Properties

Label 112.6.a.i.1.1
Level $112$
Weight $6$
Character 112.1
Self dual yes
Analytic conductor $17.963$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,6,Mod(1,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(17.9629878191\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{345}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 86 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-8.78709\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-15.5742 q^{3} +96.7225 q^{5} +49.0000 q^{7} -0.445054 q^{9} +O(q^{10})\) \(q-15.5742 q^{3} +96.7225 q^{5} +49.0000 q^{7} -0.445054 q^{9} -281.445 q^{11} -269.393 q^{13} -1506.37 q^{15} +1719.45 q^{17} +1172.84 q^{19} -763.135 q^{21} -785.341 q^{23} +6230.25 q^{25} +3791.46 q^{27} +6149.46 q^{29} +7006.58 q^{31} +4383.27 q^{33} +4739.40 q^{35} -11499.9 q^{37} +4195.57 q^{39} -13245.3 q^{41} +19824.2 q^{43} -43.0467 q^{45} -6887.96 q^{47} +2401.00 q^{49} -26778.9 q^{51} +8654.97 q^{53} -27222.1 q^{55} -18266.0 q^{57} +47856.6 q^{59} +52762.1 q^{61} -21.8076 q^{63} -26056.4 q^{65} +24040.2 q^{67} +12231.0 q^{69} -12540.9 q^{71} +4079.29 q^{73} -97031.0 q^{75} -13790.8 q^{77} +11919.1 q^{79} -58940.7 q^{81} -81916.2 q^{83} +166309. q^{85} -95772.7 q^{87} -96968.7 q^{89} -13200.2 q^{91} -109122. q^{93} +113440. q^{95} -26410.7 q^{97} +125.258 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 82 q^{5} + 98 q^{7} + 222 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} + 82 q^{5} + 98 q^{7} + 222 q^{9} - 340 q^{11} + 910 q^{13} - 1824 q^{15} + 3216 q^{17} + 674 q^{19} + 294 q^{21} + 1104 q^{23} + 3322 q^{25} + 3348 q^{27} + 8064 q^{29} + 6212 q^{31} + 3120 q^{33} + 4018 q^{35} - 8512 q^{37} + 29640 q^{39} - 1304 q^{41} + 10004 q^{43} - 3318 q^{45} + 12748 q^{47} + 4802 q^{49} + 5508 q^{51} - 11220 q^{53} - 26360 q^{55} - 29028 q^{57} + 12018 q^{59} + 102738 q^{61} + 10878 q^{63} - 43420 q^{65} - 24136 q^{67} + 52992 q^{69} - 89720 q^{71} - 55588 q^{73} - 159774 q^{75} - 16660 q^{77} - 48824 q^{79} - 122562 q^{81} - 35782 q^{83} + 144276 q^{85} - 54468 q^{87} - 18300 q^{89} + 44590 q^{91} - 126264 q^{93} + 120784 q^{95} - 69984 q^{97} - 12900 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −15.5742 −0.999084 −0.499542 0.866290i \(-0.666498\pi\)
−0.499542 + 0.866290i \(0.666498\pi\)
\(4\) 0 0
\(5\) 96.7225 1.73023 0.865113 0.501578i \(-0.167247\pi\)
0.865113 + 0.501578i \(0.167247\pi\)
\(6\) 0 0
\(7\) 49.0000 0.377964
\(8\) 0 0
\(9\) −0.445054 −0.00183150
\(10\) 0 0
\(11\) −281.445 −0.701313 −0.350657 0.936504i \(-0.614042\pi\)
−0.350657 + 0.936504i \(0.614042\pi\)
\(12\) 0 0
\(13\) −269.393 −0.442107 −0.221054 0.975262i \(-0.570950\pi\)
−0.221054 + 0.975262i \(0.570950\pi\)
\(14\) 0 0
\(15\) −1506.37 −1.72864
\(16\) 0 0
\(17\) 1719.45 1.44300 0.721499 0.692415i \(-0.243453\pi\)
0.721499 + 0.692415i \(0.243453\pi\)
\(18\) 0 0
\(19\) 1172.84 0.745339 0.372670 0.927964i \(-0.378442\pi\)
0.372670 + 0.927964i \(0.378442\pi\)
\(20\) 0 0
\(21\) −763.135 −0.377618
\(22\) 0 0
\(23\) −785.341 −0.309555 −0.154778 0.987949i \(-0.549466\pi\)
−0.154778 + 0.987949i \(0.549466\pi\)
\(24\) 0 0
\(25\) 6230.25 1.99368
\(26\) 0 0
\(27\) 3791.46 1.00091
\(28\) 0 0
\(29\) 6149.46 1.35782 0.678909 0.734222i \(-0.262453\pi\)
0.678909 + 0.734222i \(0.262453\pi\)
\(30\) 0 0
\(31\) 7006.58 1.30949 0.654744 0.755851i \(-0.272776\pi\)
0.654744 + 0.755851i \(0.272776\pi\)
\(32\) 0 0
\(33\) 4383.27 0.700671
\(34\) 0 0
\(35\) 4739.40 0.653964
\(36\) 0 0
\(37\) −11499.9 −1.38099 −0.690495 0.723337i \(-0.742607\pi\)
−0.690495 + 0.723337i \(0.742607\pi\)
\(38\) 0 0
\(39\) 4195.57 0.441702
\(40\) 0 0
\(41\) −13245.3 −1.23056 −0.615279 0.788310i \(-0.710957\pi\)
−0.615279 + 0.788310i \(0.710957\pi\)
\(42\) 0 0
\(43\) 19824.2 1.63502 0.817512 0.575911i \(-0.195353\pi\)
0.817512 + 0.575911i \(0.195353\pi\)
\(44\) 0 0
\(45\) −43.0467 −0.00316890
\(46\) 0 0
\(47\) −6887.96 −0.454827 −0.227413 0.973798i \(-0.573027\pi\)
−0.227413 + 0.973798i \(0.573027\pi\)
\(48\) 0 0
\(49\) 2401.00 0.142857
\(50\) 0 0
\(51\) −26778.9 −1.44168
\(52\) 0 0
\(53\) 8654.97 0.423229 0.211615 0.977353i \(-0.432128\pi\)
0.211615 + 0.977353i \(0.432128\pi\)
\(54\) 0 0
\(55\) −27222.1 −1.21343
\(56\) 0 0
\(57\) −18266.0 −0.744656
\(58\) 0 0
\(59\) 47856.6 1.78983 0.894915 0.446236i \(-0.147236\pi\)
0.894915 + 0.446236i \(0.147236\pi\)
\(60\) 0 0
