Properties

Label 112.5.s.b.17.2
Level $112$
Weight $5$
Character 112.17
Analytic conductor $11.577$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,5,Mod(17,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.17"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 112.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5774358654\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Root \(0.707107 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 112.17
Dual form 112.5.s.b.33.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(12.9853 + 7.49706i) q^{3} +(21.9853 - 12.6932i) q^{5} +(7.00000 + 48.4974i) q^{7} +(71.9117 + 124.555i) q^{9} +(21.9853 - 38.0796i) q^{11} -162.507i q^{13} +380.647 q^{15} +(93.7355 + 54.1182i) q^{17} +(-389.338 + 224.784i) q^{19} +(-272.691 + 682.232i) q^{21} +(-217.911 - 377.433i) q^{23} +(9.73506 - 16.8616i) q^{25} +941.981i q^{27} +742.118 q^{29} +(900.175 + 519.716i) q^{31} +(570.970 - 329.650i) q^{33} +(769.485 + 977.377i) q^{35} +(-493.338 - 854.486i) q^{37} +(1218.32 - 2110.20i) q^{39} +1143.70i q^{41} -2418.82 q^{43} +(3162.00 + 1825.58i) q^{45} +(1165.17 - 672.714i) q^{47} +(-2303.00 + 678.964i) q^{49} +(811.455 + 1405.48i) q^{51} +(1783.10 - 3088.42i) q^{53} -1116.26i q^{55} -6740.88 q^{57} +(-3710.93 - 2142.50i) q^{59} +(-1209.57 + 698.345i) q^{61} +(-5537.20 + 4359.41i) q^{63} +(-2062.73 - 3572.76i) q^{65} +(3632.89 - 6292.36i) q^{67} -6534.77i q^{69} -5987.76 q^{71} +(-500.123 - 288.746i) q^{73} +(252.825 - 145.969i) q^{75} +(2000.66 + 799.672i) q^{77} +(-1573.12 - 2724.72i) q^{79} +(-1237.24 + 2142.95i) q^{81} -4729.96i q^{83} +2747.74 q^{85} +(9636.61 + 5563.70i) q^{87} +(-725.651 + 418.955i) q^{89} +(7881.16 - 1137.55i) q^{91} +(7792.69 + 13497.3i) q^{93} +(-5706.47 + 9883.89i) q^{95} -5622.23i q^{97} +6323.99 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 18 q^{3} + 54 q^{5} + 28 q^{7} + 84 q^{9} + 54 q^{11} + 708 q^{15} + 918 q^{17} - 30 q^{19} - 378 q^{21} + 486 q^{23} - 572 q^{25} + 3240 q^{29} + 546 q^{31} + 1062 q^{33} + 1890 q^{35} - 446 q^{37}+ \cdots + 11448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.9853 + 7.49706i 1.44281 + 0.833006i 0.998036 0.0626373i \(-0.0199511\pi\)
0.444773 + 0.895643i \(0.353284\pi\)
\(4\) 0 0
\(5\) 21.9853 12.6932i 0.879411 0.507728i 0.00894701 0.999960i \(-0.497152\pi\)
0.870464 + 0.492232i \(0.163819\pi\)
\(6\) 0 0
\(7\) 7.00000 + 48.4974i 0.142857 + 0.989743i
\(8\) 0 0
\(9\) 71.9117 + 124.555i 0.887799 + 1.53771i
\(10\) 0 0
\(11\) 21.9853 38.0796i 0.181697 0.314708i −0.760762 0.649031i \(-0.775174\pi\)
0.942458 + 0.334324i \(0.108508\pi\)
\(12\) 0 0
\(13\) 162.507i 0.961579i −0.876836 0.480790i \(-0.840350\pi\)
0.876836 0.480790i \(-0.159650\pi\)
\(14\) 0 0
\(15\) 380.647 1.69176
\(16\) 0 0
\(17\) 93.7355 + 54.1182i 0.324344 + 0.187260i 0.653327 0.757076i \(-0.273373\pi\)
−0.328983 + 0.944336i \(0.606706\pi\)
\(18\) 0 0
\(19\) −389.338 + 224.784i −1.07850 + 0.622671i −0.930491 0.366315i \(-0.880619\pi\)
−0.148007 + 0.988986i \(0.547286\pi\)
\(20\) 0 0
\(21\) −272.691 + 682.232i −0.618347 + 1.54701i
\(22\) 0 0
\(23\) −217.911 377.433i −0.411931 0.713485i 0.583170 0.812350i \(-0.301812\pi\)
−0.995101 + 0.0988653i \(0.968479\pi\)
\(24\) 0 0
\(25\) 9.73506 16.8616i 0.0155761 0.0269786i
\(26\) 0 0
\(27\) 941.981i 1.29215i
\(28\) 0 0
\(29\) 742.118 0.882423 0.441212 0.897403i \(-0.354549\pi\)
0.441212 + 0.897403i \(0.354549\pi\)
\(30\) 0 0
\(31\) 900.175 + 519.716i 0.936707 + 0.540808i 0.888926 0.458050i \(-0.151452\pi\)
0.0477804 + 0.998858i \(0.484785\pi\)
\(32\) 0 0
\(33\) 570.970 329.650i 0.524307 0.302709i
\(34\) 0 0
\(35\) 769.485 + 977.377i 0.628151 + 0.797859i
\(36\) 0 0
\(37\) −493.338 854.486i −0.360364 0.624168i 0.627657 0.778490i \(-0.284014\pi\)
−0.988021 + 0.154322i \(0.950681\pi\)
\(38\) 0 0
\(39\) 1218.32 2110.20i 0.801001 1.38737i
\(40\) 0 0
\(41\) 1143.70i 0.680366i 0.940359 + 0.340183i \(0.110489\pi\)
−0.940359 + 0.340183i \(0.889511\pi\)
\(42\) 0 0
\(43\) −2418.82 −1.30818 −0.654089 0.756418i \(-0.726948\pi\)
−0.654089 + 0.756418i \(0.726948\pi\)
\(44\) 0 0
\(45\) 3162.00 + 1825.58i 1.56148 + 0.901521i
\(46\) 0 0
\(47\) 1165.17 672.714i 0.527467 0.304533i −0.212517 0.977157i \(-0.568166\pi\)
0.739984 + 0.672624i \(0.234833\pi\)
\(48\) 0 0
\(49\) −2303.00 + 678.964i −0.959184 + 0.282784i
\(50\) 0 0
\(51\) 811.455 + 1405.48i 0.311978 + 0.540362i
\(52\) 0 0
\(53\) 1783.10 3088.42i 0.634782 1.09947i −0.351780 0.936083i \(-0.614423\pi\)
0.986561 0.163391i \(-0.0522432\pi\)
\(54\) 0 0
\(55\) 1116.26i 0.369010i
\(56\) 0 0
\(57\) −6740.88 −2.07475
\(58\) 0 0
\(59\) −3710.93 2142.50i −1.06605 0.615485i −0.138952 0.990299i \(-0.544373\pi\)
−0.927100 + 0.374814i \(0.877707\pi\)
\(60\) 0 0
\(61\) −1209.57 + 698.345i −0.325066 + 0.187677i −0.653648 0.756799i \(-0.726762\pi\)
0.328583 + 0.944475i \(0.393429\pi\)
\(62\) 0 0
\(63\) −5537.20 + 4359.41i −1.39511 + 1.09837i
\(64\) 0 0
\(65\) −2062.73 3572.76i −0.488221 0.845623i
\(66\) 0 0
\(67\) 3632.89 6292.36i 0.809288 1.40173i −0.104070 0.994570i \(-0.533187\pi\)
0.913358 0.407158i \(-0.133480\pi\)
\(68\) 0 0
\(69\) 6534.77i 1.37256i
\(70\) 0 0
\(71\) −5987.76 −1.18781 −0.593906 0.804534i \(-0.702415\pi\)
−0.593906 + 0.804534i \(0.702415\pi\)
\(72\) 0 0
\(73\) −500.123 288.746i −0.0938494 0.0541840i 0.452341 0.891845i \(-0.350589\pi\)
