Properties

Label 112.2.m.b.29.1
Level $112$
Weight $2$
Character 112.29
Analytic conductor $0.894$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,2,Mod(29,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.29"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 112.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.894324502638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 29.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 112.29
Dual form 112.2.m.b.85.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(2.00000 - 2.00000i) q^{5} +1.00000i q^{7} +(2.00000 - 2.00000i) q^{8} -3.00000i q^{9} -4.00000 q^{10} +(1.00000 - 1.00000i) q^{11} +(1.00000 - 1.00000i) q^{14} -4.00000 q^{16} -2.00000 q^{17} +(-3.00000 + 3.00000i) q^{18} +(2.00000 + 2.00000i) q^{19} +(4.00000 + 4.00000i) q^{20} -2.00000 q^{22} +6.00000i q^{23} -3.00000i q^{25} -2.00000 q^{28} +(7.00000 + 7.00000i) q^{29} -8.00000 q^{31} +(4.00000 + 4.00000i) q^{32} +(2.00000 + 2.00000i) q^{34} +(2.00000 + 2.00000i) q^{35} +6.00000 q^{36} +(-5.00000 + 5.00000i) q^{37} -4.00000i q^{38} -8.00000i q^{40} -10.0000i q^{41} +(-1.00000 + 1.00000i) q^{43} +(2.00000 + 2.00000i) q^{44} +(-6.00000 - 6.00000i) q^{45} +(6.00000 - 6.00000i) q^{46} -12.0000 q^{47} -1.00000 q^{49} +(-3.00000 + 3.00000i) q^{50} +(-1.00000 + 1.00000i) q^{53} -4.00000i q^{55} +(2.00000 + 2.00000i) q^{56} -14.0000i q^{58} +(8.00000 - 8.00000i) q^{59} +(6.00000 + 6.00000i) q^{61} +(8.00000 + 8.00000i) q^{62} +3.00000 q^{63} -8.00000i q^{64} +(3.00000 + 3.00000i) q^{67} -4.00000i q^{68} -4.00000i q^{70} +(-6.00000 - 6.00000i) q^{72} +6.00000i q^{73} +10.0000 q^{74} +(-4.00000 + 4.00000i) q^{76} +(1.00000 + 1.00000i) q^{77} +10.0000 q^{79} +(-8.00000 + 8.00000i) q^{80} -9.00000 q^{81} +(-10.0000 + 10.0000i) q^{82} +(-10.0000 - 10.0000i) q^{83} +(-4.00000 + 4.00000i) q^{85} +2.00000 q^{86} -4.00000i q^{88} +14.0000i q^{89} +12.0000i q^{90} -12.0000 q^{92} +(12.0000 + 12.0000i) q^{94} +8.00000 q^{95} -2.00000 q^{97} +(1.00000 + 1.00000i) q^{98} +(-3.00000 - 3.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 4 q^{5} + 4 q^{8} - 8 q^{10} + 2 q^{11} + 2 q^{14} - 8 q^{16} - 4 q^{17} - 6 q^{18} + 4 q^{19} + 8 q^{20} - 4 q^{22} - 4 q^{28} + 14 q^{29} - 16 q^{31} + 8 q^{32} + 4 q^{34} + 4 q^{35} + 12 q^{36}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.707107 0.707107i
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 2.00000i 1.00000i
\(5\) 2.00000 2.00000i 0.894427 0.894427i −0.100509 0.994936i \(-0.532047\pi\)
0.994936 + 0.100509i \(0.0320471\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 2.00000 2.00000i 0.707107 0.707107i
\(9\) 3.00000i 1.00000i
\(10\) −4.00000 −1.26491
\(11\) 1.00000 1.00000i 0.301511 0.301511i −0.540094 0.841605i \(-0.681611\pi\)
0.841605 + 0.540094i \(0.181611\pi\)
\(12\) 0 0
\(13\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(14\) 1.00000 1.00000i 0.267261 0.267261i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) −3.00000 + 3.00000i −0.707107 + 0.707107i
\(19\) 2.00000 + 2.00000i 0.458831 + 0.458831i 0.898272 0.439440i \(-0.144823\pi\)
−0.439440 + 0.898272i \(0.644823\pi\)
\(20\) 4.00000 + 4.00000i 0.894427 + 0.894427i
\(21\) 0 0
\(22\) −2.00000 −0.426401
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 3.00000i 0.600000i
\(26\) 0 0
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) 7.00000 + 7.00000i 1.29987 + 1.29987i 0.928477 + 0.371391i \(0.121119\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 4.00000 + 4.00000i 0.707107 + 0.707107i
\(33\) 0 0
\(34\) 2.00000 + 2.00000i 0.342997 + 0.342997i
\(35\) 2.00000 + 2.00000i 0.338062 + 0.338062i
\(36\) 6.00000 1.00000
\(37\) −5.00000 + 5.00000i −0.821995 + 0.821995i −0.986394 0.164399i \(-0.947432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 8.00000i 1.26491i
\(41\) 10.0000i 1.56174i −0.624695 0.780869i \(-0.714777\pi\)
0.624695 0.780869i \(-0.285223\pi\)
\(42\) 0 0
\(43\) −1.00000 + 1.00000i −0.152499 + 0.152499i −0.779233 0.626734i \(-0.784391\pi\)
0.626734 + 0.779233i \(0.284391\pi\)
\(44\) 2.00000 + 2.00000i 0.301511 + 0.301511i
\(45\) −6.00000 6.00000i −0.894427 0.894427i
\(46\) 6.00000 6.00000i 0.884652 0.884652i
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) −3.00000 + 3.00000i −0.424264 + 0.424264i
\(51\) 0 0
\(52\) 0 0
\(53\) −1.00000 + 1.00000i −0.137361 + 0.137361i −0.772444 0.635083i \(-0.780966\pi\)
0.635083 + 0.772444i \(0.280966\pi\)
\(54\) 0 0
\(55\) 4.00000i 0.539360i
\(56\) 2.00000 + 2.00000i 0.267261 + 0.267261i
\(57\) 0 0
\(58\) 14.0000i 1.83829i
\(59\) 8.00000 8.00000i 1.04151 1.04151i 0.0424110 0.999100i \(-0.486496\pi\)
0.999100 0.0424110i \(-0.0135039\pi\)
\(60\) 0 0
\(61\) 6.00000 + 6.00000i 0.768221 + 0.768221i 0.977793 0.209572i \(-0.0672070\pi\)
−0.209572 + 0.977793i \(0.567207\pi\)
\(62\) 8.00000 + 8.00000i 1.01600 + 1.01600i
\(63\) 3.00000 0.377964
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) 3.00000 + 3.00000i 0.366508 + 0.366508i 0.866202 0.499694i \(-0.166554\pi\)
−0.499694 + 0.866202i \(0.666554\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 0 0
\(70\) 4.00000i 0.478091i
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −6.00000 6.00000i −0.707107 0.707107i
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 10.0000 1.16248
