Properties

Label 112.10.p.a.47.12
Level $112$
Weight $10$
Character 112.47
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.12
Character \(\chi\) \(=\) 112.47
Dual form 112.10.p.a.31.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(127.679 + 221.147i) q^{3} +(-241.245 - 139.283i) q^{5} +(-2213.93 - 5954.17i) q^{7} +(-22762.6 + 39426.0i) q^{9} +(-1893.22 + 1093.05i) q^{11} -16268.8i q^{13} -71134.4i q^{15} +(158301. - 91395.1i) q^{17} +(-240118. + 415897. i) q^{19} +(1.03407e6 - 1.24983e6i) q^{21} +(-1.61434e6 - 932040. i) q^{23} +(-937763. - 1.62425e6i) q^{25} -6.59903e6 q^{27} -2.16004e6 q^{29} +(-3.50603e6 - 6.07262e6i) q^{31} +(-483451. - 279121. i) q^{33} +(-295214. + 1.74478e6i) q^{35} +(7.40082e6 - 1.28186e7i) q^{37} +(3.59780e6 - 2.07719e6i) q^{39} -1.28601e7i q^{41} +2.79515e7i q^{43} +(1.09827e7 - 6.34089e6i) q^{45} +(2.56866e7 - 4.44906e7i) q^{47} +(-3.05506e7 + 2.63642e7i) q^{49} +(4.04236e7 + 2.33386e7i) q^{51} +(4.26903e6 + 7.39418e6i) q^{53} +608975. q^{55} -1.22633e8 q^{57} +(-3.25838e6 - 5.64368e6i) q^{59} +(7.16467e7 + 4.13653e7i) q^{61} +(2.85144e8 + 4.82459e7i) q^{63} +(-2.26597e6 + 3.92477e6i) q^{65} +(2.34278e8 - 1.35260e8i) q^{67} -4.76009e8i q^{69} +4.13896e8i q^{71} +(2.15848e7 - 1.24620e7i) q^{73} +(2.39466e8 - 4.14767e8i) q^{75} +(1.06997e7 + 8.85262e6i) q^{77} +(-2.52310e8 - 1.45671e8i) q^{79} +(-3.94525e8 - 6.83337e8i) q^{81} -6.54289e8 q^{83} -5.09192e7 q^{85} +(-2.75792e8 - 4.77686e8i) q^{87} +(-7.12797e8 - 4.11534e8i) q^{89} +(-9.68672e7 + 3.60180e7i) q^{91} +(8.95295e8 - 1.55070e9i) q^{93} +(1.15855e8 - 6.68889e7i) q^{95} -6.66674e8i q^{97} -9.95228e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 162 q^{3} - 852 q^{5} - 6744 q^{7} - 77884 q^{9} - 57534 q^{11} + 789336 q^{17} + 469098 q^{19} - 2104376 q^{21} + 1553682 q^{23} + 3602544 q^{25} + 6389244 q^{27} - 2462040 q^{29} - 10306686 q^{31}+ \cdots + 1433917218 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 127.679 + 221.147i 0.910071 + 1.57629i 0.813961 + 0.580919i \(0.197307\pi\)
0.0961097 + 0.995371i \(0.469360\pi\)
\(4\) 0 0
\(5\) −241.245 139.283i −0.172621 0.0996629i 0.411200 0.911545i \(-0.365110\pi\)
−0.583821 + 0.811882i \(0.698443\pi\)
\(6\) 0 0
\(7\) −2213.93 5954.17i −0.348516 0.937303i
\(8\) 0 0
\(9\) −22762.6 + 39426.0i −1.15646 + 2.00305i
\(10\) 0 0
\(11\) −1893.22 + 1093.05i −0.0389883 + 0.0225099i −0.519367 0.854551i \(-0.673832\pi\)
0.480379 + 0.877061i \(0.340499\pi\)
\(12\) 0 0
\(13\) 16268.8i 0.157983i −0.996875 0.0789915i \(-0.974830\pi\)
0.996875 0.0789915i \(-0.0251700\pi\)
\(14\) 0 0
\(15\) 71134.4i 0.362801i
\(16\) 0 0
\(17\) 158301. 91395.1i 0.459688 0.265401i −0.252225 0.967669i \(-0.581162\pi\)
0.711913 + 0.702268i \(0.247829\pi\)
\(18\) 0 0
\(19\) −240118. + 415897.i −0.422702 + 0.732141i −0.996203 0.0870637i \(-0.972252\pi\)
0.573501 + 0.819205i \(0.305585\pi\)
\(20\) 0 0
\(21\) 1.03407e6 1.24983e6i 1.16029 1.40237i
\(22\) 0 0
\(23\) −1.61434e6 932040.i −1.20287 0.694479i −0.241680 0.970356i \(-0.577698\pi\)
−0.961193 + 0.275877i \(0.911032\pi\)
\(24\) 0 0
\(25\) −937763. 1.62425e6i −0.480135 0.831618i
\(26\) 0 0
\(27\) −6.59903e6 −2.38970
\(28\) 0 0
\(29\) −2.16004e6 −0.567113 −0.283557 0.958955i \(-0.591514\pi\)
−0.283557 + 0.958955i \(0.591514\pi\)
\(30\) 0 0
\(31\) −3.50603e6 6.07262e6i −0.681848 1.18100i −0.974416 0.224751i \(-0.927843\pi\)
0.292568 0.956245i \(-0.405490\pi\)
\(32\) 0 0
\(33\) −483451. 279121.i −0.0709643 0.0409713i
\(34\) 0 0
\(35\) −295214. + 1.74478e6i −0.0332530 + 0.196532i
\(36\) 0 0
\(37\) 7.40082e6 1.28186e7i 0.649190 1.12443i −0.334127 0.942528i \(-0.608441\pi\)
0.983317 0.181902i \(-0.0582253\pi\)
\(38\) 0 0
\(39\) 3.59780e6 2.07719e6i 0.249027 0.143776i
\(40\) 0 0
\(41\) 1.28601e7i 0.710748i −0.934724 0.355374i \(-0.884353\pi\)
0.934724 0.355374i \(-0.115647\pi\)
\(42\) 0 0
\(43\) 2.79515e7i 1.24680i 0.781903 + 0.623400i \(0.214249\pi\)
−0.781903 + 0.623400i \(0.785751\pi\)
\(44\) 0 0
\(45\) 1.09827e7 6.34089e6i 0.399259 0.230512i
\(46\) 0 0
\(47\) 2.56866e7 4.44906e7i 0.767833 1.32993i −0.170903 0.985288i \(-0.554668\pi\)
0.938736 0.344638i \(-0.111998\pi\)
\(48\) 0 0
\(49\) −3.05506e7 + 2.63642e7i −0.757073 + 0.653330i
\(50\) 0 0
\(51\) 4.04236e7 + 2.33386e7i 0.836698 + 0.483068i
\(52\) 0 0
\(53\) 4.26903e6 + 7.39418e6i 0.0743170 + 0.128721i 0.900789 0.434257i \(-0.142989\pi\)
−0.826472 + 0.562978i \(0.809656\pi\)
\(54\) 0 0
\(55\) 608975. 0.00897361
\(56\) 0 0
\(57\) −1.22633e8 −1.53876
\(58\) 0 0
\(59\) −3.25838e6 5.64368e6i −0.0350080 0.0606357i 0.847991 0.530011i \(-0.177812\pi\)
−0.882999 + 0.469376i \(0.844479\pi\)
\(60\) 0 0
\(61\) 7.16467e7 + 4.13653e7i 0.662540 + 0.382518i 0.793244 0.608904i \(-0.208390\pi\)
−0.130704 + 0.991421i \(0.541724\pi\)
\(62\) 0 0
\(63\) 2.85144e8 + 4.82459e7i 2.28051 + 0.385858i
\(64\) 0 0