\(61\) 52762.1 1.81550 0.907752 0.419507i \(-0.137797\pi\)
0.907752 + 0.419507i \(0.137797\pi\)
\(62\) 0 0
\(63\) −21.8076 −0.000692241 0
\(64\) 0 0
\(65\) −26056.4 −0.764945
\(66\) 0 0
\(67\) 24040.2 0.654261 0.327130 0.944979i \(-0.393918\pi\)
0.327130 + 0.944979i \(0.393918\pi\)
\(68\) 0 0
\(69\) 12231.0 0.309272
\(70\) 0 0
\(71\) −12540.9 −0.295246 −0.147623 0.989044i \(-0.547162\pi\)
−0.147623 + 0.989044i \(0.547162\pi\)
\(72\) 0 0
\(73\) 4079.29 0.0895936 0.0447968 0.998996i \(-0.485736\pi\)
0.0447968 + 0.998996i \(0.485736\pi\)
\(74\) 0 0
\(75\) −97031.0 −1.99185
\(76\) 0 0
\(77\) −13790.8 −0.265071
\(78\) 0 0
\(79\) 11919.1 0.214870 0.107435 0.994212i \(-0.465736\pi\)
0.107435 + 0.994212i \(0.465736\pi\)
\(80\) 0 0
\(81\) −58940.7 −0.998165
\(82\) 0 0
\(83\) −81916.2 −1.30519 −0.652596 0.757706i \(-0.726320\pi\)
−0.652596 + 0.757706i \(0.726320\pi\)
\(84\) 0 0
\(85\) 166309. 2.49671
\(86\) 0 0
\(87\) −95772.7 −1.35657
\(88\) 0 0
\(89\) −96968.7 −1.29765 −0.648824 0.760939i \(-0.724739\pi\)
−0.648824 + 0.760939i \(0.724739\pi\)
\(90\) 0 0
\(91\) −13200.2 −0.167101
\(92\) 0 0
\(93\) −109122. −1.30829
\(94\) 0 0
\(95\) 113440. 1.28960
\(96\) 0 0
\(97\) −26410.7 −0.285004 −0.142502 0.989795i \(-0.545515\pi\)
−0.142502 + 0.989795i \(0.545515\pi\)
\(98\) 0 0
\(99\) 125.258 0.00128445
\(100\) 0 0
\(101\) −73137.7 −0.713408 −0.356704 0.934217i \(-0.616099\pi\)
−0.356704 + 0.934217i \(0.616099\pi\)
\(102\) 0 0
\(103\) −87649.5 −0.814060 −0.407030 0.913415i \(-0.633435\pi\)
−0.407030 + 0.913415i \(0.633435\pi\)
\(104\) 0 0
\(105\) −73812.3 −0.653365
\(106\) 0 0
\(107\) 115438. 0.974743 0.487372 0.873195i \(-0.337956\pi\)
0.487372 + 0.873195i \(0.337956\pi\)
\(108\) 0 0
\(109\) −117303. −0.945675 −0.472837 0.881150i \(-0.656770\pi\)
−0.472837 + 0.881150i \(0.656770\pi\)
\(110\) 0 0
\(111\) 179102. 1.37973
\(112\) 0 0
\(113\) 181535. 1.33741 0.668705 0.743528i \(-0.266849\pi\)
0.668705 + 0.743528i \(0.266849\pi\)
\(114\) 0 0
\(115\) −75960.1 −0.535601
\(116\) 0 0
\(117\) 119.894 0.000809718 0
\(118\) 0 0
\(119\) 84252.8 0.545402
\(120\) 0 0
\(121\) −81839.7 −0.508160
\(122\) 0 0
\(123\) 206284. 1.22943
\(124\) 0 0
\(125\) 300347. 1.71929
\(126\) 0 0
\(127\) −106111. −0.583780 −0.291890 0.956452i \(-0.594284\pi\)
−0.291890 + 0.956452i \(0.594284\pi\)
\(128\) 0 0
\(129\) −308745. −1.63353
\(130\) 0 0
\(131\) −300334. −1.52907 −0.764534 0.644584i \(-0.777031\pi\)
−0.764534 + 0.644584i \(0.777031\pi\)
\(132\) 0 0
\(133\) 57469.1 0.281712
\(134\) 0 0
\(135\) 366719. 1.73181
\(136\) 0 0
\(137\) −91892.5 −0.418291 −0.209146 0.977885i \(-0.567068\pi\)
−0.209146 + 0.977885i \(0.567068\pi\)
\(138\) 0 0
\(139\) −153133. −0.672252 −0.336126 0.941817i \(-0.609117\pi\)
−0.336126 + 0.941817i \(0.609117\pi\)
\(140\) 0 0
\(141\) 107274. 0.454410
\(142\) 0 0
\(143\) 75819.3 0.310056
\(144\) 0 0
\(145\) 594791. 2.34933
\(146\) 0 0
\(147\) −37393.6 −0.142726
\(148\) 0 0
\(149\) 498602. 1.83987 0.919937 0.392066i \(-0.128240\pi\)
0.919937 + 0.392066i \(0.128240\pi\)
\(150\) 0 0
\(151\) −209609. −0.748114 −0.374057 0.927406i \(-0.622034\pi\)
−0.374057 + 0.927406i \(0.622034\pi\)
\(152\) 0 0
\(153\) −765.245 −0.00264285
\(154\) 0 0
\(155\) 677694. 2.26571
\(156\) 0 0
\(157\) −7381.72 −0.0239006 −0.0119503 0.999929i \(-0.503804\pi\)
−0.0119503 + 0.999929i \(0.503804\pi\)
\(158\) 0 0
\(159\) −134794. −0.422842
\(160\) 0 0
\(161\) −38481.7 −0.117001
\(162\) 0 0
\(163\) −388154. −1.14429 −0.572144 0.820153i \(-0.693888\pi\)
−0.572144 + 0.820153i \(0.693888\pi\)
\(164\) 0 0
\(165\) 423961. 1.21232
\(166\) 0 0
\(167\) 168240. 0.466808 0.233404 0.972380i \(-0.425013\pi\)
0.233404 + 0.972380i \(0.425013\pi\)
\(168\) 0 0
\(169\) −298720. −0.804541
\(170\) 0 0
\(171\) −521.976 −0.00136509
\(172\) 0 0
\(173\) 321513. 0.816740 0.408370 0.912817i \(-0.366097\pi\)
0.408370 + 0.912817i \(0.366097\pi\)
\(174\) 0 0
\(175\) 305282. 0.753540
\(176\) 0 0
\(177\) −745327. −1.78819
\(178\) 0 0
\(179\) 611906. 1.42742 0.713710 0.700441i \(-0.247013\pi\)
0.713710 + 0.700441i \(0.247013\pi\)
\(180\) 0 0
\(181\) 261474. 0.593242 0.296621 0.954995i \(-0.404140\pi\)
0.296621 + 0.954995i \(0.404140\pi\)
\(182\) 0 0
\(183\) −821726. −1.81384
\(184\) 0 0
\(185\) −1.11230e6 −2.38943
\(186\) 0 0
\(187\) −483929. −1.01199
\(188\) 0 0
\(189\) 185781. 0.378310
\(190\) 0 0
\(191\) −703301. −1.39495 −0.697474 0.716610i \(-0.745693\pi\)