\(75\) 0 0
\(76\) −4.00000 + 4.00000i −0.458831 + 0.458831i
\(77\) 1.00000 + 1.00000i 0.113961 + 0.113961i
\(78\) 0 0
\(79\) 10.0000 1.12509 0.562544 0.826767i \(-0.309823\pi\)
0.562544 + 0.826767i \(0.309823\pi\)
\(80\) −8.00000 + 8.00000i −0.894427 + 0.894427i
\(81\) −9.00000 −1.00000
\(82\) −10.0000 + 10.0000i −1.10432 + 1.10432i
\(83\) −10.0000 10.0000i −1.09764 1.09764i −0.994686 0.102957i \(-0.967170\pi\)
−0.102957 0.994686i \(-0.532830\pi\)
\(84\) 0 0
\(85\) −4.00000 + 4.00000i −0.433861 + 0.433861i
\(86\) 2.00000 0.215666
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) 14.0000i 1.48400i 0.670402 + 0.741999i \(0.266122\pi\)
−0.670402 + 0.741999i \(0.733878\pi\)
\(90\) 12.0000i 1.26491i
\(91\) 0 0
\(92\) −12.0000 −1.25109
\(93\) 0 0
\(94\) 12.0000 + 12.0000i 1.23771 + 1.23771i
\(95\) 8.00000 0.820783
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 1.00000 + 1.00000i 0.101015 + 0.101015i
\(99\) −3.00000 3.00000i −0.301511 0.301511i
\(100\) 6.00000 0.600000
\(101\) 6.00000 6.00000i 0.597022 0.597022i −0.342497 0.939519i \(-0.611273\pi\)
0.939519 + 0.342497i \(0.111273\pi\)
\(102\) 0 0
\(103\) 4.00000i 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) 5.00000 5.00000i 0.483368 0.483368i −0.422837 0.906206i \(-0.638966\pi\)
0.906206 + 0.422837i \(0.138966\pi\)
\(108\) 0 0
\(109\) −3.00000 3.00000i −0.287348 0.287348i 0.548683 0.836031i \(-0.315129\pi\)
−0.836031 + 0.548683i \(0.815129\pi\)
\(110\) −4.00000 + 4.00000i −0.381385 + 0.381385i
\(111\) 0 0
\(112\) 4.00000i 0.377964i
\(113\) 4.00000 0.376288 0.188144 0.982141i \(-0.439753\pi\)
0.188144 + 0.982141i \(0.439753\pi\)
\(114\) 0 0
\(115\) 12.0000 + 12.0000i 1.11901 + 1.11901i
\(116\) −14.0000 + 14.0000i −1.29987 + 1.29987i
\(117\) 0 0
\(118\) −16.0000 −1.47292
\(119\) 2.00000i 0.183340i
\(120\) 0 0
\(121\) 9.00000i 0.818182i
\(122\) 12.0000i 1.08643i
\(123\) 0 0
\(124\) 16.0000i 1.43684i
\(125\) 4.00000 + 4.00000i 0.357771 + 0.357771i
\(126\) −3.00000 3.00000i −0.267261 0.267261i
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) −8.00000 + 8.00000i −0.707107 + 0.707107i
\(129\) 0 0
\(130\) 0 0
\(131\) −14.0000 14.0000i −1.22319 1.22319i −0.966493 0.256693i \(-0.917367\pi\)
−0.256693 0.966493i \(-0.582633\pi\)
\(132\) 0 0
\(133\) −2.00000 + 2.00000i −0.173422 + 0.173422i
\(134\) 6.00000i 0.518321i
\(135\) 0 0
\(136\) −4.00000 + 4.00000i −0.342997 + 0.342997i
\(137\) 12.0000i 1.02523i −0.858619 0.512615i \(-0.828677\pi\)
0.858619 0.512615i \(-0.171323\pi\)
\(138\) 0 0
\(139\) −2.00000 + 2.00000i −0.169638 + 0.169638i −0.786820 0.617182i \(-0.788274\pi\)
0.617182 + 0.786820i \(0.288274\pi\)
\(140\) −4.00000 + 4.00000i −0.338062 + 0.338062i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.0000i 1.00000i
\(145\) 28.0000 2.32527
\(146\) 6.00000 6.00000i 0.496564 0.496564i
\(147\) 0 0
\(148\) −10.0000 10.0000i −0.821995 0.821995i
\(149\) 3.00000 3.00000i 0.245770 0.245770i −0.573462 0.819232i \(-0.694400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) 10.0000i 0.813788i −0.913475 0.406894i \(-0.866612\pi\)
0.913475 0.406894i \(-0.133388\pi\)
\(152\) 8.00000 0.648886
\(153\) 6.00000i 0.485071i
\(154\) 2.00000i 0.161165i
\(155\) −16.0000 + 16.0000i −1.28515 + 1.28515i
\(156\) 0 0
\(157\) −12.0000 12.0000i −0.957704 0.957704i 0.0414369 0.999141i \(-0.486806\pi\)
−0.999141 + 0.0414369i \(0.986806\pi\)
\(158\) −10.0000 10.0000i −0.795557 0.795557i
\(159\) 0 0
\(160\) 16.0000 1.26491
\(161\) −6.00000 −0.472866
\(162\) 9.00000 + 9.00000i 0.707107 + 0.707107i
\(163\) 15.0000 + 15.0000i 1.17489 + 1.17489i 0.981029 + 0.193862i \(0.0621013\pi\)
0.193862 + 0.981029i \(0.437899\pi\)
\(164\) 20.0000 1.56174
\(165\) 0 0
\(166\) 20.0000i 1.55230i
\(167\) 12.0000i 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 8.00000 0.613572
\(171\) 6.00000 6.00000i 0.458831 0.458831i
\(172\) −2.00000 2.00000i −0.152499 0.152499i
\(173\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(174\) 0 0
\(175\) 3.00000 0.226779
\(176\) −4.00000 + 4.00000i −0.301511 + 0.301511i
\(177\) 0 0
\(178\) 14.0000 14.0000i 1.04934 1.04934i
\(179\) −3.00000 3.00000i −0.224231 0.224231i 0.586047 0.810277i \(-0.300683\pi\)
−0.810277 + 0.586047i \(0.800683\pi\)
\(180\) 12.0000 12.0000i 0.894427 0.894427i
\(181\) −4.00000 + 4.00000i −0.297318 + 0.297318i −0.839962 0.542645i \(-0.817423\pi\)
0.542645 + 0.839962i \(0.317423\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 12.0000 + 12.0000i 0.884652 + 0.884652i
\(185\) 20.0000i 1.47043i
\(186\) 0 0
\(187\) −2.00000 + 2.00000i −0.146254 + 0.146254i
\(188\) 24.0000i 1.75038i
\(189\) 0 0
\(190\) −8.00000 8.00000i −0.580381 0.580381i
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 2.00000 + 2.00000i 0.143592 + 0.143592i
\(195\) 0 0
\(196\) 2.00000i 0.142857i
\(197\) 5.00000 5.00000i 0.356235 0.356235i −0.506188 0.862423i \(-0.668946\pi\)
0.862423 + 0.506188i \(0.168946\pi\)
\(198\) 6.00000i 0.426401i
\(199\) 24.0000i 1.70131i 0.525720 + 0.850657i \(0.323796\pi\)
−0.525720 + 0.850657i \(0.676204\pi\)
\(200\) −6.00000 6.00000i −0.424264 0.424264i
\(201\) 0 0
\(202\) −12.0000 −0.844317
\(203\) −7.00000 + 7.00000i −0.491304 + 0.491304i
\(204\) 0 0
\(205\) −20.0000 20.0000i −1.39686 1.39686i