\(65\) −2.26597e6 + 3.92477e6i −0.0157450 + 0.0272712i
\(66\) 0 0
\(67\) 2.34278e8 1.35260e8i 1.42035 0.820037i 0.424018 0.905654i \(-0.360619\pi\)
0.996328 + 0.0856162i \(0.0272859\pi\)
\(68\) 0 0
\(69\) 4.76009e8i 2.52810i
\(70\) 0 0
\(71\) 4.13896e8i 1.93299i 0.256695 + 0.966493i \(0.417366\pi\)
−0.256695 + 0.966493i \(0.582634\pi\)
\(72\) 0 0
\(73\) 2.15848e7 1.24620e7i 0.0889603 0.0513612i −0.454860 0.890563i \(-0.650311\pi\)
0.543820 + 0.839202i \(0.316977\pi\)
\(74\) 0 0
\(75\) 2.39466e8 4.14767e8i 0.873913 1.51366i
\(76\) 0 0
\(77\) 1.06997e7 + 8.85262e6i 0.0346867 + 0.0286988i
\(78\) 0 0
\(79\) −2.52310e8 1.45671e8i −0.728808 0.420777i 0.0891782 0.996016i \(-0.471576\pi\)
−0.817986 + 0.575238i \(0.804909\pi\)
\(80\) 0 0
\(81\) −3.94525e8 6.83337e8i −1.01834 1.76381i
\(82\) 0 0
\(83\) −6.54289e8 −1.51328 −0.756638 0.653834i \(-0.773159\pi\)
−0.756638 + 0.653834i \(0.773159\pi\)
\(84\) 0 0
\(85\) −5.09192e7 −0.105803
\(86\) 0 0
\(87\) −2.75792e8 4.77686e8i −0.516113 0.893935i
\(88\) 0 0
\(89\) −7.12797e8 4.11534e8i −1.20423 0.695265i −0.242740 0.970091i \(-0.578046\pi\)
−0.961494 + 0.274826i \(0.911380\pi\)
\(90\) 0 0
\(91\) −9.68672e7 + 3.60180e7i −0.148078 + 0.0550596i
\(92\) 0 0
\(93\) 8.95295e8 1.55070e9i 1.24106 2.14958i
\(94\) 0 0
\(95\) 1.15855e8 6.68889e7i 0.145935 0.0842554i
\(96\) 0 0
\(97\) 6.66674e8i 0.764612i −0.924036 0.382306i \(-0.875130\pi\)
0.924036 0.382306i \(-0.124870\pi\)
\(98\) 0 0
\(99\) 9.95228e7i 0.104127i
\(100\) 0 0
\(101\) 4.46790e8 2.57954e8i 0.427226 0.246659i −0.270938 0.962597i \(-0.587334\pi\)
0.698164 + 0.715938i \(0.254001\pi\)
\(102\) 0 0
\(103\) 1.37475e7 2.38114e7i 0.0120353 0.0208458i −0.859945 0.510387i \(-0.829502\pi\)
0.871980 + 0.489541i \(0.162836\pi\)
\(104\) 0 0
\(105\) −4.23546e8 + 1.57487e8i −0.340055 + 0.126442i
\(106\) 0 0
\(107\) 1.30600e9 + 7.54021e8i 0.963201 + 0.556105i 0.897157 0.441712i \(-0.145629\pi\)
0.0660445 + 0.997817i \(0.478962\pi\)
\(108\) 0 0
\(109\) −5.79402e8 1.00355e9i −0.393152 0.680959i 0.599711 0.800216i \(-0.295282\pi\)
−0.992863 + 0.119257i \(0.961949\pi\)
\(110\) 0 0
\(111\) 3.77973e9 2.36324
\(112\) 0 0
\(113\) −4.28060e8 −0.246974 −0.123487 0.992346i \(-0.539408\pi\)
−0.123487 + 0.992346i \(0.539408\pi\)
\(114\) 0 0
\(115\) 2.59635e8 + 4.49701e8i 0.138428 + 0.239764i
\(116\) 0 0
\(117\) 6.41413e8 + 3.70320e8i 0.316447 + 0.182701i
\(118\) 0 0
\(119\) −8.94649e8 7.40208e8i −0.408970 0.338370i
\(120\) 0 0
\(121\) −1.17658e9 + 2.03790e9i −0.498987 + 0.864270i
\(122\) 0 0
\(123\) 2.84397e9 1.64197e9i 1.12034 0.646831i
\(124\) 0 0
\(125\) 1.06653e9i 0.390732i
\(126\) 0 0
\(127\) 1.54451e9i 0.526834i −0.964682 0.263417i \(-0.915151\pi\)
0.964682 0.263417i \(-0.0848494\pi\)
\(128\) 0 0
\(129\) −6.18139e9 + 3.56883e9i −1.96532 + 1.13468i
\(130\) 0 0
\(131\) −2.79315e9 + 4.83789e9i −0.828656 + 1.43527i 0.0704374 + 0.997516i \(0.477560\pi\)
−0.899093 + 0.437758i \(0.855773\pi\)
\(132\) 0 0
\(133\) 3.00793e9 + 5.08937e8i 0.833557 + 0.141037i
\(134\) 0 0
\(135\) 1.59199e9 + 9.19133e8i 0.412513 + 0.238164i
\(136\) 0 0
\(137\) −3.18074e9 5.50921e9i −0.771411 1.33612i −0.936790 0.349893i \(-0.886218\pi\)
0.165378 0.986230i \(-0.447116\pi\)
\(138\) 0 0
\(139\) 5.47109e9 1.24310 0.621552 0.783373i \(-0.286502\pi\)
0.621552 + 0.783373i \(0.286502\pi\)
\(140\) 0 0
\(141\) 1.31186e10 2.79513
\(142\) 0 0
\(143\) 1.77827e7 + 3.08005e7i 0.00355619 + 0.00615949i
\(144\) 0 0
\(145\) 5.21099e8 + 3.00856e8i 0.0978958 + 0.0565201i
\(146\) 0 0
\(147\) −9.73107e9 3.39002e9i −1.71883 0.598789i
\(148\) 0 0
\(149\) 3.08690e9 5.34667e9i 0.513079 0.888679i −0.486806 0.873510i \(-0.661838\pi\)
0.999885 0.0151690i \(-0.00482864\pi\)
\(150\) 0 0
\(151\) −5.22159e9 + 3.01469e9i −0.817348 + 0.471896i −0.849501 0.527587i \(-0.823097\pi\)
0.0321533 + 0.999483i \(0.489764\pi\)
\(152\) 0 0
\(153\) 8.32156e9i 1.22770i
\(154\) 0 0
\(155\) 1.95332e9i 0.271820i
\(156\) 0 0
\(157\) −9.90264e9 + 5.71729e9i −1.30078 + 0.751003i −0.980537 0.196333i \(-0.937097\pi\)
−0.320239 + 0.947337i \(0.603763\pi\)
\(158\) 0 0
\(159\) −1.09014e9 + 1.88817e9i −0.135267 + 0.234290i
\(160\) 0 0
\(161\) −1.97548e9 + 1.16755e10i −0.231716 + 1.36949i
\(162\) 0 0
\(163\) −8.47879e9 4.89523e9i −0.940784 0.543162i −0.0505780 0.998720i \(-0.516106\pi\)
−0.890206 + 0.455558i \(0.849440\pi\)
\(164\) 0 0
\(165\) 7.77536e7 + 1.34673e8i 0.00816663 + 0.0141450i
\(166\) 0 0
\(167\) −1.57291e10 −1.56488 −0.782439 0.622727i \(-0.786025\pi\)
−0.782439 + 0.622727i \(0.786025\pi\)
\(168\) 0 0
\(169\) 1.03398e10 0.975041
\(170\) 0 0
\(171\) −1.09314e10 1.89338e10i −0.977675 1.69338i
\(172\) 0 0
\(173\) 4.97796e9 + 2.87402e9i 0.422517 + 0.243940i 0.696153 0.717893i \(-0.254893\pi\)
−0.273637 + 0.961833i \(0.588227\pi\)
\(174\) 0 0
\(175\) −7.59493e9 + 9.17958e9i −0.612143 + 0.739864i
\(176\) 0 0
