Newspace parameters
Level: | \( N \) | \(=\) | \( 112 = 2^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 112.i (of order \(3\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.60821392064\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 14) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).
\(n\) | \(15\) | \(17\) | \(85\) |
\(\chi(n)\) | \(1\) | \(-\zeta_{6}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65.1 |
|
0 | −2.50000 | − | 4.33013i | 0 | 4.50000 | − | 7.79423i | 0 | 14.0000 | + | 12.1244i | 0 | 1.00000 | − | 1.73205i | 0 | ||||||||||||||||
81.1 | 0 | −2.50000 | + | 4.33013i | 0 | 4.50000 | + | 7.79423i | 0 | 14.0000 | − | 12.1244i | 0 | 1.00000 | + | 1.73205i | 0 | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 112.4.i.a | 2 | |
4.b | odd | 2 | 1 | 14.4.c.a | ✓ | 2 | |
7.c | even | 3 | 1 | inner | 112.4.i.a | 2 | |
7.c | even | 3 | 1 | 784.4.a.p | 1 | ||
7.d | odd | 6 | 1 | 784.4.a.c | 1 | ||
8.b | even | 2 | 1 | 448.4.i.e | 2 | ||
8.d | odd | 2 | 1 | 448.4.i.b | 2 | ||
12.b | even | 2 | 1 | 126.4.g.d | 2 | ||
20.d | odd | 2 | 1 | 350.4.e.e | 2 | ||
20.e | even | 4 | 2 | 350.4.j.b | 4 | ||
28.d | even | 2 | 1 | 98.4.c.a | 2 | ||
28.f | even | 6 | 1 | 98.4.a.f | 1 | ||
28.f | even | 6 | 1 | 98.4.c.a | 2 | ||
28.g | odd | 6 | 1 | 14.4.c.a | ✓ | 2 | |
28.g | odd | 6 | 1 | 98.4.a.d | 1 | ||
56.k | odd | 6 | 1 | 448.4.i.b | 2 | ||
56.p | even | 6 | 1 | 448.4.i.e | 2 | ||
84.h | odd | 2 | 1 | 882.4.g.u | 2 | ||
84.j | odd | 6 | 1 | 882.4.a.c | 1 | ||
84.j | odd | 6 | 1 | 882.4.g.u | 2 | ||
84.n | even | 6 | 1 | 126.4.g.d | 2 | ||
84.n | even | 6 | 1 | 882.4.a.f | 1 | ||
140.p | odd | 6 | 1 | 350.4.e.e | 2 | ||
140.p | odd | 6 | 1 | 2450.4.a.q | 1 | ||
140.s | even | 6 | 1 | 2450.4.a.d | 1 | ||
140.w | even | 12 | 2 | 350.4.j.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
14.4.c.a | ✓ | 2 | 4.b | odd | 2 | 1 | |
14.4.c.a | ✓ | 2 | 28.g | odd | 6 | 1 | |
98.4.a.d | 1 | 28.g | odd | 6 | 1 | ||
98.4.a.f | 1 | 28.f | even | 6 | 1 | ||
98.4.c.a | 2 | 28.d | even | 2 | 1 | ||
98.4.c.a | 2 | 28.f | even | 6 | 1 | ||
112.4.i.a | 2 | 1.a | even | 1 | 1 | trivial | |
112.4.i.a | 2 | 7.c | even | 3 | 1 | inner | |
126.4.g.d | 2 | 12.b | even | 2 | 1 | ||
126.4.g.d | 2 | 84.n | even | 6 | 1 | ||
350.4.e.e | 2 | 20.d | odd | 2 | 1 | ||
350.4.e.e | 2 | 140.p | odd | 6 | 1 | ||
350.4.j.b | 4 | 20.e | even | 4 | 2 | ||
350.4.j.b | 4 | 140.w | even | 12 | 2 | ||
448.4.i.b | 2 | 8.d | odd | 2 | 1 | ||
448.4.i.b | 2 | 56.k | odd | 6 | 1 | ||
448.4.i.e | 2 | 8.b | even | 2 | 1 | ||
448.4.i.e | 2 | 56.p | even | 6 | 1 | ||
784.4.a.c | 1 | 7.d | odd | 6 | 1 | ||
784.4.a.p | 1 | 7.c | even | 3 | 1 | ||
882.4.a.c | 1 | 84.j | odd | 6 | 1 | ||
882.4.a.f | 1 | 84.n | even | 6 | 1 | ||
882.4.g.u | 2 | 84.h | odd | 2 | 1 | ||
882.4.g.u | 2 | 84.j | odd | 6 | 1 | ||
2450.4.a.d | 1 | 140.s | even | 6 | 1 | ||
2450.4.a.q | 1 | 140.p | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} + 5T_{3} + 25 \)
acting on \(S_{4}^{\mathrm{new}}(112, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 5T + 25 \)
$5$
\( T^{2} - 9T + 81 \)
$7$
\( T^{2} - 28T + 343 \)
$11$
\( T^{2} + 57T + 3249 \)
$13$
\( (T + 70)^{2} \)
$17$
\( T^{2} + 51T + 2601 \)
$19$
\( T^{2} - 5T + 25 \)
$23$
\( T^{2} - 69T + 4761 \)
$29$
\( (T - 114)^{2} \)
$31$
\( T^{2} - 23T + 529 \)
$37$
\( T^{2} - 253T + 64009 \)
$41$
\( (T + 42)^{2} \)
$43$
\( (T - 124)^{2} \)
$47$
\( T^{2} - 201T + 40401 \)
$53$
\( T^{2} - 393T + 154449 \)
$59$
\( T^{2} - 219T + 47961 \)
$61$
\( T^{2} - 709T + 502681 \)
$67$
\( T^{2} - 419T + 175561 \)
$71$
\( (T - 96)^{2} \)
$73$
\( T^{2} - 313T + 97969 \)
$79$
\( T^{2} - 461T + 212521 \)
$83$
\( (T - 588)^{2} \)
$89$
\( T^{2} - 1017 T + 1034289 \)
$97$
\( (T + 1834)^{2} \)
show more
show less