\(206\) −4.00000 + 4.00000i −0.278693 + 0.278693i
\(207\) 18.0000 1.25109
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −9.00000 9.00000i −0.619586 0.619586i 0.325840 0.945425i \(-0.394353\pi\)
−0.945425 + 0.325840i \(0.894353\pi\)
\(212\) −2.00000 2.00000i −0.137361 0.137361i
\(213\) 0 0
\(214\) −10.0000 −0.683586
\(215\) 4.00000i 0.272798i
\(216\) 0 0
\(217\) 8.00000i 0.543075i
\(218\) 6.00000i 0.406371i
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −4.00000 + 4.00000i −0.267261 + 0.267261i
\(225\) −9.00000 −0.600000
\(226\) −4.00000 4.00000i −0.266076 0.266076i
\(227\) −2.00000 2.00000i −0.132745 0.132745i 0.637613 0.770357i \(-0.279922\pi\)
−0.770357 + 0.637613i \(0.779922\pi\)
\(228\) 0 0
\(229\) 8.00000 8.00000i 0.528655 0.528655i −0.391516 0.920171i \(-0.628049\pi\)
0.920171 + 0.391516i \(0.128049\pi\)
\(230\) 24.0000i 1.58251i
\(231\) 0 0
\(232\) 28.0000 1.83829
\(233\) 16.0000i 1.04819i 0.851658 + 0.524097i \(0.175597\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) −24.0000 + 24.0000i −1.56559 + 1.56559i
\(236\) 16.0000 + 16.0000i 1.04151 + 1.04151i
\(237\) 0 0
\(238\) −2.00000 + 2.00000i −0.129641 + 0.129641i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 9.00000 9.00000i 0.578542 0.578542i
\(243\) 0 0
\(244\) −12.0000 + 12.0000i −0.768221 + 0.768221i
\(245\) −2.00000 + 2.00000i −0.127775 + 0.127775i
\(246\) 0 0
\(247\) 0 0
\(248\) −16.0000 + 16.0000i −1.01600 + 1.01600i
\(249\) 0 0
\(250\) 8.00000i 0.505964i
\(251\) −14.0000 + 14.0000i −0.883672 + 0.883672i −0.993906 0.110234i \(-0.964840\pi\)
0.110234 + 0.993906i \(0.464840\pi\)
\(252\) 6.00000i 0.377964i
\(253\) 6.00000 + 6.00000i 0.377217 + 0.377217i
\(254\) −8.00000 8.00000i −0.501965 0.501965i
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) −5.00000 5.00000i −0.310685 0.310685i
\(260\) 0 0
\(261\) 21.0000 21.0000i 1.29987 1.29987i
\(262\) 28.0000i 1.72985i
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 0 0
\(265\) 4.00000i 0.245718i
\(266\) 4.00000 0.245256
\(267\) 0 0
\(268\) −6.00000 + 6.00000i −0.366508 + 0.366508i
\(269\) −8.00000 8.00000i −0.487769 0.487769i 0.419833 0.907601i \(-0.362089\pi\)
−0.907601 + 0.419833i \(0.862089\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 8.00000 0.485071
\(273\) 0 0
\(274\) −12.0000 + 12.0000i −0.724947 + 0.724947i
\(275\) −3.00000 3.00000i −0.180907 0.180907i
\(276\) 0 0
\(277\) −15.0000 + 15.0000i −0.901263 + 0.901263i −0.995545 0.0942828i \(-0.969944\pi\)
0.0942828 + 0.995545i \(0.469944\pi\)
\(278\) 4.00000 0.239904
\(279\) 24.0000i 1.43684i
\(280\) 8.00000 0.478091
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 4.00000 4.00000i 0.237775 0.237775i −0.578153 0.815928i \(-0.696226\pi\)
0.815928 + 0.578153i \(0.196226\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.0000 0.590281
\(288\) 12.0000 12.0000i 0.707107 0.707107i
\(289\) −13.0000 −0.764706
\(290\) −28.0000 28.0000i −1.64422 1.64422i
\(291\) 0 0
\(292\) −12.0000 −0.702247
\(293\) 14.0000 14.0000i 0.817889 0.817889i −0.167913 0.985802i \(-0.553703\pi\)
0.985802 + 0.167913i \(0.0537028\pi\)
\(294\) 0 0
\(295\) 32.0000i 1.86311i
\(296\) 20.0000i 1.16248i
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 0 0
\(300\) 0 0
\(301\) −1.00000 1.00000i −0.0576390 0.0576390i
\(302\) −10.0000 + 10.0000i −0.575435 + 0.575435i
\(303\) 0 0
\(304\) −8.00000 8.00000i −0.458831 0.458831i
\(305\) 24.0000 1.37424
\(306\) 6.00000 6.00000i 0.342997 0.342997i
\(307\) 18.0000 + 18.0000i 1.02731 + 1.02731i 0.999616 + 0.0276979i \(0.00881765\pi\)
0.0276979 + 0.999616i \(0.491182\pi\)
\(308\) −2.00000 + 2.00000i −0.113961 + 0.113961i
\(309\) 0 0
\(310\) 32.0000 1.81748
\(311\) 20.0000i 1.13410i −0.823685 0.567048i \(-0.808085\pi\)
0.823685 0.567048i \(-0.191915\pi\)
\(312\) 0 0
\(313\) 14.0000i 0.791327i −0.918396 0.395663i \(-0.870515\pi\)
0.918396 0.395663i \(-0.129485\pi\)
\(314\) 24.0000i 1.35440i
\(315\) 6.00000 6.00000i 0.338062 0.338062i
\(316\) 20.0000i 1.12509i
\(317\) −7.00000 7.00000i −0.393159 0.393159i 0.482653 0.875812i \(-0.339673\pi\)
−0.875812 + 0.482653i \(0.839673\pi\)
\(318\) 0 0
\(319\) 14.0000 0.783850
\(320\) −16.0000 16.0000i −0.894427 0.894427i
\(321\) 0 0
\(322\) 6.00000 + 6.00000i 0.334367 + 0.334367i
\(323\) −4.00000 4.00000i −0.222566 0.222566i
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 30.0000i 1.66155i
\(327\) 0 0
\(328\) −20.0000 20.0000i −1.10432 1.10432i
\(329\) 12.0000i 0.661581i
\(330\) 0 0
\(331\) 21.0000 21.0000i 1.15426 1.15426i 0.168576 0.985689i \(-0.446083\pi\)
0.985689 0.168576i \(-0.0539168\pi\)
\(332\) 20.0000 20.0000i 1.09764 1.09764i
\(333\) 15.0000 + 15.0000i 0.821995 + 0.821995i
\(334\) −12.0000 + 12.0000i −0.656611 + 0.656611i
\(335\) 12.0000 0.655630
\(336\) 0 0
\(337\) 8.00000 0.435788 0.217894 0.975972i \(-0.430081\pi\)
0.217894 + 0.975972i \(0.430081\pi\)
\(338\) −13.0000 + 13.0000i −0.707107 + 0.707107i
\(339\) 0 0
\(340\) −8.00000 8.00000i −0.433861 0.433861i
\(341\) −8.00000 + 8.00000i −0.433224 + 0.433224i
\(342\) −12.0000 −0.648886
\(343\) 1.00000i 0.0539949i
\(344\) 4.00000i 0.215666i
\(345\) 0 0
\(346\) 0 0
\(347\) 15.0000 15.0000i 0.805242 0.805242i −0.178667 0.983910i \(-0.557179\pi\)
0.983910 + 0.178667i \(0.0571786\pi\)
\(348\) 0 0