\(177\) 8.32056e8 1.44116e9i 0.0637196 0.110366i
\(178\) 0 0
\(179\) 1.54921e9 8.94437e8i 0.112790 0.0651195i −0.442544 0.896747i \(-0.645924\pi\)
0.555334 + 0.831628i \(0.312590\pi\)
\(180\) 0 0
\(181\) 9.22046e9i 0.638556i −0.947661 0.319278i \(-0.896560\pi\)
0.947661 0.319278i \(-0.103440\pi\)
\(182\) 0 0
\(183\) 2.11260e10i 1.39247i
\(184\) 0 0
\(185\) −3.57083e9 + 2.06162e9i −0.224128 + 0.129400i
\(186\) 0 0
\(187\) −1.99799e8 + 3.46062e8i −0.0119483 + 0.0206951i
\(188\) 0 0
\(189\) 1.46098e10 + 3.92917e10i 0.832849 + 2.23987i
\(190\) 0 0
\(191\) 1.33490e10 + 7.70707e9i 0.725771 + 0.419024i 0.816873 0.576818i \(-0.195706\pi\)
−0.0911022 + 0.995842i \(0.529039\pi\)
\(192\) 0 0
\(193\) −1.52019e10 2.63304e10i −0.788658 1.36600i −0.926789 0.375582i \(-0.877443\pi\)
0.138131 0.990414i \(-0.455891\pi\)
\(194\) 0 0
\(195\) −1.15727e9 −0.0573164
\(196\) 0 0
\(197\) −9.89295e9 −0.467980 −0.233990 0.972239i \(-0.575178\pi\)
−0.233990 + 0.972239i \(0.575178\pi\)
\(198\) 0 0
\(199\) −5.09431e9 8.82360e9i −0.230275 0.398847i 0.727614 0.685987i \(-0.240629\pi\)
−0.957889 + 0.287139i \(0.907296\pi\)
\(200\) 0 0
\(201\) 5.98249e10 + 3.45399e10i 2.58523 + 1.49258i
\(202\) 0 0
\(203\) 4.78217e9 + 1.28612e10i 0.197648 + 0.531557i
\(204\) 0 0
\(205\) −1.79119e9 + 3.10243e9i −0.0708352 + 0.122690i
\(206\) 0 0
\(207\) 7.34931e10 4.24313e10i 2.78215 1.60627i
\(208\) 0 0
\(209\) 1.04985e9i 0.0380599i
\(210\) 0 0
\(211\) 5.36994e10i 1.86508i 0.361063 + 0.932541i \(0.382414\pi\)
−0.361063 + 0.932541i \(0.617586\pi\)
\(212\) 0 0
\(213\) −9.15320e10 + 5.28460e10i −3.04694 + 1.75915i
\(214\) 0 0
\(215\) 3.89317e9 6.74316e9i 0.124260 0.215224i
\(216\) 0 0
\(217\) −2.83953e10 + 3.43198e10i −0.869315 + 1.05069i
\(218\) 0 0
\(219\) 5.51188e9 + 3.18229e9i 0.161920 + 0.0934848i
\(220\) 0 0
\(221\) −1.48689e9 2.57537e9i −0.0419289 0.0726229i
\(222\) 0 0
\(223\) −3.27063e9 −0.0885645 −0.0442823 0.999019i \(-0.514100\pi\)
−0.0442823 + 0.999019i \(0.514100\pi\)
\(224\) 0 0
\(225\) 8.53836e10 2.22102
\(226\) 0 0
\(227\) −2.28370e10 3.95548e10i −0.570850 0.988742i −0.996479 0.0838437i \(-0.973280\pi\)
0.425629 0.904898i \(-0.360053\pi\)
\(228\) 0 0
\(229\) −4.11021e10 2.37303e10i −0.987653 0.570222i −0.0830813 0.996543i \(-0.526476\pi\)
−0.904572 + 0.426321i \(0.859809\pi\)
\(230\) 0 0
\(231\) −5.91604e8 + 3.49650e9i −0.0136703 + 0.0807942i
\(232\) 0 0
\(233\) 3.65781e10 6.33551e10i 0.813054 1.40825i −0.0976627 0.995220i \(-0.531137\pi\)
0.910717 0.413031i \(-0.135530\pi\)
\(234\) 0 0
\(235\) −1.23936e10 + 7.15543e9i −0.265088 + 0.153049i
\(236\) 0 0
\(237\) 7.43970e10i 1.53175i
\(238\) 0 0
\(239\) 5.90869e10i 1.17139i 0.810533 + 0.585694i \(0.199178\pi\)
−0.810533 + 0.585694i \(0.800822\pi\)
\(240\) 0 0
\(241\) 4.28335e10 2.47299e10i 0.817913 0.472222i −0.0317834 0.999495i \(-0.510119\pi\)
0.849696 + 0.527273i \(0.176785\pi\)
\(242\) 0 0
\(243\) 3.58010e10 6.20092e10i 0.658669 1.14085i
\(244\) 0 0
\(245\) 1.10423e10 2.10507e9i 0.195800 0.0373266i
\(246\) 0 0
\(247\) 6.76615e9 + 3.90644e9i 0.115666 + 0.0667797i
\(248\) 0 0
\(249\) −8.35392e10 1.44694e11i −1.37719 2.38536i
\(250\) 0 0
\(251\) −5.82999e10 −0.927120 −0.463560 0.886065i \(-0.653428\pi\)
−0.463560 + 0.886065i \(0.653428\pi\)
\(252\) 0 0
\(253\) 4.07507e9 0.0625307
\(254\) 0 0
\(255\) −6.50133e9 1.12606e10i −0.0962879 0.166775i
\(256\) 0 0
\(257\) −1.75820e10 1.01510e10i −0.251403 0.145147i 0.369004 0.929428i \(-0.379699\pi\)
−0.620406 + 0.784280i \(0.713032\pi\)
\(258\) 0 0
\(259\) −9.27089e10 1.56862e10i −1.28018 0.216605i
\(260\) 0 0
\(261\) 4.91680e10 8.51615e10i 0.655843 1.13595i
\(262\) 0 0
\(263\) −1.17235e10 + 6.76858e9i −0.151098 + 0.0872362i −0.573643 0.819106i \(-0.694470\pi\)
0.422545 + 0.906342i \(0.361137\pi\)
\(264\) 0 0
\(265\) 2.37842e9i 0.0296266i
\(266\) 0 0
\(267\) 2.10178e11i 2.53096i
\(268\) 0 0
\(269\) −1.26526e11 + 7.30498e10i −1.47331 + 0.850617i −0.999549 0.0300360i \(-0.990438\pi\)
−0.473762 + 0.880653i \(0.657104\pi\)
\(270\) 0 0
\(271\) −6.55977e10 + 1.13619e11i −0.738800 + 1.27964i 0.214236 + 0.976782i \(0.431274\pi\)
−0.953036 + 0.302857i \(0.902059\pi\)
\(272\) 0 0
\(273\) −2.03332e10 1.68232e10i −0.221551 0.183306i
\(274\) 0 0
\(275\) 3.55079e9 + 2.05005e9i 0.0374393 + 0.0216156i
\(276\) 0 0
\(277\) −5.51358e10 9.54980e10i −0.562697 0.974620i −0.997260 0.0739781i \(-0.976431\pi\)
0.434563 0.900641i \(-0.356903\pi\)
\(278\) 0 0
\(279\) 3.19225e11 3.15412
\(280\) 0 0
\(281\) 5.31385e10 0.508430 0.254215 0.967148i \(-0.418183\pi\)
0.254215 + 0.967148i \(0.418183\pi\)
\(282\) 0 0
\(283\) 2.83116e10 + 4.90372e10i 0.262377 + 0.454450i 0.966873 0.255258i \(-0.0821603\pi\)
−0.704496 + 0.709708i \(0.748827\pi\)
\(284\) 0 0
\(285\) 2.95846e10 + 1.70807e10i 0.265622 + 0.153357i
\(286\) 0 0
\(287\) −7.65710e10 + 2.84713e10i −0.666186 + 0.247707i
\(288\) 0 0