−0.697474 + 0.716610i \(0.745693\pi\)
\(192\) 0 0
\(193\) 516411. 0.997934 0.498967 0.866621i \(-0.333713\pi\)
0.498967 + 0.866621i \(0.333713\pi\)
\(194\) 0 0
\(195\) 405806. 0.764244
\(196\) 0 0
\(197\) 142579. 0.261752 0.130876 0.991399i \(-0.458221\pi\)
0.130876 + 0.991399i \(0.458221\pi\)
\(198\) 0 0
\(199\) −984837. −1.76292 −0.881458 0.472262i \(-0.843438\pi\)
−0.881458 + 0.472262i \(0.843438\pi\)
\(200\) 0 0
\(201\) −374406. −0.653662
\(202\) 0 0
\(203\) 301323. 0.513207
\(204\) 0 0
\(205\) −1.28112e6 −2.12914
\(206\) 0 0
\(207\) 349.519 0.000566950 0
\(208\) 0 0
\(209\) −330089. −0.522716
\(210\) 0 0
\(211\) 242836. 0.375497 0.187748 0.982217i \(-0.439881\pi\)
0.187748 + 0.982217i \(0.439881\pi\)
\(212\) 0 0
\(213\) 195315. 0.294976
\(214\) 0 0
\(215\) 1.91745e6 2.82896
\(216\) 0 0
\(217\) 343322. 0.494940
\(218\) 0 0
\(219\) −63531.5 −0.0895115
\(220\) 0 0
\(221\) −463206. −0.637960
\(222\) 0 0
\(223\) 797063. 1.07332 0.536661 0.843798i \(-0.319685\pi\)
0.536661 + 0.843798i \(0.319685\pi\)
\(224\) 0 0
\(225\) −2772.79 −0.00365142
\(226\) 0 0
\(227\) 26121.4 0.0336459 0.0168229 0.999858i \(-0.494645\pi\)
0.0168229 + 0.999858i \(0.494645\pi\)
\(228\) 0 0
\(229\) −761592. −0.959695 −0.479848 0.877352i \(-0.659308\pi\)
−0.479848 + 0.877352i \(0.659308\pi\)
\(230\) 0 0
\(231\) 214780. 0.264829
\(232\) 0 0
\(233\) 657852. 0.793850 0.396925 0.917851i \(-0.370077\pi\)
0.396925 + 0.917851i \(0.370077\pi\)
\(234\) 0 0
\(235\) −666221. −0.786953
\(236\) 0 0
\(237\) −185630. −0.214673
\(238\) 0 0
\(239\) −965388. −1.09322 −0.546609 0.837388i \(-0.684082\pi\)
−0.546609 + 0.837388i \(0.684082\pi\)
\(240\) 0 0
\(241\) 35064.2 0.0388885 0.0194443 0.999811i \(-0.493810\pi\)
0.0194443 + 0.999811i \(0.493810\pi\)
\(242\) 0 0
\(243\) −3371.72 −0.00366299
\(244\) 0 0
\(245\) 232231. 0.247175
\(246\) 0 0
\(247\) −315954. −0.329520
\(248\) 0 0
\(249\) 1.27578e6 1.30400
\(250\) 0 0
\(251\) −1.31610e6 −1.31857 −0.659286 0.751892i \(-0.729141\pi\)
−0.659286 + 0.751892i \(0.729141\pi\)
\(252\) 0 0
\(253\) 221030. 0.217095
\(254\) 0 0
\(255\) −2.59013e6 −2.49443
\(256\) 0 0
\(257\) −529802. −0.500358 −0.250179 0.968200i \(-0.580489\pi\)
−0.250179 + 0.968200i \(0.580489\pi\)
\(258\) 0 0
\(259\) −563496. −0.521966
\(260\) 0 0
\(261\) −2736.84 −0.00248684
\(262\) 0 0
\(263\) 1.29457e6 1.15408 0.577041 0.816715i \(-0.304207\pi\)
0.577041 + 0.816715i \(0.304207\pi\)
\(264\) 0 0
\(265\) 837130. 0.732282
\(266\) 0 0
\(267\) 1.51021e6 1.29646
\(268\) 0 0
\(269\) −444336. −0.374396 −0.187198 0.982322i \(-0.559941\pi\)
−0.187198 + 0.982322i \(0.559941\pi\)
\(270\) 0 0
\(271\) −624757. −0.516759 −0.258379 0.966044i \(-0.583188\pi\)
−0.258379 + 0.966044i \(0.583188\pi\)
\(272\) 0 0
\(273\) 205583. 0.166948
\(274\) 0 0
\(275\) −1.75347e6 −1.39819
\(276\) 0 0
\(277\) −2.00202e6 −1.56772 −0.783860 0.620938i \(-0.786752\pi\)
−0.783860 + 0.620938i \(0.786752\pi\)
\(278\) 0 0
\(279\) −3118.30 −0.00239832
\(280\) 0 0
\(281\) 249316. 0.188358 0.0941792 0.995555i \(-0.469977\pi\)
0.0941792 + 0.995555i \(0.469977\pi\)
\(282\) 0 0
\(283\) −645136. −0.478835 −0.239417 0.970917i \(-0.576956\pi\)
−0.239417 + 0.970917i \(0.576956\pi\)
\(284\) 0 0
\(285\) −1.76673e6 −1.28842
\(286\) 0 0
\(287\) −649019. −0.465107
\(288\) 0 0
\(289\) 1.53663e6 1.08225
\(290\) 0 0
\(291\) 411325. 0.284743
\(292\) 0 0
\(293\) 2.00830e6 1.36666 0.683328 0.730112i \(-0.260532\pi\)
0.683328 + 0.730112i \(0.260532\pi\)
\(294\) 0 0
\(295\) 4.62881e6 3.09681
\(296\) 0 0
\(297\) −1.06709e6 −0.701954
\(298\) 0 0
\(299\) 211565. 0.136857
\(300\) 0 0
\(301\) 971385. 0.617981
\(302\) 0 0
\(303\) 1.13906e6 0.712754
\(304\) 0 0
\(305\) 5.10328e6 3.14123
\(306\) 0 0
\(307\) 1.71113e6 1.03618 0.518092 0.855325i \(-0.326642\pi\)
0.518092 + 0.855325i \(0.326642\pi\)
\(308\) 0 0
\(309\) 1.36507e6 0.813314
\(310\) 0 0
\(311\) 602050. 0.352965 0.176483 0.984304i \(-0.443528\pi\)
0.176483 + 0.984304i \(0.443528\pi\)
\(312\) 0 0
\(313\) −1.34208e6 −0.774318 −0.387159 0.922013i \(-0.626543\pi\)
−0.387159 + 0.922013i \(0.626543\pi\)
\(314\) 0 0
\(315\) −2109.29 −0.00119773
\(316\) 0 0
\(317\) 1.01803e6 0.569001 0.284500 0.958676i \(-0.408172\pi\)
0.284500 + 0.958676i \(0.408172\pi\)
\(318\) 0 0
\(319\) −1.73073e6 −0.952256
\(320\) 0 0
\(321\) −1.79786e6 −0.973850
\(322\) 0 0
\(323\) 2.01663e6 1.07552
\(324\) 0 0
\(325\) −1.67838e6 −0.881420