−0.546190 + 0.837661i \(0.683922\pi\)
\(74\) 0 0
\(75\) 252.825 145.969i 0.0449467 0.0259500i
\(76\) 0 0
\(77\) 2000.66 + 799.672i 0.337436 + 0.134875i
\(78\) 0 0
\(79\) −1573.12 2724.72i −0.252061 0.436583i 0.712032 0.702147i \(-0.247775\pi\)
−0.964093 + 0.265564i \(0.914442\pi\)
\(80\) 0 0
\(81\) −1237.24 + 2142.95i −0.188574 + 0.326620i
\(82\) 0 0
\(83\) 4729.96i 0.686596i −0.939227 0.343298i \(-0.888456\pi\)
0.939227 0.343298i \(-0.111544\pi\)
\(84\) 0 0
\(85\) 2747.74 0.380309
\(86\) 0 0
\(87\) 9636.61 + 5563.70i 1.27317 + 0.735064i
\(88\) 0 0
\(89\) −725.651 + 418.955i −0.0916110 + 0.0528916i −0.545106 0.838367i \(-0.683510\pi\)
0.453495 + 0.891259i \(0.350177\pi\)
\(90\) 0 0
\(91\) 7881.16 1137.55i 0.951716 0.137368i
\(92\) 0 0
\(93\) 7792.69 + 13497.3i 0.900993 + 1.56057i
\(94\) 0 0
\(95\) −5706.47 + 9883.89i −0.632295 + 1.09517i
\(96\) 0 0
\(97\) 5622.23i 0.597537i −0.954326 0.298769i \(-0.903424\pi\)
0.954326 0.298769i \(-0.0965759\pi\)
\(98\) 0 0
\(99\) 6323.99 0.645240
\(100\) 0 0
\(101\) −5703.21 3292.75i −0.559083 0.322787i 0.193694 0.981062i \(-0.437953\pi\)
−0.752778 + 0.658275i \(0.771286\pi\)
\(102\) 0 0
\(103\) −1320.25 + 762.249i −0.124447 + 0.0718492i −0.560931 0.827863i \(-0.689557\pi\)
0.436484 + 0.899712i \(0.356223\pi\)
\(104\) 0 0
\(105\) 2664.53 + 18460.4i 0.241680 + 1.67441i
\(106\) 0 0
\(107\) 5303.31 + 9185.61i 0.463212 + 0.802306i 0.999119 0.0419706i \(-0.0133636\pi\)
−0.535907 + 0.844277i \(0.680030\pi\)
\(108\) 0 0
\(109\) 6976.13 12083.0i 0.587167 1.01700i −0.407434 0.913235i \(-0.633576\pi\)
0.994601 0.103769i \(-0.0330902\pi\)
\(110\) 0 0
\(111\) 14794.3i 1.20074i
\(112\) 0 0
\(113\) −8811.30 −0.690054 −0.345027 0.938593i \(-0.612130\pi\)
−0.345027 + 0.938593i \(0.612130\pi\)
\(114\) 0 0
\(115\) −9581.68 5531.99i −0.724513 0.418298i
\(116\) 0 0
\(117\) 20241.0 11686.1i 1.47863 0.853689i
\(118\) 0 0
\(119\) −1968.45 + 4924.76i −0.139005 + 0.347769i
\(120\) 0 0
\(121\) 6353.79 + 11005.1i 0.433973 + 0.751663i
\(122\) 0 0
\(123\) −8574.35 + 14851.2i −0.566749 + 0.981638i
\(124\) 0 0
\(125\) 15372.2i 0.983823i
\(126\) 0 0
\(127\) −3992.70 −0.247548 −0.123774 0.992310i \(-0.539500\pi\)
−0.123774 + 0.992310i \(0.539500\pi\)
\(128\) 0 0
\(129\) −31409.1 18134.0i −1.88745 1.08972i
\(130\) 0 0
\(131\) 17515.4 10112.5i 1.02065 0.589272i 0.106357 0.994328i \(-0.466081\pi\)
0.914292 + 0.405056i \(0.132748\pi\)
\(132\) 0 0
\(133\) −13626.8 17308.4i −0.770355 0.978483i
\(134\) 0 0
\(135\) 11956.8 + 20709.7i 0.656063 + 1.13634i
\(136\) 0 0
\(137\) −12528.9 + 21700.6i −0.667530 + 1.15620i 0.311062 + 0.950389i \(0.399315\pi\)
−0.978593 + 0.205807i \(0.934018\pi\)
\(138\) 0 0
\(139\) 20070.1i 1.03877i 0.854541 + 0.519385i \(0.173839\pi\)
−0.854541 + 0.519385i \(0.826161\pi\)
\(140\) 0 0
\(141\) 20173.5 1.01471
\(142\) 0 0
\(143\) −6188.20 3572.76i −0.302616 0.174716i
\(144\) 0 0
\(145\) 16315.7 9419.86i 0.776013 0.448031i
\(146\) 0 0
\(147\) −34995.3 8449.18i −1.61948 0.391003i
\(148\) 0 0
\(149\) 21353.9 + 36986.1i 0.961846 + 1.66597i 0.717860 + 0.696188i \(0.245122\pi\)
0.243986 + 0.969779i \(0.421545\pi\)
\(150\) 0 0
\(151\) 14803.7 25640.8i 0.649258 1.12455i −0.334043 0.942558i \(-0.608413\pi\)
0.983301 0.181989i \(-0.0582536\pi\)
\(152\) 0 0
\(153\) 15566.9i 0.664998i
\(154\) 0 0
\(155\) 26387.5 1.09833
\(156\) 0 0
\(157\) 10597.6 + 6118.53i 0.429940 + 0.248226i 0.699321 0.714808i \(-0.253486\pi\)
−0.269381 + 0.963034i \(0.586819\pi\)
\(158\) 0 0
\(159\) 46308.1 26736.0i 1.83174 1.05755i
\(160\) 0 0
\(161\) 16779.2 13210.2i 0.647319 0.509632i
\(162\) 0 0
\(163\) 10765.6 + 18646.5i 0.405193 + 0.701814i 0.994344 0.106209i \(-0.0338711\pi\)
−0.589151 + 0.808023i \(0.700538\pi\)
\(164\) 0 0
\(165\) 8368.63 14494.9i 0.307388 0.532411i
\(166\) 0 0
\(167\) 16578.9i 0.594461i 0.954806 + 0.297230i \(0.0960629\pi\)
−0.954806 + 0.297230i \(0.903937\pi\)
\(168\) 0 0
\(169\) 2152.52 0.0753658
\(170\) 0 0
\(171\) −55995.9 32329.2i −1.91498 1.10561i
\(172\) 0 0
\(173\) −34972.8 + 20191.5i −1.16852 + 0.674648i −0.953332 0.301924i \(-0.902371\pi\)
−0.215192 + 0.976572i \(0.569038\pi\)
\(174\) 0 0
\(175\) 885.891 + 354.094i 0.0289270 + 0.0115623i
\(176\) 0 0
\(177\) −32124.9 55642.0i −1.02541 1.77606i
\(178\) 0 0
\(179\) −26747.2 + 46327.5i −0.834780 + 1.44588i 0.0594290 + 0.998233i \(0.481072\pi\)
−0.894209 + 0.447649i \(0.852261\pi\)
\(180\) 0 0
\(181\) 54202.1i 1.65447i −0.561857 0.827235i \(-0.689913\pi\)
0.561857 0.827235i \(-0.310087\pi\)
\(182\) 0 0
\(183\) −20942.1 −0.625343
\(184\) 0 0
\(185\) −21692.3 12524.1i −0.633815 0.365934i
\(186\) 0 0
\(187\) 4121.60 2379.61i 0.117864 0.0680491i
\(188\) 0 0
\(189\) −45683.6 + 6593.86i −1.27890 + 0.184594i
\(190\) 0 0
\(191\) −601.936 1042.58i −0.0165000 0.0285788i 0.857658 0.514221i \(-0.171919\pi\)
−0.874158 + 0.485643i \(0.838586\pi\)
\(192\) 0 0
\(193\) −25656.5 + 44438.3i −0.688783 + 1.19301i 0.283449 + 0.958987i \(0.408521\pi\)
−0.972232 + 0.234019i \(0.924812\pi\)
\(194\) 0 0
\(195\) 61857.7i 1.62676i
\(196\) 0 0
\(197\) −1456.28 −0.0375242 −0.0187621 0.999824i \(-0.505973\pi\)
−0.0187621 + 0.999824i \(0.505973\pi\)
\(198\) 0 0
\(199\) −59546.3 34379.1i −1.50366 0.868137i −0.999991 0.00423890i \(-0.998651\pi\)
−0.503667 0.863898i \(-0.668016\pi\)
\(200\) 0 0
