956187i \(0.405427\pi\)
−0.974461 + 0.224558i \(0.927906\pi\)
\(984\) 0 0
\(985\) 3.27511e6 + 5.67265e6i 0.107556 + 0.186292i
\(986\) 0 0
\(987\) −3.74623e6 + 852439.i −0.122406 + 0.0278529i
\(988\) 0 0
\(989\) −1.00406e7 1.73908e7i −0.326413 0.565364i
\(990\) 0 0
\(991\) −9.20419e6 + 1.59421e7i −0.297715 + 0.515658i −0.975613 0.219498i \(-0.929558\pi\)
0.677897 + 0.735156i \(0.262891\pi\)
\(992\) 0 0
\(993\) 2.18167e7 0.702126
\(994\) 0 0
\(995\) −6.03144e6 −0.193136
\(996\) 0 0
\(997\) 1.69854e7 2.94196e7i 0.541175 0.937343i −0.457662 0.889126i \(-0.651313\pi\)
0.998837 0.0482164i \(-0.0153537\pi\)
\(998\) 0 0
\(999\) 1.12543e7 + 1.94931e7i 0.356784 + 0.617968i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.i.b.81.2 4
4.3 odd 2 14.6.c.b.11.1 yes 4
7.2 even 3 inner 112.6.i.b.65.2 4
7.3 odd 6 784.6.a.r.1.2 2
7.4 even 3 784.6.a.bc.1.1 2
12.11 even 2 126.6.g.e.109.2 4
28.3 even 6 98.6.a.f.1.1 2
28.11 odd 6 98.6.a.c.1.2 2
28.19 even 6 98.6.c.f.79.2 4
28.23 odd 6 14.6.c.b.9.1 4
28.27 even 2 98.6.c.f.67.2 4
84.11 even 6 882.6.a.bt.1.2 2
84.23 even 6 126.6.g.e.37.2 4
84.59 odd 6 882.6.a.bl.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.1 4 28.23 odd 6
14.6.c.b.11.1 yes 4 4.3 odd 2
98.6.a.c.1.2 2 28.11 odd 6
98.6.a.f.1.1 2 28.3 even 6
98.6.c.f.67.2 4 28.27 even 2
98.6.c.f.79.2 4 28.19 even 6
112.6.i.b.65.2 4 7.2 even 3 inner
112.6.i.b.81.2 4 1.1 even 1 trivial
126.6.g.e.37.2 4 84.23 even 6
126.6.g.e.109.2 4 12.11 even 2
784.6.a.r.1.2 2 7.3 odd 6
784.6.a.bc.1.1 2 7.4 even 3
882.6.a.bl.1.2 2 84.59 odd 6
882.6.a.bt.1.2 2 84.11 even 6