\(289\) −4.25878e10 + 7.37643e10i −0.359124 + 0.622022i
\(290\) 0 0
\(291\) 1.47433e11 8.51206e10i 1.20525 0.695851i
\(292\) 0 0
\(293\) 6.16280e10i 0.488510i −0.969711 0.244255i \(-0.921457\pi\)
0.969711 0.244255i \(-0.0785434\pi\)
\(294\) 0 0
\(295\) 1.81535e9i 0.0139560i
\(296\) 0 0
\(297\) 1.24934e10 7.21309e9i 0.0931703 0.0537919i
\(298\) 0 0
\(299\) −1.51632e10 + 2.62634e10i −0.109716 + 0.190034i
\(300\) 0 0
\(301\) 1.66428e11 6.18826e10i 1.16863 0.434530i
\(302\) 0 0
\(303\) 1.14092e11 + 6.58709e10i 0.777611 + 0.448954i
\(304\) 0 0
\(305\) −1.15230e10 1.99584e10i −0.0762456 0.132061i
\(306\) 0 0
\(307\) 6.35064e10 0.408032 0.204016 0.978968i \(-0.434600\pi\)
0.204016 + 0.978968i \(0.434600\pi\)
\(308\) 0 0
\(309\) 7.02111e9 0.0438120
\(310\) 0 0
\(311\) 1.39140e11 + 2.40997e11i 0.843393 + 1.46080i 0.887009 + 0.461751i \(0.152779\pi\)
−0.0436161 + 0.999048i \(0.513888\pi\)
\(312\) 0 0
\(313\) −1.08773e11 6.28001e10i −0.640578 0.369838i 0.144259 0.989540i \(-0.453920\pi\)
−0.784837 + 0.619702i \(0.787253\pi\)
\(314\) 0 0
\(315\) −6.20697e10 5.13548e10i −0.355208 0.293889i
\(316\) 0 0
\(317\) 2.69664e10 4.67073e10i 0.149988 0.259787i −0.781235 0.624237i \(-0.785410\pi\)
0.931223 + 0.364450i \(0.118743\pi\)
\(318\) 0 0
\(319\) 4.08943e9 2.36103e9i 0.0221108 0.0127657i
\(320\) 0 0
\(321\) 3.85092e11i 2.02438i
\(322\) 0 0
\(323\) 8.77826e10i 0.448742i
\(324\) 0 0
\(325\) −2.64246e10 + 1.52563e10i −0.131381 + 0.0758531i
\(326\) 0 0
\(327\) 1.47955e11 2.56266e11i 0.715593 1.23944i
\(328\) 0 0
\(329\) −3.21773e11 5.44435e10i −1.51415 0.256191i
\(330\) 0 0
\(331\) −2.66395e11 1.53803e11i −1.21983 0.704271i −0.254951 0.966954i \(-0.582059\pi\)
−0.964882 + 0.262683i \(0.915393\pi\)
\(332\) 0 0
\(333\) 3.36923e11 + 5.83569e11i 1.50152 + 2.60072i
\(334\) 0 0
\(335\) −7.53579e10 −0.326909
\(336\) 0 0
\(337\) −1.95120e11 −0.824077 −0.412038 0.911166i \(-0.635183\pi\)
−0.412038 + 0.911166i \(0.635183\pi\)
\(338\) 0 0
\(339\) −5.46545e10 9.46644e10i −0.224764 0.389303i
\(340\) 0 0
\(341\) 1.32754e10 + 7.66454e9i 0.0531682 + 0.0306967i
\(342\) 0 0
\(343\) 2.24614e11 + 1.23535e11i 0.876221 + 0.481910i
\(344\) 0 0
\(345\) −6.63000e10 + 1.14835e11i −0.251958 + 0.436404i
\(346\) 0 0
\(347\) −4.35584e11 + 2.51484e11i −1.61283 + 0.931169i −0.624121 + 0.781327i \(0.714543\pi\)
−0.988710 + 0.149841i \(0.952124\pi\)
\(348\) 0 0
\(349\) 7.30865e10i 0.263708i −0.991269 0.131854i \(-0.957907\pi\)
0.991269 0.131854i \(-0.0420929\pi\)
\(350\) 0 0
\(351\) 1.07358e11i 0.377532i
\(352\) 0 0
\(353\) 3.44276e11 1.98768e11i 1.18010 0.681333i 0.224065 0.974574i \(-0.428067\pi\)
0.956039 + 0.293241i \(0.0947339\pi\)
\(354\) 0 0
\(355\) 5.76487e10 9.98505e10i 0.192647 0.333674i
\(356\) 0 0
\(357\) 4.94667e10 2.92359e11i 0.161178 0.952596i
\(358\) 0 0
\(359\) −2.44544e11 1.41188e11i −0.777021 0.448613i 0.0583526 0.998296i \(-0.481415\pi\)
−0.835373 + 0.549683i \(0.814749\pi\)
\(360\) 0 0
\(361\) 4.60301e10 + 7.97265e10i 0.142646 + 0.247070i
\(362\) 0 0
\(363\) −6.00903e11 −1.81645
\(364\) 0 0
\(365\) −6.94299e9 −0.0204752
\(366\) 0 0
\(367\) 3.13774e10 + 5.43472e10i 0.0902857 + 0.156379i 0.907631 0.419768i \(-0.137889\pi\)
−0.817346 + 0.576148i \(0.804555\pi\)
\(368\) 0 0
\(369\) 5.07020e11 + 2.92728e11i 1.42366 + 0.821951i
\(370\) 0 0
\(371\) 3.45748e10 4.17887e10i 0.0947497 0.114519i
\(372\) 0 0
\(373\) 1.08093e10 1.87223e10i 0.0289140 0.0500805i −0.851206 0.524831i \(-0.824128\pi\)
0.880120 + 0.474751i \(0.157462\pi\)
\(374\) 0 0
\(375\) −2.35861e11 + 1.36174e11i −0.615907 + 0.355594i
\(376\) 0 0
\(377\) 3.51412e10i 0.0895943i
\(378\) 0 0
\(379\) 1.43819e11i 0.358048i 0.983845 + 0.179024i \(0.0572939\pi\)
−0.983845 + 0.179024i \(0.942706\pi\)
\(380\) 0 0
\(381\) 3.41564e11 1.97202e11i 0.830442 0.479456i
\(382\) 0 0
\(383\) −4.22507e10 + 7.31804e10i −0.100332 + 0.173780i −0.911821 0.410587i \(-0.865324\pi\)
0.811489 + 0.584367i \(0.198657\pi\)
\(384\) 0 0
\(385\) −1.34823e9 3.62594e9i −0.00312745 0.00841099i
\(386\) 0 0
\(387\) −1.10201e12 6.36248e11i −2.49740 1.44187i
\(388\) 0 0
\(389\) 2.57391e11 + 4.45814e11i 0.569928 + 0.987145i 0.996572 + 0.0827252i \(0.0263624\pi\)
−0.426644 + 0.904420i \(0.640304\pi\)
\(390\) 0 0
\(391\) −3.40735e11 −0.737262
\(392\) 0 0
\(393\) −1.42651e12 −3.01654
\(394\) 0 0
\(395\) 4.05791e10 + 7.02851e10i 0.0838717 + 0.145270i
\(396\) 0 0
\(397\) 4.75818e11 + 2.74714e11i 0.961355 + 0.555039i 0.896590 0.442862i \(-0.146037\pi\)
0.0647653 + 0.997901i \(0.479370\pi\)
\(398\) 0 0
\(399\) 2.71501e11 + 7.30176e11i 0.536281 + 1.44228i
\(400\) 0 0
\(401\) −1.82033e11 + 3.15291e11i −0.351561 + 0.608922i −0.986523 0.163621i \(-0.947683\pi\)
0.634962 + 0.772544i \(0.281016\pi\)
\(402\) 0 0
\(403\) −9.87942e10 + 5.70388e10i −0.186577 + 0.107720i
\(404\) 0 0
\(405\) 2.19802e11i 0.405961i
\(406\) 0 0
\(407\) 3.23579e10i 0.0584529i