\(201\) 94348.3 54472.0i 2.33530 1.34828i
\(202\) 0 0
\(203\) 5194.82 + 35990.8i 0.126060 + 0.873372i
\(204\) 0 0
\(205\) 14517.2 + 25144.5i 0.345441 + 0.598322i
\(206\) 0 0
\(207\) 31340.7 54283.7i 0.731423 1.26686i
\(208\) 0 0
\(209\) 19767.8i 0.452549i
\(210\) 0 0
\(211\) 622.821 0.0139894 0.00699469 0.999976i \(-0.497774\pi\)
0.00699469 + 0.999976i \(0.497774\pi\)
\(212\) 0 0
\(213\) −77752.8 44890.6i −1.71379 0.989455i
\(214\) 0 0
\(215\) −53178.5 + 30702.6i −1.15043 + 0.664199i
\(216\) 0 0
\(217\) −18903.7 + 47294.2i −0.401446 + 1.00436i
\(218\) 0 0
\(219\) −4329.50 7498.91i −0.0902712 0.156354i
\(220\) 0 0
\(221\) 8794.58 15232.7i 0.180066 0.311883i
\(222\) 0 0
\(223\) 11509.7i 0.231449i 0.993281 + 0.115725i \(0.0369190\pi\)
−0.993281 + 0.115725i \(0.963081\pi\)
\(224\) 0 0
\(225\) 2800.26 0.0553138
\(226\) 0 0
\(227\) 48815.4 + 28183.6i 0.947339 + 0.546946i 0.892253 0.451535i \(-0.149124\pi\)
0.0550855 + 0.998482i \(0.482457\pi\)
\(228\) 0 0
\(229\) −36484.4 + 21064.3i −0.695722 + 0.401675i −0.805752 0.592253i \(-0.798239\pi\)
0.110030 + 0.993928i \(0.464905\pi\)
\(230\) 0 0
\(231\) 19984.0 + 25383.0i 0.374505 + 0.475685i
\(232\) 0 0
\(233\) 27550.9 + 47719.6i 0.507486 + 0.878992i 0.999962 + 0.00866633i \(0.00275861\pi\)
−0.492476 + 0.870326i \(0.663908\pi\)
\(234\) 0 0
\(235\) 17077.8 29579.6i 0.309240 0.535620i
\(236\) 0 0
\(237\) 47174.9i 0.839875i
\(238\) 0 0
\(239\) −23082.5 −0.404098 −0.202049 0.979375i \(-0.564760\pi\)
−0.202049 + 0.979375i \(0.564760\pi\)
\(240\) 0 0
\(241\) 70643.9 + 40786.3i 1.21630 + 0.702231i 0.964124 0.265451i \(-0.0855209\pi\)
0.252175 + 0.967682i \(0.418854\pi\)
\(242\) 0 0
\(243\) 33946.4 19599.0i 0.574886 0.331910i
\(244\) 0 0
\(245\) −42013.9 + 44159.7i −0.699940 + 0.735688i
\(246\) 0 0
\(247\) 36529.0 + 63270.0i 0.598747 + 1.03706i
\(248\) 0 0
\(249\) 35460.8 61419.8i 0.571939 0.990627i
\(250\) 0 0
\(251\) 27207.6i 0.431859i −0.976409 0.215930i \(-0.930722\pi\)
0.976409 0.215930i \(-0.0692782\pi\)
\(252\) 0 0
\(253\) −19163.4 −0.299385
\(254\) 0 0
\(255\) 35680.1 + 20599.9i 0.548714 + 0.316800i
\(256\) 0 0
\(257\) 93469.3 53964.5i 1.41515 0.817038i 0.419283 0.907856i \(-0.362281\pi\)
0.995868 + 0.0908179i \(0.0289481\pi\)
\(258\) 0 0
\(259\) 37987.0 29907.0i 0.566286 0.445834i
\(260\) 0 0
\(261\) 53366.9 + 92434.3i 0.783414 + 1.35691i
\(262\) 0 0
\(263\) −20072.0 + 34765.8i −0.290188 + 0.502621i −0.973854 0.227174i \(-0.927051\pi\)
0.683666 + 0.729795i \(0.260385\pi\)
\(264\) 0 0
\(265\) 90533.1i 1.28919i
\(266\) 0 0
\(267\) −12563.7 −0.176236
\(268\) 0 0
\(269\) 91239.0 + 52676.9i 1.26089 + 0.727973i 0.973246 0.229765i \(-0.0737958\pi\)
0.287641 + 0.957738i \(0.407129\pi\)
\(270\) 0 0
\(271\) 13189.3 7614.84i 0.179590 0.103687i −0.407510 0.913201i \(-0.633603\pi\)
0.587100 + 0.809514i \(0.300269\pi\)
\(272\) 0 0
\(273\) 110867. + 44314.1i 1.48757 + 0.594589i
\(274\) 0 0
\(275\) −428.056 741.415i −0.00566025 0.00980384i
\(276\) 0 0
\(277\) 4935.81 8549.07i 0.0643278 0.111419i −0.832068 0.554674i \(-0.812843\pi\)
0.896396 + 0.443255i \(0.146176\pi\)
\(278\) 0 0
\(279\) 149495.i 1.92051i
\(280\) 0 0
\(281\) −155117. −1.96448 −0.982240 0.187631i \(-0.939919\pi\)
−0.982240 + 0.187631i \(0.939919\pi\)
\(282\) 0 0
\(283\) 94970.0 + 54831.0i 1.18581 + 0.684626i 0.957351 0.288929i \(-0.0932990\pi\)
0.228456 + 0.973554i \(0.426632\pi\)
\(284\) 0 0
\(285\) −148200. + 85563.4i −1.82456 + 1.05341i
\(286\) 0 0
\(287\) −55466.3 + 8005.87i −0.673388 + 0.0971952i
\(288\) 0 0
\(289\) −35902.9 62185.7i −0.429867 0.744552i
\(290\) 0 0
\(291\) 42150.2 73006.2i 0.497752 0.862132i
\(292\) 0 0
\(293\) 89912.4i 1.04733i 0.851924 + 0.523666i \(0.175436\pi\)
−0.851924 + 0.523666i \(0.824564\pi\)
\(294\) 0 0
\(295\) −108781. −1.25000
\(296\) 0 0
\(297\) 35870.3 + 20709.7i 0.406651 + 0.234780i
\(298\) 0 0
\(299\) −61335.5 + 35412.1i −0.686072 + 0.396104i
\(300\) 0 0
\(301\) −16931.7 117307.i −0.186883 1.29476i
\(302\) 0 0
\(303\) −49371.9 85514.6i −0.537767 0.931440i
\(304\) 0 0
\(305\) −17728.5 + 30706.6i −0.190578 + 0.330090i
\(306\) 0 0
\(307\) 141681.i 1.50327i −0.659582 0.751633i \(-0.729267\pi\)
0.659582 0.751633i \(-0.270733\pi\)
\(308\) 0 0
\(309\) −22858.5 −0.239403
\(310\) 0 0
\(311\) 74171.3 + 42822.8i 0.766858 + 0.442746i 0.831753 0.555147i \(-0.187338\pi\)
−0.0648948 + 0.997892i \(0.520671\pi\)
\(312\) 0 0
\(313\) 15442.6 8915.78i 0.157627 0.0910061i −0.419112 0.907935i \(-0.637658\pi\)
0.576739 + 0.816929i \(0.304325\pi\)
\(314\) 0 0
\(315\) −66401.9 + 166128.i −0.669206 + 1.67425i
\(316\) 0 0
\(317\) −40402.6 69979.4i −0.402060 0.696388i 0.591914 0.806001i \(-0.298372\pi\)
−0.993974 + 0.109613i \(0.965039\pi\)
\(318\) 0 0
\(319\) 16315.7 28259.6i 0.160333 0.277705i
\(320\) 0 0
\(321\) 159037.i 1.54343i
\(322\) 0 0
\(323\) −48659.7 −0.466406
\(324\) 0 0
\(325\) −2740.13 1582.01i −0.0259421 0.0149777i
\(326\) 0 0
\(327\) 181174. 104601.i 1.69434 0.978228i
\(328\) 0 0
\(329\) 40781.1 + 51799.0i 0.376762 + 0.478552i
\(330\) 0 0
\(331\) 36402.1 + 63050.3i 0.332254 + 0.575482i 0.982954 0.183854i \(-0.0588574\pi\)
−0.650699 + 0.759336i \(0.725524\pi\)
\(332\) 0 0
\(333\) 70953.5 122895.i 0.639860 1.10827i
\(334\) 0 0
\(335\) 184452.i 1.64359i
\(336\) 0 0
\(337\) 126538. 1.11419 0.557095 0.830449i \(-0.311916\pi\)
0.557095 + 0.830449i \(0.311916\pi\)
\(338\) 0 0