\(326\) 0 0
\(327\) 1.82689e6 0.944809
\(328\) 0 0
\(329\) −337510. −0.171908
\(330\) 0 0
\(331\) 532371. 0.267082 0.133541 0.991043i \(-0.457365\pi\)
0.133541 + 0.991043i \(0.457365\pi\)
\(332\) 0 0
\(333\) 5118.09 0.00252928
\(334\) 0 0
\(335\) 2.32523e6 1.13202
\(336\) 0 0
\(337\) −234947. −0.112693 −0.0563463 0.998411i \(-0.517945\pi\)
−0.0563463 + 0.998411i \(0.517945\pi\)
\(338\) 0 0
\(339\) −2.82726e6 −1.33618
\(340\) 0 0
\(341\) −1.97197e6 −0.918361
\(342\) 0 0
\(343\) 117649. 0.0539949
\(344\) 0 0
\(345\) 1.18302e6 0.535110
\(346\) 0 0
\(347\) 1.90054e6 0.847330 0.423665 0.905819i \(-0.360743\pi\)
0.423665 + 0.905819i \(0.360743\pi\)
\(348\) 0 0
\(349\) 341162. 0.149933 0.0749665 0.997186i \(-0.476115\pi\)
0.0749665 + 0.997186i \(0.476115\pi\)
\(350\) 0 0
\(351\) −1.02139e6 −0.442511
\(352\) 0 0
\(353\) 673122. 0.287513 0.143756 0.989613i \(-0.454082\pi\)
0.143756 + 0.989613i \(0.454082\pi\)
\(354\) 0 0
\(355\) −1.21299e6 −0.510842
\(356\) 0 0
\(357\) −1.31217e6 −0.544903
\(358\) 0 0
\(359\) −1.43301e6 −0.586833 −0.293417 0.955985i \(-0.594792\pi\)
−0.293417 + 0.955985i \(0.594792\pi\)
\(360\) 0 0
\(361\) −1.10055e6 −0.444469
\(362\) 0 0
\(363\) 1.27459e6 0.507694
\(364\) 0 0
\(365\) 394559. 0.155017
\(366\) 0 0
\(367\) 2.04781e6 0.793643 0.396822 0.917896i \(-0.370113\pi\)
0.396822 + 0.917896i \(0.370113\pi\)
\(368\) 0 0
\(369\) 5894.87 0.00225376
\(370\) 0 0
\(371\) 424093. 0.159966
\(372\) 0 0
\(373\) −3.33578e6 −1.24144 −0.620719 0.784033i \(-0.713159\pi\)
−0.620719 + 0.784033i \(0.713159\pi\)
\(374\) 0 0
\(375\) −4.67766e6 −1.71771
\(376\) 0 0
\(377\) −1.65662e6 −0.600301
\(378\) 0 0
\(379\) −2.29135e6 −0.819394 −0.409697 0.912222i \(-0.634366\pi\)
−0.409697 + 0.912222i \(0.634366\pi\)
\(380\) 0 0
\(381\) 1.65258e6 0.583245
\(382\) 0 0
\(383\) −1.84422e6 −0.642414 −0.321207 0.947009i \(-0.604089\pi\)
−0.321207 + 0.947009i \(0.604089\pi\)
\(384\) 0 0
\(385\) −1.33388e6 −0.458633
\(386\) 0 0
\(387\) −8822.83 −0.00299454
\(388\) 0 0
\(389\) 3.66601e6 1.22834 0.614172 0.789172i \(-0.289490\pi\)
0.614172 + 0.789172i \(0.289490\pi\)
\(390\) 0 0
\(391\) −1.35035e6 −0.446688
\(392\) 0 0
\(393\) 4.67746e6 1.52767
\(394\) 0 0
\(395\) 1.15284e6 0.371773
\(396\) 0 0
\(397\) −4.59382e6 −1.46284 −0.731421 0.681926i \(-0.761142\pi\)
−0.731421 + 0.681926i \(0.761142\pi\)
\(398\) 0 0
\(399\) −895033. −0.281454
\(400\) 0 0
\(401\) −1.10984e6 −0.344666 −0.172333 0.985039i \(-0.555130\pi\)
−0.172333 + 0.985039i \(0.555130\pi\)
\(402\) 0 0
\(403\) −1.88752e6 −0.578934
\(404\) 0 0
\(405\) −5.70089e6 −1.72705
\(406\) 0 0
\(407\) 3.23660e6 0.968507
\(408\) 0 0
\(409\) 3.60689e6 1.06617 0.533083 0.846063i \(-0.321033\pi\)
0.533083 + 0.846063i \(0.321033\pi\)
\(410\) 0 0
\(411\) 1.43115e6 0.417908
\(412\) 0 0
\(413\) 2.34497e6 0.676492
\(414\) 0 0
\(415\) −7.92314e6 −2.25828
\(416\) 0 0
\(417\) 2.38492e6 0.671636
\(418\) 0 0
\(419\) −5.51790e6 −1.53546 −0.767731 0.640773i \(-0.778614\pi\)
−0.767731 + 0.640773i \(0.778614\pi\)
\(420\) 0 0
\(421\) −2.59092e6 −0.712440 −0.356220 0.934402i \(-0.615935\pi\)
−0.356220 + 0.934402i \(0.615935\pi\)
\(422\) 0 0
\(423\) 3065.51 0.000833014 0
\(424\) 0 0
\(425\) 1.07126e7 2.87688
\(426\) 0 0
\(427\) 2.58534e6 0.686196
\(428\) 0 0
\(429\) −1.18082e6 −0.309772
\(430\) 0 0
\(431\) 3.45364e6 0.895537 0.447769 0.894150i \(-0.352219\pi\)
0.447769 + 0.894150i \(0.352219\pi\)
\(432\) 0 0
\(433\) 397522. 0.101892 0.0509461 0.998701i \(-0.483776\pi\)
0.0509461 + 0.998701i \(0.483776\pi\)
\(434\) 0 0
\(435\) −9.26338e6 −2.34718
\(436\) 0 0
\(437\) −921077. −0.230724
\(438\) 0 0
\(439\) −1.60903e6 −0.398476 −0.199238 0.979951i \(-0.563847\pi\)
−0.199238 + 0.979951i \(0.563847\pi\)
\(440\) 0 0
\(441\) −1068.57 −0.000261642 0
\(442\) 0 0
\(443\) 7.08182e6 1.71449 0.857246 0.514906i \(-0.172173\pi\)
0.857246 + 0.514906i \(0.172173\pi\)
\(444\) 0 0
\(445\) −9.37906e6 −2.24522
\(446\) 0 0
\(447\) −7.76531e6 −1.83819
\(448\) 0 0
\(449\) −6.46156e6 −1.51259 −0.756295 0.654230i \(-0.772993\pi\)
−0.756295 + 0.654230i \(0.772993\pi\)
\(450\) 0 0
\(451\) 3.72782e6 0.863006
\(452\) 0 0
\(453\) 3.26449e6 0.747429
\(454\) 0 0
\(455\) −1.27676e6 −0.289122
\(456\) 0 0
\(457\) −3.37073e6 −0.754976 −0.377488 0.926015i \(-0.623212\pi\)
−0.377488 + 0.926015i \(0.623212\pi\)
\(458\) 0 0
\(459\) 6.51920e6 1.44432
\(460\) 0 0
\(461\) 6.20821e6 1.36055 0.680274 0.732958i \(-0.261861\pi\)
