Properties

Label 112.2.p
Level $112$
Weight $2$
Character orbit 112.p
Rep. character $\chi_{112}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $8$
Newform subspaces $3$
Sturm bound $32$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 28 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(112, [\chi])\).

Total New Old
Modular forms 44 8 36
Cusp forms 20 8 12
Eisenstein series 24 0 24

Trace form

\( 8 q - 4 q^{9} + O(q^{10}) \) \( 8 q - 4 q^{9} + 4 q^{21} - 8 q^{25} - 24 q^{29} - 36 q^{33} - 4 q^{37} + 36 q^{45} + 32 q^{49} + 12 q^{53} + 56 q^{57} + 36 q^{61} - 12 q^{65} - 12 q^{73} - 48 q^{77} + 8 q^{81} - 72 q^{85} - 36 q^{89} + 4 q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
112.2.p.a 112.p 28.f $2$ $0.894$ \(\Q(\sqrt{-3}) \) None \(0\) \(-1\) \(3\) \(4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1+\zeta_{6})q^{3}+(2-\zeta_{6})q^{5}+(1+2\zeta_{6})q^{7}+\cdots\)
112.2.p.b 112.p 28.f $2$ $0.894$ \(\Q(\sqrt{-3}) \) None \(0\) \(1\) \(3\) \(-4\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\zeta_{6})q^{3}+(2-\zeta_{6})q^{5}+(-1-2\zeta_{6})q^{7}+\cdots\)
112.2.p.c 112.p 28.f $4$ $0.894$ \(\Q(\sqrt{-3}, \sqrt{7})\) None \(0\) \(0\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{1}q^{3}+(-2-\beta _{2})q^{5}-\beta _{3}q^{7}+4\beta _{2}q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(112, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)