\(339\) −114417. 66058.8i −0.995616 0.574819i
\(340\) 0 0
\(341\) 39581.2 22852.2i 0.340393 0.196526i
\(342\) 0 0
\(343\) −49049.0 106937.i −0.416910 0.908948i
\(344\) 0 0
\(345\) −82947.2 143669.i −0.696889 1.20705i
\(346\) 0 0
\(347\) −33474.6 + 57979.8i −0.278008 + 0.481524i −0.970890 0.239528i \(-0.923007\pi\)
0.692882 + 0.721051i \(0.256341\pi\)
\(348\) 0 0
\(349\) 25527.5i 0.209583i −0.994494 0.104792i \(-0.966582\pi\)
0.994494 0.104792i \(-0.0334176\pi\)
\(350\) 0 0
\(351\) 153078. 1.24251
\(352\) 0 0
\(353\) −48995.9 28287.8i −0.393197 0.227013i 0.290347 0.956921i \(-0.406229\pi\)
−0.683545 + 0.729909i \(0.739563\pi\)
\(354\) 0 0
\(355\) −131643. + 76003.9i −1.04458 + 0.603086i
\(356\) 0 0
\(357\) −62482.0 + 49191.8i −0.490251 + 0.385973i
\(358\) 0 0
\(359\) 18902.4 + 32739.9i 0.146665 + 0.254032i 0.929993 0.367577i \(-0.119813\pi\)
−0.783328 + 0.621609i \(0.786479\pi\)
\(360\) 0 0
\(361\) 35895.4 62172.6i 0.275438 0.477073i
\(362\) 0 0
\(363\) 190539.i 1.44601i
\(364\) 0 0
\(365\) −14660.5 −0.110043
\(366\) 0 0
\(367\) −9367.27 5408.20i −0.0695474 0.0401532i 0.464823 0.885404i \(-0.346118\pi\)
−0.534370 + 0.845250i \(0.679451\pi\)
\(368\) 0 0
\(369\) −142453. + 82245.1i −1.04621 + 0.604028i
\(370\) 0 0
\(371\) 162262. + 64856.9i 1.17888 + 0.471203i
\(372\) 0 0
\(373\) 15511.7 + 26867.0i 0.111491 + 0.193109i 0.916372 0.400328i \(-0.131104\pi\)
−0.804880 + 0.593437i \(0.797771\pi\)
\(374\) 0 0
\(375\) −115246. + 199613.i −0.819531 + 1.41947i
\(376\) 0 0
\(377\) 120599.i 0.848519i
\(378\) 0 0
\(379\) 98527.5 0.685929 0.342964 0.939348i \(-0.388569\pi\)
0.342964 + 0.939348i \(0.388569\pi\)
\(380\) 0 0
\(381\) −51846.3 29933.5i −0.357164 0.206209i
\(382\) 0 0
\(383\) 4454.26 2571.67i 0.0303653 0.0175314i −0.484741 0.874658i \(-0.661086\pi\)
0.515106 + 0.857127i \(0.327753\pi\)
\(384\) 0 0
\(385\) 54135.5 7813.79i 0.365225 0.0527157i
\(386\) 0 0
\(387\) −173941. 301275.i −1.16140 2.01160i
\(388\) 0 0
\(389\) −43141.0 + 74722.4i −0.285096 + 0.493801i −0.972632 0.232349i \(-0.925359\pi\)
0.687537 + 0.726150i \(0.258692\pi\)
\(390\) 0 0
\(391\) 47171.9i 0.308553i
\(392\) 0 0
\(393\) 303256. 1.96347
\(394\) 0 0
\(395\) −69170.8 39935.8i −0.443331 0.255957i
\(396\) 0 0
\(397\) −135036. + 77963.1i −0.856778 + 0.494661i −0.862932 0.505320i \(-0.831375\pi\)
0.00615368 + 0.999981i \(0.498041\pi\)
\(398\) 0 0
\(399\) −47186.2 326915.i −0.296394 2.05347i
\(400\) 0 0
\(401\) −17307.2 29977.0i −0.107631 0.186423i 0.807179 0.590307i \(-0.200993\pi\)
−0.914810 + 0.403884i \(0.867660\pi\)
\(402\) 0 0
\(403\) 84457.5 146285.i 0.520030 0.900718i
\(404\) 0 0
\(405\) 62817.9i 0.382978i
\(406\) 0 0
\(407\) −43384.7 −0.261907
\(408\) 0 0
\(409\) −271749. 156894.i −1.62450 0.937907i −0.985695 0.168542i \(-0.946094\pi\)
−0.638809 0.769366i \(-0.720572\pi\)
\(410\) 0 0
\(411\) −325382. + 187859.i −1.92624 + 1.11211i
\(412\) 0 0
\(413\) 77929.4 194968.i 0.456879 1.14304i
\(414\) 0 0
\(415\) −60038.3 103989.i −0.348604 0.603800i
\(416\) 0 0
\(417\) −150466. + 260615.i −0.865301 + 1.49875i
\(418\) 0 0
\(419\) 7324.74i 0.0417219i −0.999782 0.0208609i \(-0.993359\pi\)
0.999782 0.0208609i \(-0.00664073\pi\)
\(420\) 0 0
\(421\) −25178.3 −0.142057 −0.0710285 0.997474i \(-0.522628\pi\)
−0.0710285 + 0.997474i \(0.522628\pi\)
\(422\) 0 0
\(423\) 167579. + 96752.0i 0.936569 + 0.540728i
\(424\) 0 0
\(425\) 1825.04 1053.69i 0.0101040 0.00583357i
\(426\) 0 0
\(427\) −42334.9 53772.6i −0.232190 0.294920i
\(428\) 0 0
\(429\) −53570.3 92786.6i −0.291078 0.504162i
\(430\) 0 0
\(431\) 6913.59 11974.7i 0.0372176 0.0644629i −0.846817 0.531885i \(-0.821484\pi\)
0.884034 + 0.467422i \(0.154817\pi\)
\(432\) 0 0
\(433\) 47438.8i 0.253022i 0.991965 + 0.126511i \(0.0403779\pi\)
−0.991965 + 0.126511i \(0.959622\pi\)
\(434\) 0 0
\(435\) 282485. 1.49285
\(436\) 0 0
\(437\) 169682. + 97966.0i 0.888532 + 0.512994i
\(438\) 0 0
\(439\) −95101.7 + 54907.0i −0.493469 + 0.284904i −0.726012 0.687682i \(-0.758628\pi\)
0.232544 + 0.972586i \(0.425295\pi\)
\(440\) 0 0
\(441\) −250181. 238024.i −1.28640 1.22389i
\(442\) 0 0
\(443\) −41280.4 71499.7i −0.210347 0.364331i 0.741476 0.670979i \(-0.234126\pi\)
−0.951823 + 0.306648i \(0.900793\pi\)
\(444\) 0 0
\(445\) −10635.8 + 18421.7i −0.0537092 + 0.0930270i
\(446\) 0 0
\(447\) 640367.i 3.20490i
\(448\) 0 0
\(449\) −330438. −1.63907 −0.819534 0.573030i \(-0.805768\pi\)
−0.819534 + 0.573030i \(0.805768\pi\)
\(450\) 0 0
\(451\) 43551.5 + 25144.5i 0.214116 + 0.123620i
\(452\) 0 0
\(453\) 384461. 221969.i 1.87351 1.08167i
\(454\) 0 0
\(455\) 158830. 125047.i 0.767204 0.604017i
\(456\) 0 0
\(457\) 186644. + 323276.i 0.893677 + 1.54789i 0.835434 + 0.549591i \(0.185217\pi\)
0.0582431 + 0.998302i \(0.481450\pi\)
\(458\) 0 0
\(459\) −50978.3 + 88297.0i −0.241969 + 0.419103i
\(460\) 0 0
\(461\) 20355.2i 0.0957798i 0.998853 + 0.0478899i \(0.0152497\pi\)
−0.998853 + 0.0478899i \(0.984750\pi\)
\(462\) 0 0
\(463\) 31552.7 0.147189 0.0735944 0.997288i \(-0.476553\pi\)
0.0735944 + 0.997288i \(0.476553\pi\)
\(464\) 0 0
\(465\) 342649. + 197828.i 1.58469 + 0.914919i
\(466\) 0 0
\(467\) 209452. 120927.i 0.960397 0.554486i 0.0641019 0.997943i \(-0.479582\pi\)
0.896295 + 0.443458i \(0.146248\pi\)
\(468\) 0 0
\(469\) 330593. + 132139.i 1.50296 + 0.600740i
\(470\) 0 0
\(471\) 91741.9 + 158902.i 0.413548 + 0.716286i