0.680274 + 0.732958i \(0.261861\pi\)
\(462\) 0 0
\(463\) 5.82940e6 1.26378 0.631890 0.775058i \(-0.282279\pi\)
0.631890 + 0.775058i \(0.282279\pi\)
\(464\) 0 0
\(465\) −1.05545e7 −2.26363
\(466\) 0 0
\(467\) 174742. 0.0370770 0.0185385 0.999828i \(-0.494099\pi\)
0.0185385 + 0.999828i \(0.494099\pi\)
\(468\) 0 0
\(469\) 1.17797e6 0.247287
\(470\) 0 0
\(471\) 114964. 0.0238787
\(472\) 0 0
\(473\) −5.57942e6 −1.14666
\(474\) 0 0
\(475\) 7.30707e6 1.48597
\(476\) 0 0
\(477\) −3851.93 −0.000775143 0
\(478\) 0 0
\(479\) −371746. −0.0740299 −0.0370150 0.999315i \(-0.511785\pi\)
−0.0370150 + 0.999315i \(0.511785\pi\)
\(480\) 0 0
\(481\) 3.09800e6 0.610546
\(482\) 0 0
\(483\) 599321. 0.116894
\(484\) 0 0
\(485\) −2.55451e6 −0.493121
\(486\) 0 0
\(487\) 8.71307e6 1.66475 0.832375 0.554213i \(-0.186981\pi\)
0.832375 + 0.554213i \(0.186981\pi\)
\(488\) 0 0
\(489\) 6.04519e6 1.14324
\(490\) 0 0
\(491\) −6.88530e6 −1.28890 −0.644450 0.764646i \(-0.722914\pi\)
−0.644450 + 0.764646i \(0.722914\pi\)
\(492\) 0 0
\(493\) 1.05737e7 1.95933
\(494\) 0 0
\(495\) 12115.3 0.00222239
\(496\) 0 0
\(497\) −614506. −0.111592
\(498\) 0 0
\(499\) 45442.7 0.00816982 0.00408491 0.999992i \(-0.498700\pi\)
0.00408491 + 0.999992i \(0.498700\pi\)
\(500\) 0 0
\(501\) −2.62020e6 −0.466381
\(502\) 0 0
\(503\) 623417. 0.109865 0.0549324 0.998490i \(-0.482506\pi\)
0.0549324 + 0.998490i \(0.482506\pi\)
\(504\) 0 0
\(505\) −7.07406e6 −1.23436
\(506\) 0 0
\(507\) 4.65233e6 0.803804
\(508\) 0 0
\(509\) 7.69092e6 1.31578 0.657891 0.753113i \(-0.271449\pi\)
0.657891 + 0.753113i \(0.271449\pi\)
\(510\) 0 0
\(511\) 199885. 0.0338632
\(512\) 0 0
\(513\) 4.44676e6 0.746020
\(514\) 0 0
\(515\) −8.47768e6 −1.40851
\(516\) 0 0
\(517\) 1.93858e6 0.318976
\(518\) 0 0
\(519\) −5.00730e6 −0.815991
\(520\) 0 0
\(521\) 7.32268e6 1.18189 0.590943 0.806713i \(-0.298756\pi\)
0.590943 + 0.806713i \(0.298756\pi\)
\(522\) 0 0
\(523\) −5.17976e6 −0.828047 −0.414024 0.910266i \(-0.635877\pi\)
−0.414024 + 0.910266i \(0.635877\pi\)
\(524\) 0 0
\(525\) −4.75452e6 −0.752850
\(526\) 0 0
\(527\) 1.20474e7 1.88959
\(528\) 0 0
\(529\) −5.81958e6 −0.904175
\(530\) 0 0
\(531\) −21298.8 −0.00327807
\(532\) 0 0
\(533\) 3.56819e6 0.544038
\(534\) 0 0
\(535\) 1.11655e7 1.68653
\(536\) 0 0
\(537\) −9.52993e6 −1.42611
\(538\) 0 0
\(539\) −675750. −0.100188
\(540\) 0 0
\(541\) 9.31804e6 1.36877 0.684387 0.729119i \(-0.260070\pi\)
0.684387 + 0.729119i \(0.260070\pi\)
\(542\) 0 0
\(543\) −4.07224e6 −0.592698
\(544\) 0 0
\(545\) −1.13458e7 −1.63623
\(546\) 0 0
\(547\) −1.26417e7 −1.80650 −0.903250 0.429114i \(-0.858826\pi\)
−0.903250 + 0.429114i \(0.858826\pi\)
\(548\) 0 0
\(549\) −23482.0 −0.00332509
\(550\) 0 0
\(551\) 7.21232e6 1.01204
\(552\) 0 0
\(553\) 584035. 0.0812131
\(554\) 0 0
\(555\) 1.73232e7 2.38724
\(556\) 0 0
\(557\) −3.84693e6 −0.525384 −0.262692 0.964880i \(-0.584610\pi\)
−0.262692 + 0.964880i \(0.584610\pi\)
\(558\) 0 0
\(559\) −5.34050e6 −0.722856
\(560\) 0 0
\(561\) 7.53680e6 1.01107
\(562\) 0 0
\(563\) −3.69193e6 −0.490888 −0.245444 0.969411i \(-0.578934\pi\)
−0.245444 + 0.969411i \(0.578934\pi\)
\(564\) 0 0
\(565\) 1.75585e7 2.31402
\(566\) 0 0
\(567\) −2.88809e6 −0.377271
\(568\) 0 0
\(569\) −6.64173e6 −0.860005 −0.430002 0.902828i \(-0.641487\pi\)
−0.430002 + 0.902828i \(0.641487\pi\)
\(570\) 0 0
\(571\) −292599. −0.0375562 −0.0187781 0.999824i \(-0.505978\pi\)
−0.0187781 + 0.999824i \(0.505978\pi\)
\(572\) 0 0
\(573\) 1.09533e7 1.39367
\(574\) 0 0
\(575\) −4.89287e6 −0.617154
\(576\) 0 0
\(577\) 3.55569e6 0.444615 0.222307 0.974977i \(-0.428641\pi\)
0.222307 + 0.974977i \(0.428641\pi\)
\(578\) 0 0
\(579\) −8.04267e6 −0.997020
\(580\) 0 0
\(581\) −4.01389e6 −0.493316
\(582\) 0 0
\(583\) −2.43590e6 −0.296816
\(584\) 0 0
\(585\) 11596.5 0.00140099
\(586\) 0 0
\(587\) 2.64810e6 0.317204 0.158602 0.987343i \(-0.449301\pi\)
0.158602 + 0.987343i \(0.449301\pi\)
\(588\) 0 0
\(589\) 8.21758e6 0.976013
\(590\) 0 0
\(591\) −2.22055e6 −0.261512
\(592\) 0 0
\(593\) 1.05356e6 0.123034 0.0615168 0.998106i \(-0.480406\pi\)
0.0615168 + 0.998106i \(0.480406\pi\)
\(594\) 0 0
\(595\) 8.14914e6 0.943669
\(596\) 0 0
\(597\) 1.53380e7 1.76130
\(598\) 0 0
\(599\) −9.19012e6 −1.04654 −0.523268 0.852168i \(-0.675287\pi\)
−0.523268 + 0.852168i \(0.675287\pi\)
\(600\) 0 0
\(601\) 3.46924e6 0.391785 0.195893 0.980625i \(-0.437240\pi\)