\(408\) 0 0
\(409\) 1.46225e11 8.44231e10i 0.258385 0.149179i −0.365213 0.930924i \(-0.619004\pi\)
0.623598 + 0.781746i \(0.285670\pi\)
\(410\) 0 0
\(411\) 8.12231e11 1.40683e12i 1.40408 2.43194i
\(412\) 0 0
\(413\) −2.63896e10 + 3.18957e10i −0.0446331 + 0.0539456i
\(414\) 0 0
\(415\) 1.57844e11 + 9.11314e10i 0.261223 + 0.150817i
\(416\) 0 0
\(417\) 6.98546e11 + 1.20992e12i 1.13131 + 1.95949i
\(418\) 0 0
\(419\) 2.37545e11 0.376516 0.188258 0.982120i \(-0.439716\pi\)
0.188258 + 0.982120i \(0.439716\pi\)
\(420\) 0 0
\(421\) −7.71208e11 −1.19647 −0.598235 0.801321i \(-0.704131\pi\)
−0.598235 + 0.801321i \(0.704131\pi\)
\(422\) 0 0
\(423\) 1.16939e12 + 2.02544e12i 1.77594 + 3.07601i
\(424\) 0 0
\(425\) −2.96898e11 1.71414e11i −0.441424 0.254857i
\(426\) 0 0
\(427\) 8.76748e10 5.18177e11i 0.127629 0.754314i
\(428\) 0 0
\(429\) −4.54096e9 + 7.86517e9i −0.00647276 + 0.0112112i
\(430\) 0 0
\(431\) 5.51930e11 3.18657e11i 0.770436 0.444811i −0.0625943 0.998039i \(-0.519937\pi\)
0.833030 + 0.553228i \(0.186604\pi\)
\(432\) 0 0
\(433\) 6.49769e11i 0.888307i 0.895951 + 0.444154i \(0.146496\pi\)
−0.895951 + 0.444154i \(0.853504\pi\)
\(434\) 0 0
\(435\) 1.53653e11i 0.205749i
\(436\) 0 0
\(437\) 7.75266e11 4.47600e11i 1.01691 0.587115i
\(438\) 0 0
\(439\) 1.04153e11 1.80398e11i 0.133838 0.231815i −0.791315 0.611409i \(-0.790603\pi\)
0.925153 + 0.379594i \(0.123936\pi\)
\(440\) 0 0
\(441\) −3.44024e11 1.80461e12i −0.433127 2.27200i
\(442\) 0 0
\(443\) 8.06607e11 + 4.65695e11i 0.995051 + 0.574493i 0.906780 0.421604i \(-0.138533\pi\)
0.0882706 + 0.996097i \(0.471866\pi\)
\(444\) 0 0
\(445\) 1.14639e11 + 1.98561e11i 0.138584 + 0.240035i
\(446\) 0 0
\(447\) 1.57654e12 1.86775
\(448\) 0 0
\(449\) 1.15814e12 1.34479 0.672393 0.740194i \(-0.265267\pi\)
0.672393 + 0.740194i \(0.265267\pi\)
\(450\) 0 0
\(451\) 1.40567e10 + 2.43470e10i 0.0159989 + 0.0277109i
\(452\) 0 0
\(453\) −1.33338e12 7.69828e11i −1.48769 0.858918i
\(454\) 0 0
\(455\) 2.83855e10 + 4.80278e9i 0.0310488 + 0.00525341i
\(456\) 0 0
\(457\) 3.62628e11 6.28090e11i 0.388901 0.673596i −0.603401 0.797438i \(-0.706188\pi\)
0.992302 + 0.123842i \(0.0395216\pi\)
\(458\) 0 0
\(459\) −1.04463e12 + 6.03119e11i −1.09852 + 0.634229i
\(460\) 0 0
\(461\) 9.90960e11i 1.02189i 0.859615 + 0.510943i \(0.170704\pi\)
−0.859615 + 0.510943i \(0.829296\pi\)
\(462\) 0 0
\(463\) 9.22866e11i 0.933306i −0.884440 0.466653i \(-0.845460\pi\)
0.884440 0.466653i \(-0.154540\pi\)
\(464\) 0 0
\(465\) −4.31972e11 + 2.49399e11i −0.428467 + 0.247375i
\(466\) 0 0
\(467\) 4.17837e10 7.23716e10i 0.0406519 0.0704112i −0.844984 0.534792i \(-0.820390\pi\)
0.885635 + 0.464381i \(0.153723\pi\)
\(468\) 0 0
\(469\) −1.32404e12 1.09547e12i −1.26364 1.04550i
\(470\) 0 0
\(471\) −2.52873e12 1.45996e12i −2.36760 1.36693i
\(472\) 0 0
\(473\) −3.05524e10 5.29184e10i −0.0280654 0.0486106i
\(474\) 0 0
\(475\) 9.00697e11 0.811815
\(476\) 0 0
\(477\) −3.88697e11 −0.343778
\(478\) 0 0
\(479\) −4.34619e10 7.52782e10i −0.0377224 0.0653371i 0.846548 0.532313i \(-0.178677\pi\)
−0.884270 + 0.466976i \(0.845344\pi\)
\(480\) 0 0
\(481\) −2.08543e11 1.20402e11i −0.177641 0.102561i
\(482\) 0 0
\(483\) −2.83424e12 + 1.05385e12i −2.36960 + 0.881084i
\(484\) 0 0
\(485\) −9.28565e10 + 1.60832e11i −0.0762034 + 0.131988i
\(486\) 0 0
\(487\) 5.60706e11 3.23724e11i 0.451705 0.260792i −0.256845 0.966453i \(-0.582683\pi\)
0.708550 + 0.705661i \(0.249350\pi\)
\(488\) 0 0
\(489\) 2.50008e12i 1.97726i
\(490\) 0 0
\(491\) 2.28257e12i 1.77238i −0.463319 0.886191i \(-0.653342\pi\)
0.463319 0.886191i \(-0.346658\pi\)
\(492\) 0 0
\(493\) −3.41936e11 + 1.97417e11i −0.260695 + 0.150513i
\(494\) 0 0
\(495\) −1.38618e10 + 2.40094e10i −0.0103776 + 0.0179746i
\(496\) 0 0
\(497\) 2.46441e12 9.16337e11i 1.81179 0.673677i
\(498\) 0 0
\(499\) −1.10496e10 6.37948e9i −0.00797799 0.00460609i 0.496006 0.868319i \(-0.334800\pi\)
−0.503984 + 0.863713i \(0.668133\pi\)
\(500\) 0 0
\(501\) −2.00829e12 3.47846e12i −1.42415 2.46670i
\(502\) 0 0
\(503\) 1.22362e12 0.852297 0.426149 0.904653i \(-0.359870\pi\)
0.426149 + 0.904653i \(0.359870\pi\)
\(504\) 0 0
\(505\) −1.43715e11 −0.0983309
\(506\) 0 0
\(507\) 1.32018e12 + 2.28662e12i 0.887357 + 1.53695i
\(508\) 0 0
\(509\) 2.27225e12 + 1.31189e12i 1.50047 + 0.866296i 1.00000 0.000541866i \(0.000172481\pi\)
0.500469 + 0.865754i \(0.333161\pi\)
\(510\) 0 0
\(511\) −1.21988e11 1.00930e11i −0.0791451 0.0654825i
\(512\) 0 0
\(513\) 1.58455e12 2.74452e12i 1.01013 1.74960i
\(514\) 0 0
\(515\) −6.63306e9 + 3.82960e9i −0.00415510 + 0.00239895i
\(516\) 0 0
\(517\) 1.12307e11i 0.0691354i
\(518\) 0 0
\(519\) 1.46782e12i 0.888011i
\(520\) 0 0
\(521\) −5.42575e11 + 3.13256e11i −0.322619 + 0.186264i −0.652559 0.757738i \(-0.726305\pi\)
0.329940 + 0.944002i \(0.392971\pi\)
\(522\) 0 0
\(523\) 8.90020e11 1.54156e12i 0.520166 0.900955i −0.479559 0.877510i \(-0.659203\pi\)