\(472\) 0 0
\(473\) −53178.5 + 92107.8i −0.237691 + 0.411694i
\(474\) 0 0
\(475\) 8753.16i 0.0387951i
\(476\) 0 0
\(477\) 512903. 2.25423
\(478\) 0 0
\(479\) −235631. 136042.i −1.02698 0.592926i −0.110861 0.993836i \(-0.535361\pi\)
−0.916117 + 0.400910i \(0.868694\pi\)
\(480\) 0 0
\(481\) −138860. + 80170.8i −0.600187 + 0.346518i
\(482\) 0 0
\(483\) 316920. 45743.4i 1.35848 0.196080i
\(484\) 0 0
\(485\) −71364.1 123606.i −0.303387 0.525481i
\(486\) 0 0
\(487\) −203873. + 353119.i −0.859611 + 1.48889i 0.0126891 + 0.999919i \(0.495961\pi\)
−0.872300 + 0.488971i \(0.837372\pi\)
\(488\) 0 0
\(489\) 322840.i 1.35011i
\(490\) 0 0
\(491\) 286772. 1.18953 0.594763 0.803901i \(-0.297246\pi\)
0.594763 + 0.803901i \(0.297246\pi\)
\(492\) 0 0
\(493\) 69562.8 + 40162.1i 0.286209 + 0.165243i
\(494\) 0 0
\(495\) 139035. 80271.8i 0.567431 0.327606i
\(496\) 0 0
\(497\) −41914.3 290391.i −0.169687 1.17563i
\(498\) 0 0
\(499\) 175718. + 304352.i 0.705690 + 1.22229i 0.966442 + 0.256886i \(0.0826964\pi\)
−0.260751 + 0.965406i \(0.583970\pi\)
\(500\) 0 0
\(501\) −124293. + 215282.i −0.495189 + 0.857693i
\(502\) 0 0
\(503\) 116045.i 0.458660i −0.973349 0.229330i \(-0.926347\pi\)
0.973349 0.229330i \(-0.0736535\pi\)
\(504\) 0 0
\(505\) −167182. −0.655552
\(506\) 0 0
\(507\) 27951.1 + 16137.6i 0.108738 + 0.0627802i
\(508\) 0 0
\(509\) 72030.7 41586.9i 0.278024 0.160517i −0.354505 0.935054i \(-0.615351\pi\)
0.632528 + 0.774537i \(0.282017\pi\)
\(510\) 0 0
\(511\) 10502.6 26275.9i 0.0402212 0.100627i
\(512\) 0 0
\(513\) −211742. 366749.i −0.804587 1.39359i
\(514\) 0 0
\(515\) −19350.8 + 33516.5i −0.0729598 + 0.126370i
\(516\) 0 0
\(517\) 59159.2i 0.221330i
\(518\) 0 0
\(519\) −605508. −2.24794
\(520\) 0 0
\(521\) 174948. + 101006.i 0.644517 + 0.372112i 0.786352 0.617778i \(-0.211967\pi\)
−0.141835 + 0.989890i \(0.545300\pi\)
\(522\) 0 0
\(523\) 24134.0 13933.8i 0.0882321 0.0509408i −0.455235 0.890371i \(-0.650445\pi\)
0.543467 + 0.839431i \(0.317111\pi\)
\(524\) 0 0
\(525\) 8848.88 + 11239.6i 0.0321048 + 0.0407785i
\(526\) 0 0
\(527\) 56252.3 + 97431.8i 0.202544 + 0.350816i
\(528\) 0 0
\(529\) 44949.9 77855.5i 0.160626 0.278213i
\(530\) 0 0
\(531\) 616284.i 2.18571i
\(532\) 0 0
\(533\) 185858. 0.654226
\(534\) 0 0
\(535\) 233190. + 134632.i 0.814707 + 0.470372i
\(536\) 0 0
\(537\) −694640. + 401050.i −2.40886 + 1.39075i
\(538\) 0 0
\(539\) −24777.4 + 102625.i −0.0852861 + 0.353243i
\(540\) 0 0
\(541\) 18996.8 + 32903.4i 0.0649062 + 0.112421i 0.896652 0.442735i \(-0.145992\pi\)
−0.831746 + 0.555156i \(0.812659\pi\)
\(542\) 0 0
\(543\) 406356. 703829.i 1.37818 2.38708i
\(544\) 0 0
\(545\) 354198.i 1.19249i
\(546\) 0 0
\(547\) −360160. −1.20371 −0.601854 0.798606i \(-0.705571\pi\)
−0.601854 + 0.798606i \(0.705571\pi\)
\(548\) 0 0
\(549\) −173964. 100438.i −0.577185 0.333238i
\(550\) 0 0
\(551\) −288934. + 166816.i −0.951691 + 0.549459i
\(552\) 0 0
\(553\) 121130. 95365.1i 0.396097 0.311845i
\(554\) 0 0
\(555\) −187787. 325257.i −0.609650 1.05594i
\(556\) 0 0
\(557\) −155272. + 268938.i −0.500474 + 0.866847i 0.499525 + 0.866299i \(0.333508\pi\)
−1.00000 0.000547960i \(0.999826\pi\)
\(558\) 0 0
\(559\) 393075.i 1.25792i
\(560\) 0 0
\(561\) 71360.2 0.226741
\(562\) 0 0
\(563\) −14453.4 8344.68i −0.0455988 0.0263265i 0.477027 0.878888i \(-0.341714\pi\)
−0.522626 + 0.852562i \(0.675048\pi\)
\(564\) 0 0
\(565\) −193719. + 111844.i −0.606841 + 0.350360i
\(566\) 0 0
\(567\) −112588. 45002.0i −0.350209 0.139980i
\(568\) 0 0
\(569\) 65131.1 + 112810.i 0.201170 + 0.348437i 0.948906 0.315560i \(-0.102192\pi\)
−0.747736 + 0.663997i \(0.768859\pi\)
\(570\) 0 0
\(571\) −249119. + 431487.i −0.764073 + 1.32341i 0.176662 + 0.984272i \(0.443470\pi\)
−0.940735 + 0.339142i \(0.889863\pi\)
\(572\) 0 0
\(573\) 18051.0i 0.0549784i
\(574\) 0 0
\(575\) −8485.52 −0.0256651
\(576\) 0 0
\(577\) −29199.1 16858.1i −0.0877035 0.0506357i 0.455507 0.890232i \(-0.349458\pi\)
−0.543210 + 0.839597i \(0.682791\pi\)
\(578\) 0 0
\(579\) −666313. + 384696.i −1.98756 + 1.14752i
\(580\) 0 0
\(581\) 229391. 33109.7i 0.679554 0.0980851i
\(582\) 0 0
\(583\) −78404.0 135800.i −0.230675 0.399541i
\(584\) 0 0
\(585\) 296669. 513846.i 0.866884 1.50149i
\(586\) 0 0
\(587\) 356809.i 1.03552i −0.855525 0.517762i \(-0.826765\pi\)
0.855525 0.517762i \(-0.173235\pi\)
\(588\) 0 0
\(589\) −467296. −1.34698
\(590\) 0 0
\(591\) −18910.1 10917.8i −0.0541402 0.0312579i
\(592\) 0 0
\(593\) −28872.6 + 16669.6i −0.0821063 + 0.0474041i −0.540491 0.841350i \(-0.681762\pi\)
0.458385 + 0.888754i \(0.348428\pi\)
\(594\) 0 0
\(595\) 19234.1 + 133258.i 0.0543299 + 0.376409i
\(596\) 0 0
\(597\) −515484. 892844.i −1.44633 2.50511i
\(598\) 0 0
\(599\) 162165. 280878.i 0.451963 0.782824i −0.546545 0.837430i \(-0.684057\pi\)
0.998508 + 0.0546064i \(0.0173904\pi\)
\(600\) 0 0
\(601\) 66322.0i 0.183615i 0.995777 + 0.0918076i \(0.0292645\pi\)
−0.995777 + 0.0918076i \(0.970736\pi\)
\(602\) 0 0
\(603\) 1.04499e6 2.87394
\(604\) 0 0
\(605\) 279380. + 161300.i 0.763281 + 0.440680i
\(606\) 0 0
\(607\) 422322. 243828.i 1.14622 0.661768i 0.198253 0.980151i \(-0.436473\pi\)
0.947962 + 0.318383i \(0.103140\pi\)
\(608\) 0 0
\(609\) −202369. + 506297.i −0.545643 + 1.36512i
\(610\) 0 0
\(611\) −109321. 189349.i −0.292833 0.507201i
\(612\) 0 0