0.195893 + 0.980625i \(0.437240\pi\)
\(602\) 0 0
\(603\) −10699.2 −0.00119828
\(604\) 0 0
\(605\) −7.91574e6 −0.879231
\(606\) 0 0
\(607\) 744150. 0.0819764 0.0409882 0.999160i \(-0.486949\pi\)
0.0409882 + 0.999160i \(0.486949\pi\)
\(608\) 0 0
\(609\) −4.69286e6 −0.512737
\(610\) 0 0
\(611\) 1.85557e6 0.201082
\(612\) 0 0
\(613\) 1.14578e7 1.23154 0.615772 0.787925i \(-0.288844\pi\)
0.615772 + 0.787925i \(0.288844\pi\)
\(614\) 0 0
\(615\) 1.99524e7 2.12719
\(616\) 0 0
\(617\) −3.90052e6 −0.412486 −0.206243 0.978501i \(-0.566124\pi\)
−0.206243 + 0.978501i \(0.566124\pi\)
\(618\) 0 0
\(619\) −2.65029e6 −0.278014 −0.139007 0.990291i \(-0.544391\pi\)
−0.139007 + 0.990291i \(0.544391\pi\)
\(620\) 0 0
\(621\) −2.97758e6 −0.309838
\(622\) 0 0
\(623\) −4.75147e6 −0.490464
\(624\) 0 0
\(625\) 9.58083e6 0.981077
\(626\) 0 0
\(627\) 5.14087e6 0.522237
\(628\) 0 0
\(629\) −1.97735e7 −1.99277
\(630\) 0 0
\(631\) 8.97599e6 0.897447 0.448723 0.893671i \(-0.351879\pi\)
0.448723 + 0.893671i \(0.351879\pi\)
\(632\) 0 0
\(633\) −3.78197e6 −0.375153
\(634\) 0 0
\(635\) −1.02633e7 −1.01007
\(636\) 0 0
\(637\) −646812. −0.0631582
\(638\) 0 0
\(639\) 5581.39 0.000540742 0
\(640\) 0 0
\(641\) −2.87152e6 −0.276036 −0.138018 0.990430i \(-0.544073\pi\)
−0.138018 + 0.990430i \(0.544073\pi\)
\(642\) 0 0
\(643\) −1.38761e7 −1.32354 −0.661772 0.749705i \(-0.730195\pi\)
−0.661772 + 0.749705i \(0.730195\pi\)
\(644\) 0 0
\(645\) −2.98626e7 −2.82637
\(646\) 0 0
\(647\) 7.24853e6 0.680752 0.340376 0.940289i \(-0.389446\pi\)
0.340376 + 0.940289i \(0.389446\pi\)
\(648\) 0 0
\(649\) −1.34690e7 −1.25523
\(650\) 0 0
\(651\) −5.34696e6 −0.494487
\(652\) 0 0
\(653\) −1.23719e7 −1.13541 −0.567706 0.823231i \(-0.692169\pi\)
−0.567706 + 0.823231i \(0.692169\pi\)
\(654\) 0 0
\(655\) −2.90491e7 −2.64563
\(656\) 0 0
\(657\) −1815.50 −0.000164090 0
\(658\) 0 0
\(659\) 572294. 0.0513341 0.0256670 0.999671i \(-0.491829\pi\)
0.0256670 + 0.999671i \(0.491829\pi\)
\(660\) 0 0
\(661\) 6.73679e6 0.599721 0.299861 0.953983i \(-0.403060\pi\)
0.299861 + 0.953983i \(0.403060\pi\)
\(662\) 0 0
\(663\) 7.21405e6 0.637376
\(664\) 0 0
\(665\) 5.55855e6 0.487425
\(666\) 0 0
\(667\) −4.82942e6 −0.420320
\(668\) 0 0
\(669\) −1.24136e7 −1.07234
\(670\) 0 0
\(671\) −1.48496e7 −1.27324
\(672\) 0 0
\(673\) −1.22608e7 −1.04348 −0.521738 0.853106i \(-0.674716\pi\)
−0.521738 + 0.853106i \(0.674716\pi\)
\(674\) 0 0
\(675\) 2.36217e7 1.99550
\(676\) 0 0
\(677\) −462085. −0.0387481 −0.0193741 0.999812i \(-0.506167\pi\)
−0.0193741 + 0.999812i \(0.506167\pi\)
\(678\) 0 0
\(679\) −1.29413e6 −0.107721
\(680\) 0 0
\(681\) −406819. −0.0336151
\(682\) 0 0
\(683\) 1.15378e7 0.946392 0.473196 0.880957i \(-0.343100\pi\)
0.473196 + 0.880957i \(0.343100\pi\)
\(684\) 0 0
\(685\) −8.88807e6 −0.723738
\(686\) 0 0
\(687\) 1.18612e7 0.958816
\(688\) 0 0
\(689\) −2.33159e6 −0.187113
\(690\) 0 0
\(691\) −3.09921e6 −0.246920 −0.123460 0.992350i \(-0.539399\pi\)
−0.123460 + 0.992350i \(0.539399\pi\)
\(692\) 0 0
\(693\) 6137.65 0.000485477 0
\(694\) 0 0
\(695\) −1.48114e7 −1.16315
\(696\) 0 0
\(697\) −2.27746e7 −1.77569
\(698\) 0 0
\(699\) −1.02455e7 −0.793122
\(700\) 0 0
\(701\) 5.83889e6 0.448782 0.224391 0.974499i \(-0.427961\pi\)
0.224391 + 0.974499i \(0.427961\pi\)
\(702\) 0 0
\(703\) −1.34876e7 −1.02931
\(704\) 0 0
\(705\) 1.03758e7 0.786232
\(706\) 0 0
\(707\) −3.58375e6 −0.269643
\(708\) 0 0
\(709\) 75435.7 0.00563587 0.00281794 0.999996i \(-0.499103\pi\)
0.00281794 + 0.999996i \(0.499103\pi\)
\(710\) 0 0
\(711\) −5304.63 −0.000393533 0
\(712\) 0 0
\(713\) −5.50255e6 −0.405359
\(714\) 0 0
\(715\) 7.33343e6 0.536466
\(716\) 0 0
\(717\) 1.50351e7 1.09222
\(718\) 0 0
\(719\) 1.30869e7 0.944091 0.472045 0.881574i \(-0.343516\pi\)
0.472045 + 0.881574i \(0.343516\pi\)
\(720\) 0 0
\(721\) −4.29482e6 −0.307686
\(722\) 0 0
\(723\) −546096. −0.0388529
\(724\) 0 0
\(725\) 3.83126e7 2.70705
\(726\) 0 0
\(727\) 3.58160e6 0.251328 0.125664 0.992073i \(-0.459894\pi\)
0.125664 + 0.992073i \(0.459894\pi\)
\(728\) 0 0
\(729\) 1.43751e7 1.00182
\(730\) 0 0
\(731\) 3.40866e7 2.35934
\(732\) 0 0
\(733\) −9.23826e6 −0.635083 −0.317541 0.948244i \(-0.602857\pi\)
−0.317541 + 0.948244i \(0.602857\pi\)
\(734\) 0 0
\(735\) −3.61680e6 −0.246949
\(736\) 0 0
\(737\) −6.76599e6 −0.458842
\(738\) 0 0
\(739\) 1.90444e7 1.28279 0.641397 0.767210i \(-0.278355\pi\)
