Properties

Label 112.2.i
Level 112
Weight 2
Character orbit i
Rep. character \(\chi_{112}(65,\cdot)\)
Character field \(\Q(\zeta_{3})\)
Dimension 6
Newform subspaces 3
Sturm bound 32
Trace bound 3

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 112.i (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(32\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(112, [\chi])\).

Total New Old
Modular forms 44 10 34
Cusp forms 20 6 14
Eisenstein series 24 4 20

Trace form

\( 6q + 3q^{3} - q^{5} + 4q^{7} - 2q^{9} + O(q^{10}) \) \( 6q + 3q^{3} - q^{5} + 4q^{7} - 2q^{9} - q^{11} - 4q^{13} - 2q^{15} - q^{17} + 5q^{19} - 3q^{21} - 7q^{23} + 4q^{25} - 18q^{27} - 20q^{29} - 13q^{31} + 9q^{33} - 21q^{35} + 3q^{37} + 14q^{39} - 12q^{41} + 24q^{43} + 10q^{45} - 3q^{47} + 6q^{49} + 17q^{51} + 7q^{53} + 22q^{55} + 26q^{57} + 27q^{59} + 3q^{61} + 38q^{63} - 10q^{65} - 5q^{67} + 2q^{69} - 32q^{71} - 13q^{73} - 4q^{75} + 17q^{77} - 23q^{79} - 11q^{81} - 40q^{83} + 22q^{85} - 26q^{87} - 13q^{89} - 24q^{91} + 5q^{93} - 9q^{95} - 12q^{97} + 12q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(112, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
112.2.i.a \(2\) \(0.894\) \(\Q(\sqrt{-3}) \) None \(0\) \(-1\) \(1\) \(4\) \(q+(-1+\zeta_{6})q^{3}+\zeta_{6}q^{5}+(1+2\zeta_{6})q^{7}+\cdots\)
112.2.i.b \(2\) \(0.894\) \(\Q(\sqrt{-3}) \) None \(0\) \(1\) \(-3\) \(4\) \(q+(1-\zeta_{6})q^{3}-3\zeta_{6}q^{5}+(3-2\zeta_{6})q^{7}+\cdots\)
112.2.i.c \(2\) \(0.894\) \(\Q(\sqrt{-3}) \) None \(0\) \(3\) \(1\) \(-4\) \(q+(3-3\zeta_{6})q^{3}+\zeta_{6}q^{5}+(-3+2\zeta_{6})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(112, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ (\( \))(\( \))(\( \))
$3$ (\( 1 + T - 2 T^{2} + 3 T^{3} + 9 T^{4} \))(\( 1 - T - 2 T^{2} - 3 T^{3} + 9 T^{4} \))(\( ( 1 - 3 T + 3 T^{2} )( 1 + 3 T^{2} ) \))
$5$ (\( 1 - T - 4 T^{2} - 5 T^{3} + 25 T^{4} \))(\( 1 + 3 T + 4 T^{2} + 15 T^{3} + 25 T^{4} \))(\( 1 - T - 4 T^{2} - 5 T^{3} + 25 T^{4} \))
$7$ (\( 1 - 4 T + 7 T^{2} \))(\( 1 - 4 T + 7 T^{2} \))(\( 1 + 4 T + 7 T^{2} \))
$11$ (\( 1 - 3 T - 2 T^{2} - 33 T^{3} + 121 T^{4} \))(\( 1 + 3 T - 2 T^{2} + 33 T^{3} + 121 T^{4} \))(\( 1 + T - 10 T^{2} + 11 T^{3} + 121 T^{4} \))
$13$ (\( ( 1 + 6 T + 13 T^{2} )^{2} \))(\( ( 1 - 2 T + 13 T^{2} )^{2} \))(\( ( 1 - 2 T + 13 T^{2} )^{2} \))
$17$ (\( 1 - 5 T + 8 T^{2} - 85 T^{3} + 289 T^{4} \))(\( 1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4} \))(\( 1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4} \))