\(613\) 170755. 295757.i 0.454415 0.787070i −0.544239 0.838930i \(-0.683182\pi\)
0.998654 + 0.0518597i \(0.0165149\pi\)
\(614\) 0 0
\(615\) 435344.i 1.15102i
\(616\) 0 0
\(617\) 240873. 0.632728 0.316364 0.948638i \(-0.397538\pi\)
0.316364 + 0.948638i \(0.397538\pi\)
\(618\) 0 0
\(619\) 133658. + 77167.4i 0.348830 + 0.201397i 0.664170 0.747582i \(-0.268785\pi\)
−0.315340 + 0.948979i \(0.602119\pi\)
\(620\) 0 0
\(621\) 355535. 205268.i 0.921932 0.532278i
\(622\) 0 0
\(623\) −25397.8 32259.5i −0.0654364 0.0831154i
\(624\) 0 0
\(625\) 201207. + 348501.i 0.515091 + 0.892164i
\(626\) 0 0
\(627\) −148200. + 256690.i −0.376976 + 0.652941i
\(628\) 0 0
\(629\) 106794.i 0.269927i
\(630\) 0 0
\(631\) −220248. −0.553164 −0.276582 0.960990i \(-0.589202\pi\)
−0.276582 + 0.960990i \(0.589202\pi\)
\(632\) 0 0
\(633\) 8087.50 + 4669.32i 0.0201840 + 0.0116532i
\(634\) 0 0
\(635\) −87780.7 + 50680.2i −0.217696 + 0.125687i
\(636\) 0 0
\(637\) 110336. + 374253.i 0.271919 + 0.922331i
\(638\) 0 0
\(639\) −430590. 745804.i −1.05454 1.82651i
\(640\) 0 0
\(641\) 340604. 589943.i 0.828960 1.43580i −0.0698947 0.997554i \(-0.522266\pi\)
0.898855 0.438247i \(-0.144400\pi\)
\(642\) 0 0
\(643\) 572102.i 1.38373i −0.722027 0.691865i \(-0.756789\pi\)
0.722027 0.691865i \(-0.243211\pi\)
\(644\) 0 0
\(645\) −920716. −2.21313
\(646\) 0 0
\(647\) 525915. + 303637.i 1.25634 + 0.725348i 0.972361 0.233482i \(-0.0750120\pi\)
0.283979 + 0.958830i \(0.408345\pi\)
\(648\) 0 0
\(649\) −163171. + 94207.1i −0.387396 + 0.223663i
\(650\) 0 0
\(651\) −600037. + 472407.i −1.41585 + 1.11469i
\(652\) 0 0
\(653\) 242335. + 419737.i 0.568316 + 0.984353i 0.996733 + 0.0807713i \(0.0257383\pi\)
−0.428416 + 0.903581i \(0.640928\pi\)
\(654\) 0 0
\(655\) 256720. 444652.i 0.598380 1.03642i
\(656\) 0 0
\(657\) 83057.0i 0.192418i
\(658\) 0 0
\(659\) −329627. −0.759017 −0.379509 0.925188i \(-0.623907\pi\)
−0.379509 + 0.925188i \(0.623907\pi\)
\(660\) 0 0
\(661\) −182392. 105304.i −0.417449 0.241014i 0.276536 0.961003i \(-0.410813\pi\)
−0.693985 + 0.719989i \(0.744147\pi\)
\(662\) 0 0
\(663\) 228400. 131867.i 0.519600 0.299991i
\(664\) 0 0
\(665\) −519288. 207562.i −1.17426 0.469358i
\(666\) 0 0
\(667\) −161716. 280100.i −0.363497 0.629595i
\(668\) 0 0
\(669\) −86289.2 + 149457.i −0.192799 + 0.333937i
\(670\) 0 0
\(671\) 61413.2i 0.136401i
\(672\) 0 0
\(673\) 94709.8 0.209105 0.104553 0.994519i \(-0.466659\pi\)
0.104553 + 0.994519i \(0.466659\pi\)
\(674\) 0 0
\(675\) 15883.3 + 9170.24i 0.0348605 + 0.0201267i
\(676\) 0 0
\(677\) 466400. 269276.i 1.01761 0.587517i 0.104199 0.994556i \(-0.466772\pi\)
0.913411 + 0.407039i \(0.133439\pi\)
\(678\) 0 0
\(679\) 272664. 39355.6i 0.591408 0.0853625i
\(680\) 0 0
\(681\) 422588. + 731944.i 0.911219 + 1.57828i
\(682\) 0 0
\(683\) −64535.9 + 111779.i −0.138344 + 0.239618i −0.926870 0.375383i \(-0.877511\pi\)
0.788526 + 0.615001i \(0.210845\pi\)
\(684\) 0 0
\(685\) 636126.i 1.35570i
\(686\) 0 0
\(687\) −631680. −1.33839
\(688\) 0 0
\(689\) −501890. 289766.i −1.05723 0.610393i
\(690\) 0 0
\(691\) −113201. + 65356.6i −0.237079 + 0.136878i −0.613834 0.789435i \(-0.710373\pi\)
0.376754 + 0.926313i \(0.377040\pi\)
\(692\) 0 0
\(693\) 44268.0 + 306697.i 0.0921771 + 0.638622i
\(694\) 0 0
\(695\) 254753. + 441246.i 0.527413 + 0.913505i
\(696\) 0 0
\(697\) −61894.8 + 107205.i −0.127406 + 0.220673i
\(698\) 0 0
\(699\) 826204.i 1.69096i
\(700\) 0 0
\(701\) −182501. −0.371389 −0.185694 0.982608i \(-0.559453\pi\)
−0.185694 + 0.982608i \(0.559453\pi\)
\(702\) 0 0
\(703\) 384150. + 221789.i 0.777302 + 0.448776i
\(704\) 0 0
\(705\) 443520. 256066.i 0.892349 0.515198i
\(706\) 0 0
\(707\) 119767. 299640.i 0.239607 0.599462i
\(708\) 0 0
\(709\) −406899. 704770.i −0.809458 1.40202i −0.913240 0.407422i \(-0.866428\pi\)
0.103783 0.994600i \(-0.466905\pi\)
\(710\) 0 0
\(711\) 226251. 391878.i 0.447560 0.775196i
\(712\) 0 0
\(713\) 453008.i 0.891101i
\(714\) 0 0
\(715\) −181399. −0.354832
\(716\) 0 0
\(717\) −299732. 173051.i −0.583036 0.336616i
\(718\) 0 0
\(719\) 364222. 210283.i 0.704544 0.406769i −0.104494 0.994526i \(-0.533322\pi\)
0.809038 + 0.587757i \(0.199989\pi\)
\(720\) 0 0
\(721\) −46208.9 58693.1i −0.0888904 0.112906i
\(722\) 0 0
\(723\) 611554. + 1.05924e6i 1.16992 + 2.02637i
\(724\) 0 0
\(725\) 7224.56 12513.3i 0.0137447 0.0238065i
\(726\) 0 0
\(727\) 172948.i 0.327225i −0.986525 0.163613i \(-0.947685\pi\)
0.986525 0.163613i \(-0.0523147\pi\)
\(728\) 0 0
\(729\) 788171. 1.48308
\(730\) 0 0
\(731\) −226729. 130902.i −0.424300 0.244970i
\(732\) 0 0
\(733\) 113936. 65780.9i 0.212057 0.122431i −0.390210 0.920726i \(-0.627598\pi\)
0.602267 + 0.798295i \(0.294264\pi\)
\(734\) 0 0
\(735\) −876629. + 258445.i −1.62271 + 0.478403i
\(736\) 0 0
\(737\) −159740. 276678.i −0.294090 0.509378i
\(738\) 0 0
\(739\) −244884. + 424151.i −0.448406 + 0.776662i −0.998282 0.0585842i \(-0.981341\pi\)
0.549877 + 0.835246i \(0.314675\pi\)
\(740\) 0 0
\(741\) 1.09544e6i 1.99504i
\(742\) 0 0
\(743\) −580258. −1.05110 −0.525549 0.850763i \(-0.676140\pi\)
−0.525549 + 0.850763i \(0.676140\pi\)
\(744\) 0 0
\(745\) 938945. + 542100.i 1.69172 + 0.976713i
\(746\) 0 0
\(747\) 589139. 340139.i 1.05579 0.609559i
\(748\) 0 0
\(749\) −408355. + 321496.i −0.727904 + 0.573076i
\(750\) 0 0
\(751\) 218698. + 378797.i 0.387763 + 0.671624i 0.992148 0.125067i \(-0.0399147\pi\)