0.999725 0.0234450i \(-0.00746345\pi\)
\(524\) 0 0
\(525\) −2.99976e12 5.07555e11i −1.72333 0.291586i
\(526\) 0 0
\(527\) −1.11001e12 6.40867e11i −0.626875 0.361926i
\(528\) 0 0
\(529\) 8.36819e11 + 1.44941e12i 0.464602 + 0.804714i
\(530\) 0 0
\(531\) 2.96677e11 0.161941
\(532\) 0 0
\(533\) −2.09218e11 −0.112286
\(534\) 0 0
\(535\) −2.10045e11 3.63808e11i −0.110846 0.191991i
\(536\) 0 0
\(537\) 3.95604e11 + 2.28402e11i 0.205294 + 0.118527i
\(538\) 0 0
\(539\) 2.90216e10 8.33068e10i 0.0148106 0.0425139i
\(540\) 0 0
\(541\) 5.77772e11 1.00073e12i 0.289980 0.502261i −0.683824 0.729647i \(-0.739685\pi\)
0.973805 + 0.227386i \(0.0730179\pi\)
\(542\) 0 0
\(543\) 2.03908e12 1.17726e12i 1.00655 0.581131i
\(544\) 0 0
\(545\) 3.22803e11i 0.156731i
\(546\) 0 0
\(547\) 6.09900e11i 0.291283i 0.989337 + 0.145642i \(0.0465246\pi\)
−0.989337 + 0.145642i \(0.953475\pi\)
\(548\) 0 0
\(549\) −3.26173e12 + 1.88316e12i −1.53240 + 0.884732i
\(550\) 0 0
\(551\) 5.18664e11 8.98353e11i 0.239720 0.415207i
\(552\) 0 0
\(553\) −3.08754e11 + 1.82480e12i −0.140394 + 0.829761i
\(554\) 0 0
\(555\) −9.11842e11 5.26452e11i −0.407945 0.235527i
\(556\) 0 0
\(557\) 3.16523e11 + 5.48233e11i 0.139334 + 0.241333i 0.927245 0.374456i \(-0.122171\pi\)
−0.787911 + 0.615789i \(0.788837\pi\)
\(558\) 0 0
\(559\) 4.54737e11 0.196973
\(560\) 0 0
\(561\) −1.02041e11 −0.0434953
\(562\) 0 0
\(563\) 1.71355e12 + 2.96796e12i 0.718803 + 1.24500i 0.961474 + 0.274895i \(0.0886430\pi\)
−0.242671 + 0.970109i \(0.578024\pi\)
\(564\) 0 0
\(565\) 1.03268e11 + 5.96216e10i 0.0426330 + 0.0246142i
\(566\) 0 0
\(567\) −3.19525e12 + 3.86193e12i −1.29832 + 1.56921i
\(568\) 0 0
\(569\) 5.21698e11 9.03608e11i 0.208648 0.361389i −0.742641 0.669690i \(-0.766427\pi\)
0.951289 + 0.308301i \(0.0997604\pi\)
\(570\) 0 0
\(571\) 2.05456e12 1.18620e12i 0.808830 0.466978i −0.0377192 0.999288i \(-0.512009\pi\)
0.846549 + 0.532310i \(0.178676\pi\)
\(572\) 0 0
\(573\) 3.93614e12i 1.52537i
\(574\) 0 0
\(575\) 3.49613e12i 1.33377i
\(576\) 0 0
\(577\) −3.01236e12 + 1.73918e12i −1.13140 + 0.653212i −0.944286 0.329126i \(-0.893246\pi\)
−0.187111 + 0.982339i \(0.559912\pi\)
\(578\) 0 0
\(579\) 3.88193e12 6.72370e12i 1.43547 2.48631i
\(580\) 0 0
\(581\) 1.44855e12 + 3.89575e12i 0.527401 + 1.41840i
\(582\) 0 0
\(583\) −1.61645e10 9.33255e9i −0.00579499 0.00334574i
\(584\) 0 0
\(585\) −1.03159e11 1.78676e11i −0.0364170 0.0630761i
\(586\) 0 0
\(587\) −1.86579e12 −0.648621 −0.324311 0.945951i \(-0.605132\pi\)
−0.324311 + 0.945951i \(0.605132\pi\)
\(588\) 0 0
\(589\) 3.36745e12 1.15287
\(590\) 0 0
\(591\) −1.26313e12 2.18780e12i −0.425896 0.737673i
\(592\) 0 0
\(593\) 3.43264e12 + 1.98184e12i 1.13994 + 0.658145i 0.946416 0.322950i \(-0.104675\pi\)
0.193525 + 0.981095i \(0.438008\pi\)
\(594\) 0 0
\(595\) 1.12732e11 + 3.03181e11i 0.0368739 + 0.0991690i
\(596\) 0 0
\(597\) 1.30088e12 2.25318e12i 0.419133 0.725959i
\(598\) 0 0
\(599\) 1.96176e12 1.13262e12i 0.622623 0.359472i −0.155267 0.987873i \(-0.549624\pi\)
0.777889 + 0.628401i \(0.216290\pi\)
\(600\) 0 0
\(601\) 1.28723e12i 0.402459i −0.979544 0.201229i \(-0.935506\pi\)
0.979544 0.201229i \(-0.0644936\pi\)
\(602\) 0 0
\(603\) 1.23155e13i 3.79336i
\(604\) 0 0
\(605\) 5.67691e11 3.27757e11i 0.172271 0.0994609i
\(606\) 0 0
\(607\) 2.89183e11 5.00880e11i 0.0864618 0.149756i −0.819551 0.573006i \(-0.805777\pi\)
0.906013 + 0.423249i \(0.139111\pi\)
\(608\) 0 0
\(609\) −2.23364e12 + 2.69968e12i −0.658014 + 0.795305i
\(610\) 0 0
\(611\) −7.23808e11 4.17891e11i −0.210106 0.121305i
\(612\) 0 0
\(613\) −2.56502e12 4.44274e12i −0.733699 1.27080i −0.955292 0.295665i \(-0.904459\pi\)
0.221593 0.975139i \(-0.428874\pi\)
\(614\) 0 0
\(615\) −9.14792e11 −0.257860
\(616\) 0 0
\(617\) 1.51024e12 0.419531 0.209765 0.977752i \(-0.432730\pi\)
0.209765 + 0.977752i \(0.432730\pi\)
\(618\) 0 0
\(619\) −2.39636e12 4.15062e12i −0.656062 1.13633i −0.981626 0.190813i \(-0.938888\pi\)
0.325565 0.945520i \(-0.394446\pi\)
\(620\) 0 0
\(621\) 1.06531e13 + 6.15056e12i 2.87450 + 1.65960i
\(622\) 0 0
\(623\) −8.72256e11 + 5.15522e12i −0.231979 + 1.37104i
\(624\) 0 0
\(625\) −1.68302e12 + 2.91507e12i −0.441193 + 0.764169i
\(626\) 0 0
\(627\) 2.32171e11 1.34044e11i 0.0599935 0.0346373i
\(628\) 0 0
\(629\) 2.70559e12i 0.689183i
\(630\) 0 0
\(631\) 3.49632e12i 0.877969i −0.898495 0.438984i \(-0.855338\pi\)
0.898495 0.438984i \(-0.144662\pi\)
\(632\) 0 0
\(633\) −1.18755e13 + 6.85631e12i −2.93991 + 1.69736i
\(634\) 0 0
\(635\) −2.15124e11 + 3.72606e11i −0.0525058 + 0.0909426i
\(636\) 0 0
\(637\) 4.28915e11 + 4.97022e11i 0.103215 + 0.119605i
\(638\) 0 0
\(639\) −1.63182e13 9.42134e12i −3.87186 2.23542i
\(640\) 0 0
\(641\) 1.16760e11 + 2.02234e11i 0.0273169 + 0.0473143i 0.879361 0.476156i \(-0.157970\pi\)
−0.852044 + 0.523471i \(0.824637\pi\)