0.641397 + 0.767210i \(0.278355\pi\)
\(740\) 0 0
\(741\) 4.92073e6 0.329218
\(742\) 0 0
\(743\) −9.30669e6 −0.618477 −0.309238 0.950985i \(-0.600074\pi\)
−0.309238 + 0.950985i \(0.600074\pi\)
\(744\) 0 0
\(745\) 4.82260e7 3.18340
\(746\) 0 0
\(747\) 36457.1 0.00239046
\(748\) 0 0
\(749\) 5.65647e6 0.368418
\(750\) 0 0
\(751\) −2.56243e7 −1.65788 −0.828939 0.559339i \(-0.811055\pi\)
−0.828939 + 0.559339i \(0.811055\pi\)
\(752\) 0 0
\(753\) 2.04971e7 1.31736
\(754\) 0 0
\(755\) −2.02739e7 −1.29441
\(756\) 0 0
\(757\) 5.60956e6 0.355786 0.177893 0.984050i \(-0.443072\pi\)
0.177893 + 0.984050i \(0.443072\pi\)
\(758\) 0 0
\(759\) −3.44236e6 −0.216896
\(760\) 0 0
\(761\) −2.83985e7 −1.77760 −0.888799 0.458298i \(-0.848459\pi\)
−0.888799 + 0.458298i \(0.848459\pi\)
\(762\) 0 0
\(763\) −5.74783e6 −0.357432
\(764\) 0 0
\(765\) −74016.5 −0.00457272
\(766\) 0 0
\(767\) −1.28922e7 −0.791297
\(768\) 0 0
\(769\) −2.41205e6 −0.147086 −0.0735429 0.997292i \(-0.523431\pi\)
−0.0735429 + 0.997292i \(0.523431\pi\)
\(770\) 0 0
\(771\) 8.25123e6 0.499899
\(772\) 0 0
\(773\) 5.93891e6 0.357485 0.178743 0.983896i \(-0.442797\pi\)
0.178743 + 0.983896i \(0.442797\pi\)
\(774\) 0 0
\(775\) 4.36527e7 2.61070
\(776\) 0 0
\(777\) 8.77599e6 0.521487
\(778\) 0 0
\(779\) −1.55346e7 −0.917183
\(780\) 0 0
\(781\) 3.52958e6 0.207060
\(782\) 0 0
\(783\) 2.33154e7 1.35906
\(784\) 0 0
\(785\) −713979. −0.0413534
\(786\) 0 0
\(787\) −2.62637e7 −1.51154 −0.755769 0.654839i \(-0.772737\pi\)
−0.755769 + 0.654839i \(0.772737\pi\)
\(788\) 0 0
\(789\) −2.01619e7 −1.15302
\(790\) 0 0
\(791\) 8.89522e6 0.505494
\(792\) 0 0
\(793\) −1.42137e7 −0.802648
\(794\) 0 0
\(795\) −1.30376e7 −0.731611
\(796\) 0 0
\(797\) −9.33689e6 −0.520663 −0.260331 0.965519i \(-0.583832\pi\)
−0.260331 + 0.965519i \(0.583832\pi\)
\(798\) 0 0
\(799\) −1.18435e7 −0.656315
\(800\) 0 0
\(801\) 43156.3 0.00237664
\(802\) 0 0
\(803\) −1.14809e6 −0.0628332
\(804\) 0 0
\(805\) −3.72205e6 −0.202438
\(806\) 0 0
\(807\) 6.92017e6 0.374053
\(808\) 0 0
\(809\) −3.43772e7 −1.84671 −0.923357 0.383942i \(-0.874566\pi\)
−0.923357 + 0.383942i \(0.874566\pi\)
\(810\) 0 0
\(811\) 2.02626e7 1.08179 0.540896 0.841090i \(-0.318085\pi\)
0.540896 + 0.841090i \(0.318085\pi\)
\(812\) 0 0
\(813\) 9.73008e6 0.516285
\(814\) 0 0
\(815\) −3.75433e7 −1.97988
\(816\) 0 0
\(817\) 2.32506e7 1.21865
\(818\) 0 0
\(819\) 5874.82 0.000306045 0
\(820\) 0 0
\(821\) 1.73641e7 0.899073 0.449537 0.893262i \(-0.351589\pi\)
0.449537 + 0.893262i \(0.351589\pi\)
\(822\) 0 0
\(823\) 2.65094e7 1.36427 0.682136 0.731226i \(-0.261051\pi\)
0.682136 + 0.731226i \(0.261051\pi\)
\(824\) 0 0
\(825\) 2.73089e7 1.39691
\(826\) 0 0
\(827\) 2.30816e6 0.117355 0.0586775 0.998277i \(-0.481312\pi\)
0.0586775 + 0.998277i \(0.481312\pi\)
\(828\) 0 0
\(829\) −6.14314e6 −0.310459 −0.155230 0.987878i \(-0.549612\pi\)
−0.155230 + 0.987878i \(0.549612\pi\)
\(830\) 0 0
\(831\) 3.11798e7 1.56628
\(832\) 0 0
\(833\) 4.12839e6 0.206143
\(834\) 0 0
\(835\) 1.62726e7 0.807684
\(836\) 0 0
\(837\) 2.65651e7 1.31068
\(838\) 0 0
\(839\) −1.04628e7 −0.513150 −0.256575 0.966524i \(-0.582594\pi\)
−0.256575 + 0.966524i \(0.582594\pi\)
\(840\) 0 0
\(841\) 1.73047e7 0.843671
\(842\) 0 0
\(843\) −3.88290e6 −0.188186
\(844\) 0 0
\(845\) −2.88930e7 −1.39204
\(846\) 0 0
\(847\) −4.01014e6 −0.192066
\(848\) 0 0
\(849\) 1.00475e7 0.478396
\(850\) 0 0
\(851\) 9.03136e6 0.427493
\(852\) 0 0
\(853\) −3.45134e7 −1.62411 −0.812054 0.583583i \(-0.801650\pi\)
−0.812054 + 0.583583i \(0.801650\pi\)
\(854\) 0 0
\(855\) −50486.8 −0.00236191
\(856\) 0 0
\(857\) −1.35665e7 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(858\) 0 0
\(859\) −3.12783e7 −1.44630 −0.723152 0.690688i \(-0.757308\pi\)
−0.723152 + 0.690688i \(0.757308\pi\)
\(860\) 0 0
\(861\) 1.01079e7 0.464681
\(862\) 0 0
\(863\) 1.98071e7 0.905305 0.452653 0.891687i \(-0.350478\pi\)
0.452653 + 0.891687i \(0.350478\pi\)
\(864\) 0 0
\(865\) 3.10976e7 1.41314
\(866\) 0 0
\(867\) −2.39318e7 −1.08125
\(868\) 0 0
\(869\) −3.35457e6 −0.150691
\(870\) 0 0
\(871\) −6.47626e6 −0.289254
\(872\) 0 0
\(873\) 11754.2 0.000521984 0
\(874\) 0 0
\(875\) 1.47170e7 0.649830
\(876\) 0 0
\(877\) −1.74647e6 −0.0766765 −0.0383383 0.999265i \(-0.512206\pi\)
−0.0383383 + 0.999265i \(0.512206\pi\)
\(878\) 0 0
\(879\) −3.12776e7 −1.36540
\(880\) 0 0
\(881\) 1.17415e7 0.509663 0.254832 0.966985i \(-0.417980\pi\)