\(349\) 12.0000 + 12.0000i 0.642345 + 0.642345i 0.951131 0.308786i \(-0.0999228\pi\)
−0.308786 + 0.951131i \(0.599923\pi\)
\(350\) −3.00000 3.00000i −0.160357 0.160357i
\(351\) 0 0
\(352\) 8.00000 0.426401
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −28.0000 −1.48400
\(357\) 0 0
\(358\) 6.00000i 0.317110i
\(359\) 6.00000i 0.316668i −0.987386 0.158334i \(-0.949388\pi\)
0.987386 0.158334i \(-0.0506123\pi\)
\(360\) −24.0000 −1.26491
\(361\) 11.0000i 0.578947i
\(362\) 8.00000 0.420471
\(363\) 0 0
\(364\) 0 0
\(365\) 12.0000 + 12.0000i 0.628109 + 0.628109i
\(366\) 0 0
\(367\) −32.0000 −1.67039 −0.835193 0.549957i \(-0.814644\pi\)
−0.835193 + 0.549957i \(0.814644\pi\)
\(368\) 24.0000i 1.25109i
\(369\) −30.0000 −1.56174
\(370\) 20.0000 20.0000i 1.03975 1.03975i
\(371\) −1.00000 1.00000i −0.0519174 0.0519174i
\(372\) 0 0
\(373\) −11.0000 + 11.0000i −0.569558 + 0.569558i −0.932005 0.362446i \(-0.881942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) −24.0000 + 24.0000i −1.23771 + 1.23771i
\(377\) 0 0
\(378\) 0 0
\(379\) 13.0000 13.0000i 0.667765 0.667765i −0.289433 0.957198i \(-0.593467\pi\)
0.957198 + 0.289433i \(0.0934668\pi\)
\(380\) 16.0000i 0.820783i
\(381\) 0 0
\(382\) 18.0000 + 18.0000i 0.920960 + 0.920960i
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 16.0000 + 16.0000i 0.814379 + 0.814379i
\(387\) 3.00000 + 3.00000i 0.152499 + 0.152499i
\(388\) 4.00000i 0.203069i
\(389\) 3.00000 3.00000i 0.152106 0.152106i −0.626952 0.779058i \(-0.715698\pi\)
0.779058 + 0.626952i \(0.215698\pi\)
\(390\) 0 0
\(391\) 12.0000i 0.606866i
\(392\) −2.00000 + 2.00000i −0.101015 + 0.101015i
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 20.0000 20.0000i 1.00631 1.00631i
\(396\) 6.00000 6.00000i 0.301511 0.301511i
\(397\) −12.0000 12.0000i −0.602263 0.602263i 0.338650 0.940913i \(-0.390030\pi\)
−0.940913 + 0.338650i \(0.890030\pi\)
\(398\) 24.0000 24.0000i 1.20301 1.20301i
\(399\) 0 0
\(400\) 12.0000i 0.600000i
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 12.0000 + 12.0000i 0.597022 + 0.597022i
\(405\) −18.0000 + 18.0000i −0.894427 + 0.894427i
\(406\) 14.0000 0.694808
\(407\) 10.0000i 0.495682i
\(408\) 0 0
\(409\) 14.0000i 0.692255i 0.938187 + 0.346128i \(0.112504\pi\)
−0.938187 + 0.346128i \(0.887496\pi\)
\(410\) 40.0000i 1.97546i
\(411\) 0 0
\(412\) 8.00000 0.394132
\(413\) 8.00000 + 8.00000i 0.393654 + 0.393654i
\(414\) −18.0000 18.0000i −0.884652 0.884652i
\(415\) −40.0000 −1.96352
\(416\) 0 0
\(417\) 0 0
\(418\) −4.00000 4.00000i −0.195646 0.195646i
\(419\) 12.0000 + 12.0000i 0.586238 + 0.586238i 0.936611 0.350372i \(-0.113945\pi\)
−0.350372 + 0.936611i \(0.613945\pi\)
\(420\) 0 0
\(421\) −9.00000 + 9.00000i −0.438633 + 0.438633i −0.891552 0.452919i \(-0.850383\pi\)
0.452919 + 0.891552i \(0.350383\pi\)
\(422\) 18.0000i 0.876226i
\(423\) 36.0000i 1.75038i
\(424\) 4.00000i 0.194257i
\(425\) 6.00000i 0.291043i
\(426\) 0 0
\(427\) −6.00000 + 6.00000i −0.290360 + 0.290360i
\(428\) 10.0000 + 10.0000i 0.483368 + 0.483368i
\(429\) 0 0
\(430\) 4.00000 4.00000i 0.192897 0.192897i
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) −6.00000 −0.288342 −0.144171 0.989553i \(-0.546051\pi\)
−0.144171 + 0.989553i \(0.546051\pi\)
\(434\) −8.00000 + 8.00000i −0.384012 + 0.384012i
\(435\) 0 0
\(436\) 6.00000 6.00000i 0.287348 0.287348i
\(437\) −12.0000 + 12.0000i −0.574038 + 0.574038i
\(438\) 0 0
\(439\) 16.0000i 0.763638i −0.924237 0.381819i \(-0.875298\pi\)
0.924237 0.381819i \(-0.124702\pi\)
\(440\) −8.00000 8.00000i −0.381385 0.381385i
\(441\) 3.00000i 0.142857i
\(442\) 0 0
\(443\) −1.00000 + 1.00000i −0.0475114 + 0.0475114i −0.730463 0.682952i \(-0.760696\pi\)
0.682952 + 0.730463i \(0.260696\pi\)
\(444\) 0 0
\(445\) 28.0000 + 28.0000i 1.32733 + 1.32733i
\(446\) −4.00000 4.00000i −0.189405 0.189405i
\(447\) 0 0
\(448\) 8.00000 0.377964
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 9.00000 + 9.00000i 0.424264 + 0.424264i
\(451\) −10.0000 10.0000i −0.470882 0.470882i
\(452\) 8.00000i 0.376288i
\(453\) 0 0
\(454\) 4.00000i 0.187729i
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i −0.857455 0.514558i \(-0.827956\pi\)
0.857455 0.514558i \(-0.172044\pi\)
\(458\) −16.0000 −0.747631
\(459\) 0 0
\(460\) −24.0000 + 24.0000i −1.11901 + 1.11901i
\(461\) 16.0000 + 16.0000i 0.745194 + 0.745194i 0.973572 0.228378i \(-0.0733423\pi\)
−0.228378 + 0.973572i \(0.573342\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) −28.0000 28.0000i −1.29987 1.29987i
\(465\) 0 0
\(466\) 16.0000 16.0000i 0.741186 0.741186i
\(467\) 18.0000 + 18.0000i 0.832941 + 0.832941i 0.987918 0.154977i \(-0.0495305\pi\)
−0.154977 + 0.987918i \(0.549530\pi\)
\(468\) 0 0
\(469\) −3.00000 + 3.00000i −0.138527 + 0.138527i
\(470\) 48.0000 2.21407
\(471\) 0 0
\(472\) 32.0000i 1.47292i
\(473\) 2.00000i 0.0919601i
\(474\) 0 0
\(475\) 6.00000 6.00000i 0.275299 0.275299i
\(476\) 4.00000 0.183340
\(477\) 3.00000 + 3.00000i 0.137361 + 0.137361i
\(478\) 0 0
\(479\) −20.0000 −0.913823 −0.456912 0.889512i \(-0.651044\pi\)
−0.456912 + 0.889512i \(0.651044\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −22.0000 22.0000i −1.00207 1.00207i
\(483\) 0 0
\(484\) −18.0000 −0.818182
\(485\) −4.00000 + 4.00000i −0.181631 + 0.181631i
\(486\) 0 0
\(487\) 22.0000i 0.996915i −0.866914 0.498458i \(-0.833900\pi\)