−0.604386 + 0.796692i \(0.706581\pi\)
\(752\) 0 0
\(753\) 203977. 353298.i 0.359742 0.623091i
\(754\) 0 0
\(755\) 751627.i 1.31859i
\(756\) 0 0
\(757\) −24171.7 −0.0421809 −0.0210905 0.999778i \(-0.506714\pi\)
−0.0210905 + 0.999778i \(0.506714\pi\)
\(758\) 0 0
\(759\) −248842. 143669.i −0.431956 0.249390i
\(760\) 0 0
\(761\) −561376. + 324111.i −0.969359 + 0.559659i −0.899041 0.437865i \(-0.855735\pi\)
−0.0703180 + 0.997525i \(0.522401\pi\)
\(762\) 0 0
\(763\) 634828. + 253743.i 1.09045 + 0.435859i
\(764\) 0 0
\(765\) 197594. + 342243.i 0.337638 + 0.584806i
\(766\) 0 0
\(767\) −348172. + 603051.i −0.591838 + 1.02509i
\(768\) 0 0
\(769\) 179564.i 0.303646i −0.988408 0.151823i \(-0.951486\pi\)
0.988408 0.151823i \(-0.0485143\pi\)
\(770\) 0 0
\(771\) 1.61830e6 2.72239
\(772\) 0 0
\(773\) 529068. + 305457.i 0.885426 + 0.511201i 0.872444 0.488715i \(-0.162534\pi\)
0.0129823 + 0.999916i \(0.495867\pi\)
\(774\) 0 0
\(775\) 17526.5 10118.9i 0.0291805 0.0168474i
\(776\) 0 0
\(777\) 717486. 103560.i 1.18842 0.171534i
\(778\) 0 0
\(779\) −257085. 445284.i −0.423644 0.733773i
\(780\) 0 0
\(781\) −131643. + 228012.i −0.215821 + 0.373814i
\(782\) 0 0
\(783\) 699061.i 1.14023i
\(784\) 0 0
\(785\) 310655. 0.504126
\(786\) 0 0
\(787\) −1.03191e6 595774.i −1.66607 0.961905i −0.969726 0.244195i \(-0.921476\pi\)
−0.696342 0.717710i \(-0.745190\pi\)
\(788\) 0 0
\(789\) −521282. + 300963.i −0.837373 + 0.483458i
\(790\) 0 0
\(791\) −61679.1 427325.i −0.0985791 0.682976i
\(792\) 0 0
\(793\) 113486. + 196563.i 0.180466 + 0.312576i
\(794\) 0 0
\(795\) 678732. 1.17560e6i 1.07390 1.86005i
\(796\) 0 0
\(797\) 900495.i 1.41764i −0.705392 0.708818i \(-0.749229\pi\)
0.705392 0.708818i \(-0.250771\pi\)
\(798\) 0 0
\(799\) 145624. 0.228108
\(800\) 0 0
\(801\) −104366. 60255.5i −0.162664 0.0939142i
\(802\) 0 0
\(803\) −21990.7 + 12696.3i −0.0341042 + 0.0196901i
\(804\) 0 0
\(805\) 201215. 503411.i 0.310505 0.776838i
\(806\) 0 0
\(807\) 789843. + 1.36805e6i 1.21281 + 2.10065i
\(808\) 0 0
\(809\) −277882. + 481306.i −0.424584 + 0.735401i −0.996381 0.0849939i \(-0.972913\pi\)
0.571798 + 0.820395i \(0.306246\pi\)
\(810\) 0 0
\(811\) 70954.2i 0.107879i −0.998544 0.0539395i \(-0.982822\pi\)
0.998544 0.0539395i \(-0.0171778\pi\)
\(812\) 0 0
\(813\) 228356. 0.345486
\(814\) 0 0
\(815\) 473368. + 273299.i 0.712662 + 0.411455i
\(816\) 0 0
\(817\) 941738. 543713.i 1.41087 0.814564i
\(818\) 0 0
\(819\) 708435. + 899833.i 1.05617 + 1.34151i
\(820\) 0 0
\(821\) 312356. + 541016.i 0.463408 + 0.802646i 0.999128 0.0417495i \(-0.0132931\pi\)
−0.535720 + 0.844396i \(0.679960\pi\)
\(822\) 0 0
\(823\) −105029. + 181916.i −0.155064 + 0.268579i −0.933082 0.359663i \(-0.882892\pi\)
0.778018 + 0.628242i \(0.216225\pi\)
\(824\) 0 0
\(825\) 12836.6i 0.0188601i
\(826\) 0 0
\(827\) 880910. 1.28801 0.644007 0.765020i \(-0.277271\pi\)
0.644007 + 0.765020i \(0.277271\pi\)
\(828\) 0 0
\(829\) −1.11951e6 646349.i −1.62899 0.940498i −0.984395 0.175974i \(-0.943692\pi\)
−0.644595 0.764524i \(-0.722974\pi\)
\(830\) 0 0
\(831\) 128186. 74008.1i 0.185625 0.107171i
\(832\) 0 0
\(833\) −252617. 60991.2i −0.364060 0.0878977i
\(834\) 0 0
\(835\) 210440. + 364492.i 0.301825 + 0.522775i
\(836\) 0 0
\(837\) −489563. + 847948.i −0.698808 + 1.21037i
\(838\) 0 0
\(839\) 1.11586e6i 1.58520i −0.609741 0.792601i \(-0.708726\pi\)
0.609741 0.792601i \(-0.291274\pi\)
\(840\) 0 0
\(841\) −156542. −0.221330
\(842\) 0 0
\(843\) −2.01424e6 1.16292e6i −2.83437 1.63642i
\(844\) 0 0
\(845\) 47323.8 27322.4i 0.0662775 0.0382653i
\(846\) 0 0
\(847\) −489242. + 385178.i −0.681957 + 0.536902i
\(848\) 0 0
\(849\) 822142. + 1.42399e6i 1.14059 + 1.97557i
\(850\) 0 0
\(851\) −215008. + 372404.i −0.296889 + 0.514228i
\(852\) 0 0
\(853\) 1.28959e6i 1.77236i −0.463341 0.886180i \(-0.653350\pi\)
0.463341 0.886180i \(-0.346650\pi\)
\(854\) 0 0
\(855\) −1.64145e6 −2.24540
\(856\) 0 0
\(857\) −566854. 327273.i −0.771809 0.445604i 0.0617109 0.998094i \(-0.480344\pi\)
−0.833519 + 0.552490i \(0.813678\pi\)
\(858\) 0 0
\(859\) −211796. + 122281.i −0.287033 + 0.165718i −0.636603 0.771192i \(-0.719661\pi\)
0.349570 + 0.936910i \(0.386328\pi\)
\(860\) 0 0
\(861\) −780266. 311875.i −1.05253 0.420702i
\(862\) 0 0
\(863\) −232638. 402942.i −0.312363 0.541029i 0.666510 0.745496i \(-0.267787\pi\)
−0.978873 + 0.204467i \(0.934454\pi\)
\(864\) 0 0
\(865\) −512591. + 887833.i −0.685075 + 1.18659i
\(866\) 0 0
\(867\) 1.07667e6i 1.43233i
\(868\) 0 0
\(869\) −138342. −0.183195
\(870\) 0 0
\(871\) −1.02255e6 590370.i −1.34787 0.778194i
\(872\) 0 0
\(873\) 700275. 404304.i 0.918840 0.530493i
\(874\) 0 0
\(875\) −745514. + 107606.i −0.973732 + 0.140546i
\(876\) 0 0
\(877\) −152086. 263420.i −0.197738 0.342492i 0.750057 0.661373i \(-0.230026\pi\)
−0.947795 + 0.318882i \(0.896693\pi\)
\(878\) 0 0
\(879\) −674078. + 1.16754e6i −0.872434 + 1.51110i
\(880\) 0 0
\(881\) 697876.i 0.899138i −0.893246 0.449569i \(-0.851578\pi\)
0.893246 0.449569i \(-0.148422\pi\)
\(882\) 0 0
\(883\) −891773. −1.14375 −0.571877 0.820339i \(-0.693785\pi\)
−0.571877 + 0.820339i \(0.693785\pi\)
\(884\) 0 0
\(885\) −1.41255e6 815537.i −1.80351 1.04126i
\(886\) 0 0
\(887\) 1.09340e6 631278.i 1.38974 0.802367i 0.396455 0.918054i \(-0.370240\pi\)
0.993286 + 0.115687i \(0.0369070\pi\)
\(888\) 0 0
\(889\) −27948.9 193636.i −0.0353640 0.245009i