\(642\) 0 0
\(643\) −8.37514e11 −0.193216 −0.0966079 0.995323i \(-0.530799\pi\)
−0.0966079 + 0.995323i \(0.530799\pi\)
\(644\) 0 0
\(645\) 1.98831e12 0.452340
\(646\) 0 0
\(647\) −1.75528e12 3.04023e12i −0.393800 0.682082i 0.599147 0.800639i \(-0.295506\pi\)
−0.992947 + 0.118557i \(0.962173\pi\)
\(648\) 0 0
\(649\) 1.23377e10 + 7.12316e9i 0.00272981 + 0.00157606i
\(650\) 0 0
\(651\) −1.12152e13 1.89760e12i −2.44734 0.414086i
\(652\) 0 0
\(653\) 2.92944e12 5.07393e12i 0.630485 1.09203i −0.356967 0.934117i \(-0.616189\pi\)
0.987453 0.157916i \(-0.0504774\pi\)
\(654\) 0 0
\(655\) 1.34767e12 7.78078e11i 0.286087 0.165172i
\(656\) 0 0
\(657\) 1.13467e12i 0.237589i
\(658\) 0 0
\(659\) 7.16693e12i 1.48030i 0.672443 + 0.740149i \(0.265245\pi\)
−0.672443 + 0.740149i \(0.734755\pi\)
\(660\) 0 0
\(661\) 1.68597e12 9.73396e11i 0.343513 0.198327i −0.318311 0.947986i \(-0.603116\pi\)
0.661825 + 0.749659i \(0.269782\pi\)
\(662\) 0 0
\(663\) 3.79690e11 6.57643e11i 0.0763165 0.132184i
\(664\) 0 0
\(665\) −6.54763e11 5.41732e11i −0.129833 0.107421i
\(666\) 0 0
\(667\) 3.48703e12 + 2.01324e12i 0.682165 + 0.393848i
\(668\) 0 0
\(669\) −4.17593e11 7.23291e11i −0.0806000 0.139603i
\(670\) 0 0
\(671\) −1.80858e11 −0.0344418
\(672\) 0 0
\(673\) −3.40990e12 −0.640728 −0.320364 0.947294i \(-0.603805\pi\)
−0.320364 + 0.947294i \(0.603805\pi\)
\(674\) 0 0
\(675\) 6.18833e12 + 1.07185e13i 1.14738 + 1.98732i
\(676\) 0 0
\(677\) 1.80551e12 + 1.04241e12i 0.330332 + 0.190717i 0.655989 0.754771i \(-0.272252\pi\)
−0.325656 + 0.945488i \(0.605585\pi\)
\(678\) 0 0
\(679\) −3.96949e12 + 1.47597e12i −0.716673 + 0.266480i
\(680\) 0 0
\(681\) 5.83162e12 1.01007e13i 1.03903 1.79965i
\(682\) 0 0
\(683\) −5.28482e12 + 3.05119e12i −0.929259 + 0.536508i −0.886577 0.462581i \(-0.846924\pi\)
−0.0426819 + 0.999089i \(0.513590\pi\)
\(684\) 0 0
\(685\) 1.77209e12i 0.307524i
\(686\) 0 0
\(687\) 1.21195e13i 2.07577i
\(688\) 0 0
\(689\) 1.20294e11 6.94520e10i 0.0203357 0.0117408i
\(690\) 0 0
\(691\) 2.18350e12 3.78193e12i 0.364336 0.631048i −0.624333 0.781158i \(-0.714629\pi\)
0.988669 + 0.150110i \(0.0479626\pi\)
\(692\) 0 0
\(693\) −5.92575e11 + 2.20337e11i −0.0975987 + 0.0362900i
\(694\) 0 0
\(695\) −1.31988e12 7.62031e11i −0.214586 0.123891i
\(696\) 0 0
\(697\) −1.17535e12 2.03576e12i −0.188633 0.326723i
\(698\) 0 0
\(699\) 1.86811e13 2.95975
\(700\) 0 0
\(701\) 8.36857e12 1.30894 0.654471 0.756087i \(-0.272892\pi\)
0.654471 + 0.756087i \(0.272892\pi\)
\(702\) 0 0
\(703\) 3.55414e12 + 6.15596e12i 0.548828 + 0.950598i
\(704\) 0 0
\(705\) −3.16481e12 1.82720e12i −0.482499 0.278571i
\(706\) 0 0
\(707\) −2.52507e12 2.08917e12i −0.380089 0.314475i
\(708\) 0 0
\(709\) 6.49877e10 1.12562e11i 0.00965881 0.0167295i −0.861156 0.508341i \(-0.830259\pi\)
0.870814 + 0.491612i \(0.163592\pi\)
\(710\) 0 0
\(711\) 1.14865e13 6.63171e12i 1.68567 0.973224i
\(712\) 0 0
\(713\) 1.30710e13i 1.89412i
\(714\) 0 0
\(715\) 9.90729e9i 0.00141768i
\(716\) 0 0
\(717\) −1.30669e13 + 7.54418e12i −1.84645 + 1.06605i
\(718\) 0 0
\(719\) −4.27075e12 + 7.39716e12i −0.595970 + 1.03225i 0.397439 + 0.917628i \(0.369899\pi\)
−0.993409 + 0.114622i \(0.963434\pi\)
\(720\) 0 0
\(721\) −1.72213e11 2.91383e10i −0.0237333 0.00401564i
\(722\) 0 0
\(723\) 1.09379e13 + 6.31501e12i 1.48872 + 0.859512i
\(724\) 0 0
\(725\) 2.02560e12 + 3.50844e12i 0.272291 + 0.471621i
\(726\) 0 0
\(727\) 7.27274e12 0.965591 0.482796 0.875733i \(-0.339621\pi\)
0.482796 + 0.875733i \(0.339621\pi\)
\(728\) 0 0
\(729\) 2.75336e12 0.361068
\(730\) 0 0
\(731\) 2.55463e12 + 4.42474e12i 0.330902 + 0.573139i
\(732\) 0 0
\(733\) −1.12218e13 6.47893e12i −1.43581 0.828963i −0.438252 0.898852i \(-0.644402\pi\)
−0.997555 + 0.0698887i \(0.977736\pi\)
\(734\) 0 0
\(735\) 1.87540e12 + 2.17320e12i 0.237029 + 0.274667i
\(736\) 0 0
\(737\) −2.95693e11 + 5.12156e11i −0.0369179 + 0.0639438i
\(738\) 0 0
\(739\) −2.43559e12 + 1.40619e12i −0.300404 + 0.173438i −0.642624 0.766182i \(-0.722154\pi\)
0.342221 + 0.939620i \(0.388821\pi\)
\(740\) 0 0
\(741\) 1.99509e12i 0.243097i
\(742\) 0 0
\(743\) 4.93364e12i 0.593906i 0.954892 + 0.296953i \(0.0959705\pi\)
−0.954892 + 0.296953i \(0.904030\pi\)
\(744\) 0 0
\(745\) −1.48940e12 + 8.59906e11i −0.177137 + 0.102270i
\(746\) 0 0
\(747\) 1.48933e13 2.57960e13i 1.75004 3.03116i
\(748\) 0 0
\(749\) 1.59817e12 9.44551e12i 0.185547 1.09662i
\(750\) 0 0
\(751\) −1.48476e13 8.57227e12i −1.70324 0.983368i −0.942434 0.334393i \(-0.891469\pi\)
−0.760810 0.648975i \(-0.775198\pi\)
\(752\) 0 0
\(753\) −7.44370e12 1.28929e13i −0.843746 1.46141i
\(754\) 0 0
\(755\) 1.67958e12 0.188122
\(756\) 0 0
\(757\) −1.01045e13 −1.11836 −0.559182 0.829045i \(-0.688885\pi\)
−0.559182 + 0.829045i \(0.688885\pi\)
\(758\) 0 0
\(759\) 5.20303e11 + 9.01191e11i 0.0569074 + 0.0985664i
\(760\) 0 0