0.866914 0.498458i \(-0.166100\pi\)
\(488\) 24.0000 1.08643
\(489\) 0 0
\(490\) 4.00000 0.180702
\(491\) −19.0000 + 19.0000i −0.857458 + 0.857458i −0.991038 0.133580i \(-0.957353\pi\)
0.133580 + 0.991038i \(0.457353\pi\)
\(492\) 0 0
\(493\) −14.0000 14.0000i −0.630528 0.630528i
\(494\) 0 0
\(495\) −12.0000 −0.539360
\(496\) 32.0000 1.43684
\(497\) 0 0
\(498\) 0 0
\(499\) −23.0000 23.0000i −1.02962 1.02962i −0.999548 0.0300737i \(-0.990426\pi\)
−0.0300737 0.999548i \(-0.509574\pi\)
\(500\) −8.00000 + 8.00000i −0.357771 + 0.357771i
\(501\) 0 0
\(502\) 28.0000 1.24970
\(503\) 16.0000i 0.713405i 0.934218 + 0.356702i \(0.116099\pi\)
−0.934218 + 0.356702i \(0.883901\pi\)
\(504\) 6.00000 6.00000i 0.267261 0.267261i
\(505\) 24.0000i 1.06799i
\(506\) 12.0000i 0.533465i
\(507\) 0 0
\(508\) 16.0000i 0.709885i
\(509\) −8.00000 8.00000i −0.354594 0.354594i 0.507222 0.861816i \(-0.330672\pi\)
−0.861816 + 0.507222i \(0.830672\pi\)
\(510\) 0 0
\(511\) −6.00000 −0.265424
\(512\) −16.0000 16.0000i −0.707107 0.707107i
\(513\) 0 0
\(514\) 2.00000 + 2.00000i 0.0882162 + 0.0882162i
\(515\) −8.00000 8.00000i −0.352522 0.352522i
\(516\) 0 0
\(517\) −12.0000 + 12.0000i −0.527759 + 0.527759i
\(518\) 10.0000i 0.439375i
\(519\) 0 0
\(520\) 0 0
\(521\) 10.0000i 0.438108i 0.975713 + 0.219054i \(0.0702971\pi\)
−0.975713 + 0.219054i \(0.929703\pi\)
\(522\) −42.0000 −1.83829
\(523\) 24.0000 24.0000i 1.04945 1.04945i 0.0507346 0.998712i \(-0.483844\pi\)
0.998712 0.0507346i \(-0.0161562\pi\)
\(524\) 28.0000 28.0000i 1.22319 1.22319i
\(525\) 0 0
\(526\) 16.0000 16.0000i 0.697633 0.697633i
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 4.00000 4.00000i 0.173749 0.173749i
\(531\) −24.0000 24.0000i −1.04151 1.04151i
\(532\) −4.00000 4.00000i −0.173422 0.173422i
\(533\) 0 0
\(534\) 0 0
\(535\) 20.0000i 0.864675i
\(536\) 12.0000 0.518321
\(537\) 0 0
\(538\) 16.0000i 0.689809i
\(539\) −1.00000 + 1.00000i −0.0430730 + 0.0430730i
\(540\) 0 0
\(541\) 11.0000 + 11.0000i 0.472927 + 0.472927i 0.902861 0.429934i \(-0.141463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 8.00000 + 8.00000i 0.343629 + 0.343629i
\(543\) 0 0
\(544\) −8.00000 8.00000i −0.342997 0.342997i
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) 23.0000 + 23.0000i 0.983409 + 0.983409i 0.999865 0.0164556i \(-0.00523822\pi\)
−0.0164556 + 0.999865i \(0.505238\pi\)
\(548\) 24.0000 1.02523
\(549\) 18.0000 18.0000i 0.768221 0.768221i
\(550\) 6.00000i 0.255841i
\(551\) 28.0000i 1.19284i
\(552\) 0 0
\(553\) 10.0000i 0.425243i
\(554\) 30.0000 1.27458
\(555\) 0 0
\(556\) −4.00000 4.00000i −0.169638 0.169638i
\(557\) −17.0000 17.0000i −0.720313 0.720313i 0.248356 0.968669i \(-0.420110\pi\)
−0.968669 + 0.248356i \(0.920110\pi\)
\(558\) 24.0000 24.0000i 1.01600 1.01600i
\(559\) 0 0
\(560\) −8.00000 8.00000i −0.338062 0.338062i
\(561\) 0 0
\(562\) 0 0
\(563\) 20.0000 + 20.0000i 0.842900 + 0.842900i 0.989235 0.146336i \(-0.0467479\pi\)
−0.146336 + 0.989235i \(0.546748\pi\)
\(564\) 0 0
\(565\) 8.00000 8.00000i 0.336563 0.336563i
\(566\) −8.00000 −0.336265
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) 14.0000i 0.586911i 0.955973 + 0.293455i \(0.0948052\pi\)
−0.955973 + 0.293455i \(0.905195\pi\)
\(570\) 0 0
\(571\) −9.00000 + 9.00000i −0.376638 + 0.376638i −0.869888 0.493250i \(-0.835809\pi\)
0.493250 + 0.869888i \(0.335809\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −10.0000 10.0000i −0.417392 0.417392i
\(575\) 18.0000 0.750652
\(576\) −24.0000 −1.00000
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 13.0000 + 13.0000i 0.540729 + 0.540729i
\(579\) 0 0
\(580\) 56.0000i 2.32527i
\(581\) 10.0000 10.0000i 0.414870 0.414870i
\(582\) 0 0
\(583\) 2.00000i 0.0828315i
\(584\) 12.0000 + 12.0000i 0.496564 + 0.496564i
\(585\) 0 0
\(586\) −28.0000 −1.15667
\(587\) 10.0000 10.0000i 0.412744 0.412744i −0.469949 0.882693i \(-0.655728\pi\)
0.882693 + 0.469949i \(0.155728\pi\)
\(588\) 0 0
\(589\) −16.0000 16.0000i −0.659269 0.659269i
\(590\) −32.0000 + 32.0000i −1.31742 + 1.31742i
\(591\) 0 0
\(592\) 20.0000 20.0000i 0.821995 0.821995i
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) −4.00000 4.00000i −0.163984 0.163984i
\(596\) 6.00000 + 6.00000i 0.245770 + 0.245770i
\(597\) 0 0
\(598\) 0 0
\(599\) 24.0000i 0.980613i 0.871550 + 0.490307i \(0.163115\pi\)
−0.871550 + 0.490307i \(0.836885\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 2.00000i 0.0815139i
\(603\) 9.00000 9.00000i 0.366508 0.366508i
\(604\) 20.0000 0.813788
\(605\) 18.0000 + 18.0000i 0.731804 + 0.731804i
\(606\) 0 0
\(607\) 28.0000 1.13648 0.568242 0.822861i \(-0.307624\pi\)
0.568242 + 0.822861i \(0.307624\pi\)
\(608\) 16.0000i 0.648886i
\(609\) 0 0
\(610\) −24.0000 24.0000i −0.971732 0.971732i
\(611\) 0 0
\(612\) −12.0000 −0.485071
\(613\) 9.00000 9.00000i 0.363507 0.363507i −0.501596 0.865102i \(-0.667253\pi\)
0.865102 + 0.501596i \(0.167253\pi\)
\(614\) 36.0000i 1.45284i
\(615\) 0 0
\(616\) 4.00000 0.161165
\(617\) 42.0000i 1.69086i −0.534089 0.845428i \(-0.679345\pi\)
0.534089 0.845428i \(-0.320655\pi\)
\(618\) 0 0
\(619\) −12.0000 + 12.0000i −0.482321 + 0.482321i −0.905872 0.423551i \(-0.860783\pi\)
0.423551 + 0.905872i \(0.360783\pi\)
\(620\) −32.0000 32.0000i −1.28515 1.28515i
\(621\) 0 0