0.254832 + 0.966985i \(0.417980\pi\)
\(882\) 0 0
\(883\) 4.26514e7 1.84091 0.920453 0.390854i \(-0.127820\pi\)
0.920453 + 0.390854i \(0.127820\pi\)
\(884\) 0 0
\(885\) −7.20899e7 −3.09397
\(886\) 0 0
\(887\) 4.28737e7 1.82971 0.914854 0.403785i \(-0.132306\pi\)
0.914854 + 0.403785i \(0.132306\pi\)
\(888\) 0 0
\(889\) −5.19942e6 −0.220648
\(890\) 0 0
\(891\) 1.65886e7 0.700026
\(892\) 0 0
\(893\) −8.07846e6 −0.339000
\(894\) 0 0
\(895\) 5.91851e7 2.46976
\(896\) 0 0
\(897\) −3.29495e6 −0.136731
\(898\) 0 0
\(899\) 4.30866e7 1.77805
\(900\) 0 0
\(901\) 1.48817e7 0.610719
\(902\) 0 0
\(903\) −1.51285e7 −0.617415
\(904\) 0 0
\(905\) 2.52904e7 1.02644
\(906\) 0 0
\(907\) 1.99065e7 0.803482 0.401741 0.915753i \(-0.368405\pi\)
0.401741 + 0.915753i \(0.368405\pi\)
\(908\) 0 0
\(909\) 32550.2 0.00130660
\(910\) 0 0
\(911\) 1.12063e7 0.447371 0.223685 0.974661i \(-0.428191\pi\)
0.223685 + 0.974661i \(0.428191\pi\)
\(912\) 0 0
\(913\) 2.30549e7 0.915348
\(914\) 0 0
\(915\) −7.94794e7 −3.13835
\(916\) 0 0
\(917\) −1.47164e7 −0.577933
\(918\) 0 0
\(919\) −3.38620e7 −1.32259 −0.661293 0.750128i \(-0.729992\pi\)
−0.661293 + 0.750128i \(0.729992\pi\)
\(920\) 0 0
\(921\) −2.66494e7 −1.03523
\(922\) 0 0
\(923\) 3.37844e6 0.130530
\(924\) 0 0
\(925\) −7.16474e7 −2.75325
\(926\) 0 0
\(927\) 39008.7 0.00149095
\(928\) 0 0
\(929\) −2.29019e7 −0.870627 −0.435313 0.900279i \(-0.643362\pi\)
−0.435313 + 0.900279i \(0.643362\pi\)
\(930\) 0 0
\(931\) 2.81598e6 0.106477
\(932\) 0 0
\(933\) −9.37644e6 −0.352642
\(934\) 0 0
\(935\) −4.68069e7 −1.75098
\(936\) 0 0
\(937\) 2.97781e7 1.10802 0.554011 0.832510i \(-0.313097\pi\)
0.554011 + 0.832510i \(0.313097\pi\)
\(938\) 0 0
\(939\) 2.09019e7 0.773608
\(940\) 0 0
\(941\) −1.30322e7 −0.479782 −0.239891 0.970800i \(-0.577112\pi\)
−0.239891 + 0.970800i \(0.577112\pi\)
\(942\) 0 0
\(943\) 1.04021e7 0.380926
\(944\) 0 0
\(945\) 1.79692e7 0.654561
\(946\) 0 0
\(947\) −4.66683e7 −1.69101 −0.845506 0.533966i \(-0.820701\pi\)
−0.845506 + 0.533966i \(0.820701\pi\)
\(948\) 0 0
\(949\) −1.09893e6 −0.0396100
\(950\) 0 0
\(951\) −1.58550e7 −0.568480
\(952\) 0 0
\(953\) 2.00948e7 0.716724 0.358362 0.933583i \(-0.383335\pi\)
0.358362 + 0.933583i \(0.383335\pi\)
\(954\) 0 0
\(955\) −6.80251e7 −2.41357
\(956\) 0 0
\(957\) 2.69548e7 0.951383
\(958\) 0 0
\(959\) −4.50273e6 −0.158099
\(960\) 0 0
\(961\) 2.04630e7 0.714760
\(962\) 0 0
\(963\) −51376.2 −0.00178524
\(964\) 0 0
\(965\) 4.99485e7 1.72665
\(966\) 0 0
\(967\) −7.33633e6 −0.252297 −0.126149 0.992011i \(-0.540262\pi\)
−0.126149 + 0.992011i \(0.540262\pi\)
\(968\) 0 0
\(969\) −3.14074e7 −1.07454
\(970\) 0 0
\(971\) −4.01630e7 −1.36703 −0.683514 0.729937i \(-0.739549\pi\)
−0.683514 + 0.729937i \(0.739549\pi\)
\(972\) 0 0
\(973\) −7.50352e6 −0.254087
\(974\) 0 0
\(975\) 2.61394e7 0.880613
\(976\) 0 0
\(977\) 2.65602e7 0.890216 0.445108 0.895477i \(-0.353165\pi\)
0.445108 + 0.895477i \(0.353165\pi\)
\(978\) 0 0
\(979\) 2.72914e7 0.910057
\(980\) 0 0
\(981\) 52206.0 0.00173200
\(982\) 0 0
\(983\) −2.77362e7 −0.915510 −0.457755 0.889078i \(-0.651346\pi\)
−0.457755 + 0.889078i \(0.651346\pi\)
\(984\) 0 0
\(985\) 1.37906e7 0.452890
\(986\) 0 0
\(987\) 5.25644e6 0.171751
\(988\) 0 0
\(989\) −1.55687e7 −0.506131
\(990\) 0 0
\(991\) 2.35437e7 0.761536 0.380768 0.924671i \(-0.375660\pi\)
0.380768 + 0.924671i \(0.375660\pi\)
\(992\) 0 0
\(993\) −8.29123e6 −0.266837
\(994\) 0 0
\(995\) −9.52559e7 −3.05024
\(996\) 0 0
\(997\) −4.05582e7 −1.29223 −0.646117 0.763239i \(-0.723608\pi\)
−0.646117 + 0.763239i \(0.723608\pi\)
\(998\) 0 0
\(999\) −4.36015e7 −1.38225
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.6.a.i.1.1 2
3.2 odd 2 1008.6.a.bd.1.1 2
4.3 odd 2 56.6.a.e.1.2 2
7.6 odd 2 784.6.a.u.1.2 2
8.3 odd 2 448.6.a.v.1.1 2
8.5 even 2 448.6.a.t.1.2 2
12.11 even 2 504.6.a.i.1.1 2
28.3 even 6 392.6.i.i.177.2 4
28.11 odd 6 392.6.i.j.177.1 4
28.19 even 6 392.6.i.i.361.2 4
28.23 odd 6 392.6.i.j.361.1 4
28.27 even 2 392.6.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.e.1.2 2 4.3 odd 2
112.6.a.i.1.1 2 1.1 even 1 trivial
392.6.a.d.1.1 2 28.27 even 2
392.6.i.i.177.2 4 28.3 even 6
392.6.i.i.361.2 4 28.19 even 6
392.6.i.j.177.1 4 28.11 odd 6
392.6.i.j.361.1 4 28.23 odd 6
448.6.a.t.1.2 2 8.5 even 2
448.6.a.v.1.1 2 8.3 odd 2
504.6.a.i.1.1 2 12.11 even 2
784.6.a.u.1.2 2 7.6 odd 2
1008.6.a.bd.1.1 2 3.2 odd 2