$19$ (\( ( 1 - 8 T + 19 T^{2} )( 1 + 7 T + 19 T^{2} ) \))(\( ( 1 - 7 T + 19 T^{2} )( 1 + 8 T + 19 T^{2} ) \))(\( 1 - 5 T + 6 T^{2} - 95 T^{3} + 361 T^{4} \))
$23$ (\( 1 + 7 T + 26 T^{2} + 161 T^{3} + 529 T^{4} \))(\( 1 - 3 T - 14 T^{2} - 69 T^{3} + 529 T^{4} \))(\( 1 + 3 T - 14 T^{2} + 69 T^{3} + 529 T^{4} \))
$29$ (\( ( 1 - 2 T + 29 T^{2} )^{2} \))(\( ( 1 + 6 T + 29 T^{2} )^{2} \))(\( ( 1 + 6 T + 29 T^{2} )^{2} \))
$31$ (\( 1 + 5 T - 6 T^{2} + 155 T^{3} + 961 T^{4} \))(\( ( 1 - 4 T + 31 T^{2} )( 1 + 11 T + 31 T^{2} ) \))(\( 1 + T - 30 T^{2} + 31 T^{3} + 961 T^{4} \))
$37$ (\( 1 + 3 T - 28 T^{2} + 111 T^{3} + 1369 T^{4} \))(\( ( 1 - 11 T + 37 T^{2} )( 1 + 10 T + 37 T^{2} ) \))(\( 1 - 5 T - 12 T^{2} - 185 T^{3} + 1369 T^{4} \))
$41$ (\( ( 1 + 2 T + 41 T^{2} )^{2} \))(\( ( 1 - 6 T + 41 T^{2} )^{2} \))(\( ( 1 + 10 T + 41 T^{2} )^{2} \))
$43$ (\( ( 1 - 4 T + 43 T^{2} )^{2} \))(\( ( 1 - 4 T + 43 T^{2} )^{2} \))(\( ( 1 - 4 T + 43 T^{2} )^{2} \))
$47$ (\( 1 - 5 T - 22 T^{2} - 235 T^{3} + 2209 T^{4} \))(\( 1 + 9 T + 34 T^{2} + 423 T^{3} + 2209 T^{4} \))(\( 1 - T - 46 T^{2} - 47 T^{3} + 2209 T^{4} \))
$53$ (\( 1 - T - 52 T^{2} - 53 T^{3} + 2809 T^{4} \))(\( 1 + 3 T - 44 T^{2} + 159 T^{3} + 2809 T^{4} \))(\( 1 - 9 T + 28 T^{2} - 477 T^{3} + 2809 T^{4} \))
$59$ (\( 1 - 15 T + 166 T^{2} - 885 T^{3} + 3481 T^{4} \))(\( 1 - 9 T + 22 T^{2} - 531 T^{3} + 3481 T^{4} \))(\( 1 - 3 T - 50 T^{2} - 177 T^{3} + 3481 T^{4} \))
$61$ (\( 1 - 5 T - 36 T^{2} - 305 T^{3} + 3721 T^{4} \))(\( ( 1 - 14 T + 61 T^{2} )( 1 + 13 T + 61 T^{2} ) \))(\( 1 + 3 T - 52 T^{2} + 183 T^{3} + 3721 T^{4} \))
$67$ (\( 1 + 9 T + 14 T^{2} + 603 T^{3} + 4489 T^{4} \))(\( 1 + 7 T - 18 T^{2} + 469 T^{3} + 4489 T^{4} \))(\( ( 1 - 16 T + 67 T^{2} )( 1 + 5 T + 67 T^{2} ) \))
$71$ (\( ( 1 + 71 T^{2} )^{2} \))(\( ( 1 + 71 T^{2} )^{2} \))(\( ( 1 + 16 T + 71 T^{2} )^{2} \))
$73$ (\( ( 1 - 10 T + 73 T^{2} )( 1 + 17 T + 73 T^{2} ) \))(\( 1 - T - 72 T^{2} - 73 T^{3} + 5329 T^{4} \))(\( ( 1 - 10 T + 73 T^{2} )( 1 + 17 T + 73 T^{2} ) \))
$79$ (\( 1 - T - 78 T^{2} - 79 T^{3} + 6241 T^{4} \))(\( ( 1 - 4 T + 79 T^{2} )( 1 + 17 T + 79 T^{2} ) \))(\( 1 + 11 T + 42 T^{2} + 869 T^{3} + 6241 T^{4} \))
$83$ (\( ( 1 + 12 T + 83 T^{2} )^{2} \))(\( ( 1 + 12 T + 83 T^{2} )^{2} \))(\( ( 1 - 4 T + 83 T^{2} )^{2} \))
$89$ (\( 1 + 7 T - 40 T^{2} + 623 T^{3} + 7921 T^{4} \))(\( 1 + 15 T + 136 T^{2} + 1335 T^{3} + 7921 T^{4} \))(\( 1 - 9 T - 8 T^{2} - 801 T^{3} + 7921 T^{4} \))
$97$ (\( ( 1 + 2 T + 97 T^{2} )^{2} \))(\( ( 1 + 10 T + 97 T^{2} )^{2} \))(\( ( 1 - 6 T + 97 T^{2} )^{2} \))
show more
show less