\(622\) −20.0000 + 20.0000i −0.801927 + 0.801927i
\(623\) −14.0000 −0.560898
\(624\) 0 0
\(625\) 31.0000 1.24000
\(626\) −14.0000 + 14.0000i −0.559553 + 0.559553i
\(627\) 0 0
\(628\) 24.0000 24.0000i 0.957704 0.957704i
\(629\) 10.0000 10.0000i 0.398726 0.398726i
\(630\) −12.0000 −0.478091
\(631\) 40.0000i 1.59237i 0.605050 + 0.796187i \(0.293153\pi\)
−0.605050 + 0.796187i \(0.706847\pi\)
\(632\) 20.0000 20.0000i 0.795557 0.795557i
\(633\) 0 0
\(634\) 14.0000i 0.556011i
\(635\) 16.0000 16.0000i 0.634941 0.634941i
\(636\) 0 0
\(637\) 0 0
\(638\) −14.0000 14.0000i −0.554265 0.554265i
\(639\) 0 0
\(640\) 32.0000i 1.26491i
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 12.0000i 0.472866i
\(645\) 0 0
\(646\) 8.00000i 0.314756i
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) −18.0000 + 18.0000i −0.707107 + 0.707107i
\(649\) 16.0000i 0.628055i
\(650\) 0 0
\(651\) 0 0
\(652\) −30.0000 + 30.0000i −1.17489 + 1.17489i
\(653\) 25.0000 + 25.0000i 0.978326 + 0.978326i 0.999770 0.0214444i \(-0.00682650\pi\)
−0.0214444 + 0.999770i \(0.506827\pi\)
\(654\) 0 0
\(655\) −56.0000 −2.18810
\(656\) 40.0000i 1.56174i
\(657\) 18.0000 0.702247
\(658\) −12.0000 + 12.0000i −0.467809 + 0.467809i
\(659\) −3.00000 3.00000i −0.116863 0.116863i 0.646257 0.763120i \(-0.276334\pi\)
−0.763120 + 0.646257i \(0.776334\pi\)
\(660\) 0 0
\(661\) 26.0000 26.0000i 1.01128 1.01128i 0.0113472 0.999936i \(-0.496388\pi\)
0.999936 0.0113472i \(-0.00361200\pi\)
\(662\) −42.0000 −1.63238
\(663\) 0 0
\(664\) −40.0000 −1.55230
\(665\) 8.00000i 0.310227i
\(666\) 30.0000i 1.16248i
\(667\) −42.0000 + 42.0000i −1.62625 + 1.62625i
\(668\) 24.0000 0.928588
\(669\) 0 0
\(670\) −12.0000 12.0000i −0.463600 0.463600i
\(671\) 12.0000 0.463255
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) −8.00000 8.00000i −0.308148 0.308148i
\(675\) 0 0
\(676\) 26.0000 1.00000
\(677\) −20.0000 + 20.0000i −0.768662 + 0.768662i −0.977871 0.209209i \(-0.932911\pi\)
0.209209 + 0.977871i \(0.432911\pi\)
\(678\) 0 0
\(679\) 2.00000i 0.0767530i
\(680\) 16.0000i 0.613572i
\(681\) 0 0
\(682\) 16.0000 0.612672
\(683\) −11.0000 + 11.0000i −0.420903 + 0.420903i −0.885515 0.464611i \(-0.846194\pi\)
0.464611 + 0.885515i \(0.346194\pi\)
\(684\) 12.0000 + 12.0000i 0.458831 + 0.458831i
\(685\) −24.0000 24.0000i −0.916993 0.916993i
\(686\) −1.00000 + 1.00000i −0.0381802 + 0.0381802i
\(687\) 0 0
\(688\) 4.00000 4.00000i 0.152499 0.152499i
\(689\) 0 0
\(690\) 0 0
\(691\) 26.0000 + 26.0000i 0.989087 + 0.989087i 0.999941 0.0108545i \(-0.00345515\pi\)
−0.0108545 + 0.999941i \(0.503455\pi\)
\(692\) 0 0
\(693\) 3.00000 3.00000i 0.113961 0.113961i
\(694\) −30.0000 −1.13878
\(695\) 8.00000i 0.303457i
\(696\) 0 0
\(697\) 20.0000i 0.757554i
\(698\) 24.0000i 0.908413i
\(699\) 0 0
\(700\) 6.00000i 0.226779i
\(701\) −19.0000 19.0000i −0.717620 0.717620i 0.250497 0.968117i \(-0.419406\pi\)
−0.968117 + 0.250497i \(0.919406\pi\)
\(702\) 0 0
\(703\) −20.0000 −0.754314
\(704\) −8.00000 8.00000i −0.301511 0.301511i
\(705\) 0 0
\(706\) 6.00000 + 6.00000i 0.225813 + 0.225813i
\(707\) 6.00000 + 6.00000i 0.225653 + 0.225653i
\(708\) 0 0
\(709\) −7.00000 + 7.00000i −0.262891 + 0.262891i −0.826227 0.563337i \(-0.809517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 30.0000i 1.12509i
\(712\) 28.0000 + 28.0000i 1.04934 + 1.04934i
\(713\) 48.0000i 1.79761i
\(714\) 0 0
\(715\) 0 0
\(716\) 6.00000 6.00000i 0.224231 0.224231i
\(717\) 0 0
\(718\) −6.00000 + 6.00000i −0.223918 + 0.223918i
\(719\) 20.0000 0.745874 0.372937 0.927857i \(-0.378351\pi\)
0.372937 + 0.927857i \(0.378351\pi\)
\(720\) 24.0000 + 24.0000i 0.894427 + 0.894427i
\(721\) 4.00000 0.148968
\(722\) −11.0000 + 11.0000i −0.409378 + 0.409378i
\(723\) 0 0
\(724\) −8.00000 8.00000i −0.297318 0.297318i
\(725\) 21.0000 21.0000i 0.779920 0.779920i
\(726\) 0 0
\(727\) 32.0000i 1.18681i −0.804902 0.593407i \(-0.797782\pi\)
0.804902 0.593407i \(-0.202218\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 24.0000i 0.888280i
\(731\) 2.00000 2.00000i 0.0739727 0.0739727i
\(732\) 0 0
\(733\) −10.0000 10.0000i −0.369358 0.369358i 0.497885 0.867243i \(-0.334110\pi\)
−0.867243 + 0.497885i \(0.834110\pi\)
\(734\) 32.0000 + 32.0000i 1.18114 + 1.18114i
\(735\) 0 0
\(736\) −24.0000 + 24.0000i −0.884652 + 0.884652i
\(737\) 6.00000 0.221013
\(738\) 30.0000 + 30.0000i 1.10432 + 1.10432i
\(739\) 7.00000 + 7.00000i 0.257499 + 0.257499i 0.824036 0.566537i \(-0.191717\pi\)
−0.566537 + 0.824036i \(0.691717\pi\)
\(740\) −40.0000 −1.47043
\(741\) 0 0
\(742\) 2.00000i 0.0734223i
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) 0 0
\(745\) 12.0000i 0.439646i
\(746\) 22.0000 0.805477
\(747\) −30.0000 + 30.0000i −1.09764 + 1.09764i
\(748\) −4.00000 4.00000i −0.146254 0.146254i
\(749\) 5.00000 + 5.00000i 0.182696 + 0.182696i
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 48.0000 1.75038
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 20.0000i −0.727875 0.727875i
\(756\) 0 0
\(757\) −15.0000 + 15.0000i −0.545184 + 0.545184i −0.925044 0.379860i \(-0.875972\pi\)
0.379860 + 0.925044i \(0.375972\pi\)
\(758\) −26.0000 −0.944363
\(759\) 0 0
\(760\) 16.0000 16.0000i 0.580381 0.580381i
\(761\) 30.0000i 1.08750i 0.839248 + 0.543750i \(0.182996\pi\)
−0.839248 + 0.543750i \(0.817004\pi\)
\(762\) 0 0
