Properties

Label 112.4.i.c
Level $112$
Weight $4$
Character orbit 112.i
Analytic conductor $6.608$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,4,Mod(65,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.65");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.60821392064\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 7)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 7 \zeta_{6} + 7) q^{3} - 7 \zeta_{6} q^{5} + ( - 14 \zeta_{6} - 7) q^{7} - 22 \zeta_{6} q^{9} + (5 \zeta_{6} - 5) q^{11} - 14 q^{13} - 49 q^{15} + ( - 21 \zeta_{6} + 21) q^{17} + 49 \zeta_{6} q^{19} + \cdots + 110 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 7 q^{3} - 7 q^{5} - 28 q^{7} - 22 q^{9} - 5 q^{11} - 28 q^{13} - 98 q^{15} + 21 q^{17} + 49 q^{19} - 245 q^{21} - 159 q^{23} + 76 q^{25} + 70 q^{27} + 116 q^{29} + 147 q^{31} + 35 q^{33} - 49 q^{35}+ \cdots + 220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.500000 0.866025i
0.500000 + 0.866025i
0 3.50000 + 6.06218i 0 −3.50000 + 6.06218i 0 −14.0000 + 12.1244i 0 −11.0000 + 19.0526i 0
81.1 0 3.50000 6.06218i 0 −3.50000 6.06218i 0 −14.0000 12.1244i 0 −11.0000 19.0526i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.4.i.c 2
4.b odd 2 1 7.4.c.a 2
7.c even 3 1 inner 112.4.i.c 2
7.c even 3 1 784.4.a.b 1
7.d odd 6 1 784.4.a.r 1
8.b even 2 1 448.4.i.a 2
8.d odd 2 1 448.4.i.f 2
12.b even 2 1 63.4.e.b 2
20.d odd 2 1 175.4.e.a 2
20.e even 4 2 175.4.k.a 4
28.d even 2 1 49.4.c.a 2
28.f even 6 1 49.4.a.c 1
28.f even 6 1 49.4.c.a 2
28.g odd 6 1 7.4.c.a 2
28.g odd 6 1 49.4.a.d 1
56.k odd 6 1 448.4.i.f 2
56.p even 6 1 448.4.i.a 2
84.h odd 2 1 441.4.e.k 2
84.j odd 6 1 441.4.a.e 1
84.j odd 6 1 441.4.e.k 2
84.n even 6 1 63.4.e.b 2
84.n even 6 1 441.4.a.d 1
140.p odd 6 1 175.4.e.a 2
140.p odd 6 1 1225.4.a.c 1
140.s even 6 1 1225.4.a.d 1
140.w even 12 2 175.4.k.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.4.c.a 2 4.b odd 2 1
7.4.c.a 2 28.g odd 6 1
49.4.a.c 1 28.f even 6 1
49.4.a.d 1 28.g odd 6 1
49.4.c.a 2 28.d even 2 1
49.4.c.a 2 28.f even 6 1
63.4.e.b 2 12.b even 2 1
63.4.e.b 2 84.n even 6 1
112.4.i.c 2 1.a even 1 1 trivial
112.4.i.c 2 7.c even 3 1 inner
175.4.e.a 2 20.d odd 2 1
175.4.e.a 2 140.p odd 6 1
175.4.k.a 4 20.e even 4 2
175.4.k.a 4 140.w even 12 2
441.4.a.d 1 84.n even 6 1
441.4.a.e 1 84.j odd 6 1
441.4.e.k 2 84.h odd 2 1
441.4.e.k 2 84.j odd 6 1
448.4.i.a 2 8.b even 2 1
448.4.i.a 2 56.p even 6 1
448.4.i.f 2 8.d odd 2 1
448.4.i.f 2 56.k odd 6 1
784.4.a.b 1 7.c even 3 1
784.4.a.r 1 7.d odd 6 1
1225.4.a.c 1 140.p odd 6 1
1225.4.a.d 1 140.s even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 7T_{3} + 49 \) acting on \(S_{4}^{\mathrm{new}}(112, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$5$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$7$ \( T^{2} + 28T + 343 \) Copy content Toggle raw display
$11$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$13$ \( (T + 14)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 21T + 441 \) Copy content Toggle raw display
$19$ \( T^{2} - 49T + 2401 \) Copy content Toggle raw display
$23$ \( T^{2} + 159T + 25281 \) Copy content Toggle raw display
$29$ \( (T - 58)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 147T + 21609 \) Copy content Toggle raw display
$37$ \( T^{2} + 219T + 47961 \) Copy content Toggle raw display
$41$ \( (T - 350)^{2} \) Copy content Toggle raw display
$43$ \( (T - 124)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} - 525T + 275625 \) Copy content Toggle raw display
$53$ \( T^{2} + 303T + 91809 \) Copy content Toggle raw display
$59$ \( T^{2} + 105T + 11025 \) Copy content Toggle raw display
$61$ \( T^{2} - 413T + 170569 \) Copy content Toggle raw display
$67$ \( T^{2} - 415T + 172225 \) Copy content Toggle raw display
$71$ \( (T - 432)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 1113 T + 1238769 \) Copy content Toggle raw display
$79$ \( T^{2} + 103T + 10609 \) Copy content Toggle raw display
$83$ \( (T + 1092)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 329T + 108241 \) Copy content Toggle raw display
$97$ \( (T + 882)^{2} \) Copy content Toggle raw display
show more
show less