\(890\) 0 0
\(891\) 54401.9 + 94226.9i 0.0685265 + 0.118691i
\(892\) 0 0
\(893\) −302431. + 523826.i −0.379248 + 0.656877i
\(894\) 0 0
\(895\) 1.35803e6i 1.69537i
\(896\) 0 0
\(897\) −1.06195e6 −1.31983
\(898\) 0 0
\(899\) 668036. + 385691.i 0.826572 + 0.477221i
\(900\) 0 0
\(901\) 334280. 192997.i 0.411776 0.237739i
\(902\) 0 0
\(903\) 659590. 1.65020e6i 0.808907 2.02377i
\(904\) 0 0
\(905\) −687998. 1.19165e6i −0.840021 1.45496i
\(906\) 0 0
\(907\) 475990. 824439.i 0.578607 1.00218i −0.417033 0.908891i \(-0.636930\pi\)
0.995639 0.0932848i \(-0.0297367\pi\)
\(908\) 0 0
\(909\) 947149.i 1.14628i
\(910\) 0 0
\(911\) 743243. 0.895559 0.447779 0.894144i \(-0.352215\pi\)
0.447779 + 0.894144i \(0.352215\pi\)
\(912\) 0 0
\(913\) −180115. 103989.i −0.216077 0.124752i
\(914\) 0 0
\(915\) −460418. + 265823.i −0.549934 + 0.317505i
\(916\) 0 0
\(917\) 613038. + 778662.i 0.729035 + 0.925999i
\(918\) 0 0
\(919\) −262150. 454057.i −0.310398 0.537625i 0.668050 0.744116i \(-0.267129\pi\)
−0.978449 + 0.206491i \(0.933796\pi\)
\(920\) 0 0
\(921\) 1.06219e6 1.83977e6i 1.25223 2.16892i
\(922\) 0 0
\(923\) 973052.i 1.14218i
\(924\) 0 0
\(925\) −19210.7 −0.0224522
\(926\) 0 0
\(927\) −189883. 109629.i −0.220967 0.127575i
\(928\) 0 0
\(929\) 848178. 489696.i 0.982779 0.567408i 0.0796709 0.996821i \(-0.474613\pi\)
0.903108 + 0.429414i \(0.141280\pi\)
\(930\) 0 0
\(931\) 744024. 782024.i 0.858396 0.902237i
\(932\) 0 0
\(933\) 642090. + 1.11213e6i 0.737620 + 1.27759i
\(934\) 0 0
\(935\) 60409.7 104633.i 0.0691009 0.119686i
\(936\) 0 0
\(937\) 1.13988e6i 1.29831i 0.760656 + 0.649155i \(0.224877\pi\)
−0.760656 + 0.649155i \(0.775123\pi\)
\(938\) 0 0
\(939\) 267368. 0.303235
\(940\) 0 0
\(941\) 693791. + 400561.i 0.783519 + 0.452365i 0.837676 0.546167i \(-0.183914\pi\)
−0.0541569 + 0.998532i \(0.517247\pi\)
\(942\) 0 0
\(943\) 431669. 249224.i 0.485431 0.280264i
\(944\) 0 0
\(945\) −920670. + 724840.i −1.03096 + 0.811668i
\(946\) 0 0
\(947\) 340143. + 589145.i 0.379282 + 0.656935i 0.990958 0.134173i \(-0.0428378\pi\)
−0.611676 + 0.791108i \(0.709504\pi\)
\(948\) 0 0
\(949\) −46923.3 + 81273.5i −0.0521022 + 0.0902436i
\(950\) 0 0
\(951\) 1.21160e6i 1.33967i
\(952\) 0 0
\(953\) −394774. −0.434673 −0.217337 0.976097i \(-0.569737\pi\)
−0.217337 + 0.976097i \(0.569737\pi\)
\(954\) 0 0
\(955\) −26467.5 15281.0i −0.0290206 0.0167550i
\(956\) 0 0
\(957\) 423727. 244639.i 0.462660 0.267117i
\(958\) 0 0
\(959\) −1.14013e6 455714.i −1.23970 0.495513i
\(960\) 0 0
\(961\) 78449.9 + 135879.i 0.0849465 + 0.147132i
\(962\) 0 0
\(963\) −762740. + 1.32110e6i −0.822478 + 1.42457i
\(964\) 0 0
\(965\) 1.30265e6i 1.39886i
\(966\) 0 0
\(967\) 604328. 0.646279 0.323140 0.946351i \(-0.395262\pi\)
0.323140 + 0.946351i \(0.395262\pi\)
\(968\) 0 0
\(969\) −631860. 364804.i −0.672935 0.388519i
\(970\) 0 0
\(971\) −657301. + 379493.i −0.697149 + 0.402499i −0.806285 0.591528i \(-0.798525\pi\)
0.109136 + 0.994027i \(0.465192\pi\)
\(972\) 0 0
\(973\) −973346. + 140490.i −1.02811 + 0.148396i
\(974\) 0 0
\(975\) −23720.9 41085.8i −0.0249530 0.0432198i
\(976\) 0 0
\(977\) −612591. + 1.06104e6i −0.641773 + 1.11158i 0.343263 + 0.939239i \(0.388468\pi\)
−0.985037 + 0.172345i \(0.944866\pi\)
\(978\) 0 0
\(979\) 36843.3i 0.0384409i
\(980\) 0 0
\(981\) 2.00666e6 2.08514
\(982\) 0 0
\(983\) 1.03964e6 + 600236.i 1.07591 + 0.621177i 0.929790 0.368090i \(-0.119988\pi\)
0.146120 + 0.989267i \(0.453322\pi\)
\(984\) 0 0
\(985\) −32016.6 + 18484.8i −0.0329992 + 0.0190521i
\(986\) 0 0
\(987\) 141214. + 978362.i 0.144959 + 1.00430i
\(988\) 0 0
\(989\) 527088. + 912944.i 0.538878 + 0.933365i
\(990\) 0 0
\(991\) 904963. 1.56744e6i 0.921475 1.59604i 0.124340 0.992240i \(-0.460318\pi\)
0.797134 0.603802i \(-0.206348\pi\)
\(992\) 0 0
\(993\) 1.09164e6i 1.10708i
\(994\) 0 0
\(995\) −1.74552e6 −1.76311
\(996\) 0 0
\(997\) 648903. + 374644.i 0.652814 + 0.376902i 0.789534 0.613707i \(-0.210323\pi\)
−0.136719 + 0.990610i \(0.543656\pi\)
\(998\) 0 0
\(999\) 804909. 464715.i 0.806521 0.465645i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.5.s.b.17.2 4
4.3 odd 2 14.5.d.a.3.1 4
7.3 odd 6 784.5.c.b.97.4 4
7.4 even 3 784.5.c.b.97.1 4
7.5 odd 6 inner 112.5.s.b.33.2 4
12.11 even 2 126.5.n.a.73.2 4
20.3 even 4 350.5.i.a.199.2 8
20.7 even 4 350.5.i.a.199.3 8
20.19 odd 2 350.5.k.a.101.2 4
28.3 even 6 98.5.b.b.97.3 4
28.11 odd 6 98.5.b.b.97.4 4
28.19 even 6 14.5.d.a.5.1 yes 4
28.23 odd 6 98.5.d.a.19.1 4
28.27 even 2 98.5.d.a.31.1 4
84.11 even 6 882.5.c.b.685.1 4
84.47 odd 6 126.5.n.a.19.2 4
84.59 odd 6 882.5.c.b.685.2 4
140.19 even 6 350.5.k.a.201.2 4
140.47 odd 12 350.5.i.a.299.2 8
140.103 odd 12 350.5.i.a.299.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.5.d.a.3.1 4 4.3 odd 2
14.5.d.a.5.1 yes 4 28.19 even 6
98.5.b.b.97.3 4 28.3 even 6
98.5.b.b.97.4 4 28.11 odd 6
98.5.d.a.19.1 4 28.23 odd 6
98.5.d.a.31.1 4 28.27 even 2
112.5.s.b.17.2 4 1.1 even 1 trivial
112.5.s.b.33.2 4 7.5 odd 6 inner
126.5.n.a.19.2 4 84.47 odd 6
126.5.n.a.73.2 4 12.11 even 2
350.5.i.a.199.2 8 20.3 even 4
350.5.i.a.199.3 8 20.7 even 4
350.5.i.a.299.2 8 140.47 odd 12
350.5.i.a.299.3 8 140.103 odd 12
350.5.k.a.101.2 4 20.19 odd 2
350.5.k.a.201.2 4 140.19 even 6
784.5.c.b.97.1 4 7.4 even 3
784.5.c.b.97.4 4 7.3 odd 6
882.5.c.b.685.1 4 84.11 even 6
882.5.c.b.685.2 4 84.59 odd 6