\(763\) 3.00000 3.00000i 0.108607 0.108607i
\(764\) 36.0000i 1.30243i
\(765\) 12.0000 + 12.0000i 0.433861 + 0.433861i
\(766\) −4.00000 4.00000i −0.144526 0.144526i
\(767\) 0 0
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) −4.00000 4.00000i −0.144150 0.144150i
\(771\) 0 0
\(772\) 32.0000i 1.15171i
\(773\) −6.00000 + 6.00000i −0.215805 + 0.215805i −0.806728 0.590923i \(-0.798764\pi\)
0.590923 + 0.806728i \(0.298764\pi\)
\(774\) 6.00000i 0.215666i
\(775\) 24.0000i 0.862105i
\(776\) −4.00000 + 4.00000i −0.143592 + 0.143592i
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 20.0000 20.0000i 0.716574 0.716574i
\(780\) 0 0
\(781\) 0 0
\(782\) −12.0000 + 12.0000i −0.429119 + 0.429119i
\(783\) 0 0
\(784\) 4.00000 0.142857
\(785\) −48.0000 −1.71319
\(786\) 0 0
\(787\) 18.0000 + 18.0000i 0.641631 + 0.641631i 0.950956 0.309326i \(-0.100103\pi\)
−0.309326 + 0.950956i \(0.600103\pi\)
\(788\) 10.0000 + 10.0000i 0.356235 + 0.356235i
\(789\) 0 0
\(790\) −40.0000 −1.42314
\(791\) 4.00000i 0.142224i
\(792\) −12.0000 −0.426401
\(793\) 0 0
\(794\) 24.0000i 0.851728i
\(795\) 0 0
\(796\) −48.0000 −1.70131
\(797\) −32.0000 32.0000i −1.13350 1.13350i −0.989591 0.143907i \(-0.954033\pi\)
−0.143907 0.989591i \(-0.545967\pi\)
\(798\) 0 0
\(799\) 24.0000 0.849059
\(800\) 12.0000 12.0000i 0.424264 0.424264i
\(801\) 42.0000 1.48400
\(802\) −12.0000 12.0000i −0.423735 0.423735i
\(803\) 6.00000 + 6.00000i 0.211735 + 0.211735i
\(804\) 0 0
\(805\) −12.0000 + 12.0000i −0.422944 + 0.422944i
\(806\) 0 0
\(807\) 0 0
\(808\) 24.0000i 0.844317i
\(809\) 6.00000i 0.210949i −0.994422 0.105474i \(-0.966364\pi\)
0.994422 0.105474i \(-0.0336361\pi\)
\(810\) 36.0000 1.26491
\(811\) −24.0000 + 24.0000i −0.842754 + 0.842754i −0.989216 0.146462i \(-0.953211\pi\)
0.146462 + 0.989216i \(0.453211\pi\)
\(812\) −14.0000 14.0000i −0.491304 0.491304i
\(813\) 0 0
\(814\) 10.0000 10.0000i 0.350500 0.350500i
\(815\) 60.0000 2.10171
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) 14.0000 14.0000i 0.489499 0.489499i
\(819\) 0 0
\(820\) 40.0000 40.0000i 1.39686 1.39686i
\(821\) 1.00000 1.00000i 0.0349002 0.0349002i −0.689441 0.724342i \(-0.742144\pi\)
0.724342 + 0.689441i \(0.242144\pi\)
\(822\) 0 0
\(823\) 24.0000i 0.836587i −0.908312 0.418294i \(-0.862628\pi\)
0.908312 0.418294i \(-0.137372\pi\)
\(824\) −8.00000 8.00000i −0.278693 0.278693i
\(825\) 0 0
\(826\) 16.0000i 0.556711i
\(827\) −5.00000 + 5.00000i −0.173867 + 0.173867i −0.788676 0.614809i \(-0.789233\pi\)
0.614809 + 0.788676i \(0.289233\pi\)
\(828\) 36.0000i 1.25109i
\(829\) 2.00000 + 2.00000i 0.0694629 + 0.0694629i 0.740985 0.671522i \(-0.234359\pi\)
−0.671522 + 0.740985i \(0.734359\pi\)
\(830\) 40.0000 + 40.0000i 1.38842 + 1.38842i
\(831\) 0 0
\(832\) 0 0
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) −24.0000 24.0000i −0.830554 0.830554i
\(836\) 8.00000i 0.276686i
\(837\) 0 0
\(838\) 24.0000i 0.829066i
\(839\) 4.00000i 0.138095i 0.997613 + 0.0690477i \(0.0219961\pi\)
−0.997613 + 0.0690477i \(0.978004\pi\)
\(840\) 0 0
\(841\) 69.0000i 2.37931i
\(842\) 18.0000 0.620321
\(843\) 0 0
\(844\) 18.0000 18.0000i 0.619586 0.619586i
\(845\) −26.0000 26.0000i −0.894427 0.894427i
\(846\) 36.0000 36.0000i 1.23771 1.23771i
\(847\) −9.00000 −0.309244
\(848\) 4.00000 4.00000i 0.137361 0.137361i
\(849\) 0 0
\(850\) 6.00000 6.00000i 0.205798 0.205798i
\(851\) −30.0000 30.0000i −1.02839 1.02839i
\(852\) 0 0
\(853\) 24.0000 24.0000i 0.821744 0.821744i −0.164614 0.986358i \(-0.552638\pi\)
0.986358 + 0.164614i \(0.0526378\pi\)
\(854\) 12.0000 0.410632
\(855\) 24.0000i 0.820783i
\(856\) 20.0000i 0.683586i
\(857\) 18.0000i 0.614868i 0.951569 + 0.307434i \(0.0994704\pi\)
−0.951569 + 0.307434i \(0.900530\pi\)
\(858\) 0 0
\(859\) −2.00000 + 2.00000i −0.0682391 + 0.0682391i −0.740403 0.672164i \(-0.765365\pi\)
0.672164 + 0.740403i \(0.265365\pi\)
\(860\) −8.00000 −0.272798
\(861\) 0 0
\(862\) 8.00000 + 8.00000i 0.272481 + 0.272481i
\(863\) 14.0000 0.476566 0.238283 0.971196i \(-0.423415\pi\)
0.238283 + 0.971196i \(0.423415\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 6.00000 + 6.00000i 0.203888 + 0.203888i
\(867\) 0 0
\(868\) 16.0000 0.543075
\(869\) 10.0000 10.0000i 0.339227 0.339227i
\(870\) 0 0
\(871\) 0 0
\(872\) −12.0000 −0.406371
\(873\) 6.00000i 0.203069i
\(874\) 24.0000 0.811812
\(875\) −4.00000 + 4.00000i −0.135225 + 0.135225i
\(876\) 0 0
\(877\) 3.00000 + 3.00000i 0.101303 + 0.101303i 0.755942 0.654639i \(-0.227179\pi\)
−0.654639 + 0.755942i \(0.727179\pi\)
\(878\) −16.0000 + 16.0000i −0.539974 + 0.539974i
\(879\) 0 0
\(880\) 16.0000i 0.539360i
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 3.00000 3.00000i 0.101015 0.101015i
\(883\) −25.0000 25.0000i −0.841317 0.841317i 0.147713 0.989030i \(-0.452809\pi\)
−0.989030 + 0.147713i \(0.952809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 2.00000 0.0671913
\(887\) 12.0000i 0.402921i −0.979497 0.201460i \(-0.935431\pi\)
0.979497 0.201460i \(-0.0645687\pi\)
\(888\) 0 0
\(889\) 8.00000i 0.268311i
\(890\) 56.0000i 1.87712i
\(891\) −9.00000 + 9.00000i −0.301511 + 0.301511i
\(892\) 8.00000i 0.267860i
\(893\) −24.0000 24.0000i −0.803129 0.803129i
\(894\) 0 0
\(895\) −12.0000 −0.401116
\(896\) −8.00000 8.00000i −0.267261 0.267261i
\(897\) 0 0
\(898\) 30.0000 + 30.0000i 1.00111 + 1.00111i
\(899\) −56.0000 56.0000i −1.86770 1.86770i
\(900\) 18.0000i 0.600000i
\(901\) 2.00000 2.00000i 0.0666297 0.0666297i
\(902\) 20.0000i 0.665927i
\(903\) 0 0
\(904\) 8.00000 8.00000i 0.266076 0.266076i
\(905\) 16.0000i 0.531858i
\(906\) 0 0
\(907\) 15.0000 15.0000i 0.498067 0.498067i −0.412769 0.910836i \(-0.635438\pi\)
0.910836 + 0.412769i \(0.135438\pi\)
\(908\) 4.00000 4.00000i 0.132745 0.132745i
\(909\) −18.0000 18.0000i −0.597022 0.597022i
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) −20.0000 −0.661903
\(914\) −22.0000 + 22.0000i −0.727695 + 0.727695i
\(915\) 0 0
\(916\) 16.0000 + 16.0000i 0.528655 + 0.528655i
\(917\) 14.0000 14.0000i 0.462321 0.462321i
\(918\) 0 0
\(919\) 24.0000i 0.791687i 0.918318 + 0.395843i \(0.129548\pi\)
−0.918318 + 0.395843i \(0.870452\pi\)
\(920\) 48.0000 1.58251
\(921\) 0 0
\(922\) 32.0000i 1.05386i
\(923\) 0 0
\(924\) 0 0
\(925\) 15.0000 + 15.0000i 0.493197 + 0.493197i
\(926\) −14.0000 14.0000i −0.460069 0.460069i
\(927\) −12.0000 −0.394132
\(928\) 56.0000i 1.83829i
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 0 0
\(931\) −2.00000 2.00000i −0.0655474 0.0655474i
\(932\) −32.0000 −1.04819
\(933\) 0 0
\(934\) 36.0000i 1.17796i
\(935\) 8.00000i 0.261628i
\(936\) 0 0
\(937\) 58.0000i 1.89478i 0.320085 + 0.947389i \(0.396288\pi\)
−0.320085 + 0.947389i \(0.603712\pi\)
\(938\) 6.00000 0.195907
\(939\) 0 0
\(940\) −48.0000 48.0000i −1.56559 1.56559i
\(941\) 26.0000 + 26.0000i 0.847576 + 0.847576i 0.989830 0.142254i \(-0.0454351\pi\)
−0.142254 + 0.989830i \(0.545435\pi\)
\(942\) 0 0
\(943\) 60.0000 1.95387
\(944\) −32.0000 + 32.0000i −1.04151 + 1.04151i
\(945\) 0 0
\(946\) 2.00000 2.00000i 0.0650256 0.0650256i
\(947\) 33.0000 + 33.0000i 1.07236 + 1.07236i 0.997169 + 0.0751864i \(0.0239552\pi\)
0.0751864 + 0.997169i \(0.476045\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −12.0000 −0.389331
\(951\) 0 0
\(952\) −4.00000 4.00000i −0.129641 0.129641i
\(953\) 16.0000i 0.518291i 0.965838 + 0.259145i \(0.0834409\pi\)
−0.965838 + 0.259145i \(0.916559\pi\)
\(954\) 6.00000i 0.194257i
\(955\) −36.0000 + 36.0000i −1.16493 + 1.16493i
\(956\) 0 0
\(957\) 0 0
\(958\) 20.0000 + 20.0000i 0.646171 + 0.646171i
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −15.0000 15.0000i −0.483368 0.483368i
\(964\) 44.0000i 1.41714i
\(965\) −32.0000 + 32.0000i −1.03012 + 1.03012i
\(966\) 0 0
\(967\) 2.00000i 0.0643157i −0.999483 0.0321578i \(-0.989762\pi\)
0.999483 0.0321578i \(-0.0102379\pi\)
\(968\) 18.0000 + 18.0000i 0.578542 + 0.578542i
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) −4.00000 + 4.00000i −0.128366 + 0.128366i −0.768371 0.640005i \(-0.778932\pi\)
0.640005 + 0.768371i \(0.278932\pi\)
\(972\) 0 0
\(973\) −2.00000 2.00000i −0.0641171 0.0641171i
\(974\) −22.0000 + 22.0000i −0.704925 + 0.704925i
\(975\) 0 0
\(976\) −24.0000 24.0000i −0.768221 0.768221i
\(977\) 38.0000 1.21573 0.607864 0.794041i \(-0.292027\pi\)
0.607864 + 0.794041i \(0.292027\pi\)
\(978\) 0 0
\(979\) 14.0000 + 14.0000i 0.447442 + 0.447442i
\(980\) −4.00000 4.00000i −0.127775 0.127775i
\(981\) −9.00000 + 9.00000i −0.287348 + 0.287348i
\(982\) 38.0000 1.21263
\(983\) 44.0000i 1.40338i −0.712481 0.701691i \(-0.752429\pi\)
0.712481 0.701691i \(-0.247571\pi\)
\(984\) 0 0
\(985\) 20.0000i 0.637253i
\(986\) 28.0000i 0.891702i
\(987\) 0 0
\(988\) 0 0
\(989\) −6.00000 6.00000i −0.190789 0.190789i
\(990\) 12.0000 + 12.0000i 0.381385 + 0.381385i
\(991\) 22.0000 0.698853 0.349427 0.936964i \(-0.386376\pi\)
0.349427 + 0.936964i \(0.386376\pi\)
\(992\) −32.0000 32.0000i −1.01600 1.01600i
\(993\) 0 0
\(994\) 0 0
\(995\) 48.0000 + 48.0000i 1.52170 + 1.52170i
\(996\) 0 0
\(997\) −30.0000 + 30.0000i −0.950110 + 0.950110i −0.998813 0.0487037i \(-0.984491\pi\)
0.0487037 + 0.998813i \(0.484491\pi\)
\(998\) 46.0000i 1.45610i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.2.m.b.29.1 2
4.3 odd 2 448.2.m.a.337.1 2
7.2 even 3 784.2.x.d.557.1 4
7.3 odd 6 784.2.x.e.765.1 4
7.4 even 3 784.2.x.d.765.1 4
7.5 odd 6 784.2.x.e.557.1 4
7.6 odd 2 784.2.m.a.589.1 2
8.3 odd 2 896.2.m.c.673.1 2
8.5 even 2 896.2.m.b.673.1 2
16.3 odd 4 896.2.m.c.225.1 2
16.5 even 4 inner 112.2.m.b.85.1 yes 2
16.11 odd 4 448.2.m.a.113.1 2
16.13 even 4 896.2.m.b.225.1 2
32.5 even 8 7168.2.a.b.1.2 2
32.11 odd 8 7168.2.a.k.1.1 2
32.21 even 8 7168.2.a.b.1.1 2
32.27 odd 8 7168.2.a.k.1.2 2
112.5 odd 12 784.2.x.e.165.1 4
112.37 even 12 784.2.x.d.165.1 4
112.53 even 12 784.2.x.d.373.1 4
112.69 odd 4 784.2.m.a.197.1 2
112.101 odd 12 784.2.x.e.373.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.m.b.29.1 2 1.1 even 1 trivial
112.2.m.b.85.1 yes 2 16.5 even 4 inner
448.2.m.a.113.1 2 16.11 odd 4
448.2.m.a.337.1 2 4.3 odd 2
784.2.m.a.197.1 2 112.69 odd 4
784.2.m.a.589.1 2 7.6 odd 2
784.2.x.d.165.1 4 112.37 even 12
784.2.x.d.373.1 4 112.53 even 12
784.2.x.d.557.1 4 7.2 even 3
784.2.x.d.765.1 4 7.4 even 3
784.2.x.e.165.1 4 112.5 odd 12
784.2.x.e.373.1 4 112.101 odd 12
784.2.x.e.557.1 4 7.5 odd 6
784.2.x.e.765.1 4 7.3 odd 6
896.2.m.b.225.1 2 16.13 even 4
896.2.m.b.673.1 2 8.5 even 2
896.2.m.c.225.1 2 16.3 odd 4
896.2.m.c.673.1 2 8.3 odd 2
7168.2.a.b.1.1 2 32.21 even 8
7168.2.a.b.1.2 2 32.5 even 8
7168.2.a.k.1.1 2 32.11 odd 8
7168.2.a.k.1.2 2 32.27 odd 8