\(761\) 1.48414e13 + 8.56870e12i 1.60415 + 0.926155i 0.990645 + 0.136463i \(0.0435736\pi\)
0.613503 + 0.789692i \(0.289760\pi\)
\(762\) 0 0
\(763\) −4.69257e12 + 5.67165e12i −0.501245 + 0.605828i
\(764\) 0 0
\(765\) 1.15905e12 2.00754e12i 0.122356 0.211927i
\(766\) 0 0
\(767\) −9.18159e10 + 5.30099e10i −0.00957941 + 0.00553067i
\(768\) 0 0
\(769\) 7.22943e12i 0.745479i −0.927936 0.372740i \(-0.878418\pi\)
0.927936 0.372740i \(-0.121582\pi\)
\(770\) 0 0
\(771\) 5.18429e12i 0.528378i
\(772\) 0 0
\(773\) 5.40988e12 3.12339e12i 0.544979 0.314644i −0.202115 0.979362i \(-0.564782\pi\)
0.747094 + 0.664718i \(0.231448\pi\)
\(774\) 0 0
\(775\) −6.57564e12 + 1.13893e13i −0.654758 + 1.13407i
\(776\) 0 0
\(777\) −8.36806e12 2.25051e13i −0.823626 2.21507i
\(778\) 0 0
\(779\) 5.34847e12 + 3.08794e12i 0.520368 + 0.300435i
\(780\) 0 0
\(781\) −4.52410e11 7.83597e11i −0.0435113 0.0753638i
\(782\) 0 0
\(783\) 1.42541e13 1.35523
\(784\) 0 0
\(785\) 3.18529e12 0.299389
\(786\) 0 0
\(787\) 3.95228e12 + 6.84554e12i 0.367249 + 0.636094i 0.989134 0.147014i \(-0.0469663\pi\)
−0.621885 + 0.783108i \(0.713633\pi\)
\(788\) 0 0
\(789\) −2.99371e12 1.72842e12i −0.275019 0.158782i
\(790\) 0 0
\(791\) 9.47696e11 + 2.54874e12i 0.0860746 + 0.231490i
\(792\) 0 0
\(793\) 6.72963e11 1.16561e12i 0.0604313 0.104670i
\(794\) 0 0
\(795\) 5.25980e11 3.03675e11i 0.0467001 0.0269623i
\(796\) 0 0
\(797\) 1.95186e13i 1.71350i −0.515728 0.856752i \(-0.672479\pi\)
0.515728 0.856752i \(-0.327521\pi\)
\(798\) 0 0
\(799\) 9.39053e12i 0.815135i
\(800\) 0 0
\(801\) 3.24502e13 1.87351e13i 2.78530 1.60809i
\(802\) 0 0
\(803\) −2.72433e10 + 4.71867e10i −0.00231227 + 0.00400498i
\(804\) 0 0
\(805\) 2.10278e12 2.54152e12i 0.176487 0.213310i
\(806\) 0 0
\(807\) −3.23095e13 1.86539e13i −2.68164 1.54824i
\(808\) 0 0
\(809\) 4.37708e12 + 7.58132e12i 0.359266 + 0.622267i 0.987838 0.155484i \(-0.0496937\pi\)
−0.628572 + 0.777751i \(0.716360\pi\)
\(810\) 0 0
\(811\) −1.92465e13 −1.56227 −0.781137 0.624359i \(-0.785360\pi\)
−0.781137 + 0.624359i \(0.785360\pi\)
\(812\) 0 0
\(813\) −3.35019e13 −2.68944
\(814\) 0 0
\(815\) 1.36365e12 + 2.36191e12i 0.108266 + 0.187522i
\(816\) 0 0
\(817\) −1.16249e13 6.71166e12i −0.912833 0.527025i
\(818\) 0 0
\(819\) 7.84903e11 4.63894e12i 0.0609591 0.360281i
\(820\) 0 0
\(821\) 1.74055e12 3.01472e12i 0.133703 0.231581i −0.791398 0.611301i \(-0.790646\pi\)
0.925101 + 0.379720i \(0.123980\pi\)
\(822\) 0 0
\(823\) −2.41155e12 + 1.39231e12i −0.183230 + 0.105788i −0.588810 0.808272i \(-0.700403\pi\)
0.405579 + 0.914060i \(0.367070\pi\)
\(824\) 0 0
\(825\) 1.04700e12i 0.0786869i
\(826\) 0 0
\(827\) 8.99625e12i 0.668785i 0.942434 + 0.334393i \(0.108531\pi\)
−0.942434 + 0.334393i \(0.891469\pi\)
\(828\) 0 0
\(829\) −1.07787e13 + 6.22311e12i −0.792634 + 0.457628i −0.840889 0.541207i \(-0.817967\pi\)
0.0482549 + 0.998835i \(0.484634\pi\)
\(830\) 0 0
\(831\) 1.40794e13 2.43863e13i 1.02419 1.77395i
\(832\) 0 0
\(833\) −2.42663e12 + 6.96566e12i −0.174623 + 0.501256i
\(834\) 0 0
\(835\) 3.79458e12 + 2.19080e12i 0.270131 + 0.155960i
\(836\) 0 0
\(837\) 2.31364e13 + 4.00734e13i 1.62941 + 2.82222i
\(838\) 0 0
\(839\) −1.76180e13 −1.22752 −0.613759 0.789493i \(-0.710343\pi\)
−0.613759 + 0.789493i \(0.710343\pi\)
\(840\) 0 0
\(841\) −9.84139e12 −0.678382
\(842\) 0 0
\(843\) 6.78470e12 + 1.17514e13i 0.462707 + 0.801433i
\(844\) 0 0
\(845\) −2.49444e12 1.44016e12i −0.168313 0.0971754i
\(846\) 0 0
\(847\) 1.47389e13 + 2.49380e12i 0.983988 + 0.166489i
\(848\) 0 0
\(849\) −7.22963e12 + 1.25221e13i −0.477564 + 0.827164i
\(850\) 0 0
\(851\) −2.38949e13 + 1.37957e13i −1.56179 + 0.901698i
\(852\) 0 0
\(853\) 6.58201e12i 0.425684i −0.977087 0.212842i \(-0.931728\pi\)
0.977087 0.212842i \(-0.0682720\pi\)
\(854\) 0 0
\(855\) 6.09026e12i 0.389752i
\(856\) 0 0
\(857\) 2.34072e13 1.35142e13i 1.48230 0.855806i 0.482501 0.875895i \(-0.339728\pi\)
0.999798 + 0.0200893i \(0.00639504\pi\)
\(858\) 0 0
\(859\) 1.38980e13 2.40721e13i 0.870931 1.50850i 0.00989602 0.999951i \(-0.496850\pi\)
0.861035 0.508546i \(-0.169817\pi\)
\(860\) 0 0
\(861\) −1.60729e13 1.32983e13i −0.996735 0.824671i
\(862\) 0 0
\(863\) 7.83797e12 + 4.52525e12i 0.481011 + 0.277712i 0.720838 0.693104i \(-0.243757\pi\)
−0.239827 + 0.970816i \(0.577091\pi\)
\(864\) 0 0
\(865\) −8.00606e11 1.38669e12i −0.0486235 0.0842184i
\(866\) 0 0
\(867\) −2.17504e13 −1.30732
\(868\) 0 0
\(869\) 6.36906e11 0.0378866
\(870\) 0 0
\(871\) −2.20052e12 3.81142e12i −0.129552 0.224391i
\(872\) 0 0
\(873\) 2.62843e13 + 1.51752e13i 1.53155 + 0.884242i
\(874\) 0 0
\(875\) 6.35032e12 2.36123e12i 0.366234 0.136176i
\(876\) 0 0
\(877\) 6.18790e12 1.07178e13i 0.353220 0.611795i −0.633592 0.773668i \(-0.718420\pi\)
0.986812 + 0.161873i \(0.0517534\pi\)
\(878\) 0 0
\(879\) 1.36289e13 7.86863e12i 0.770034 0.444579i
\(880\) 0 0
\(881\) 1.95647e13i 1.09416i 0.837080 + 0.547080i \(0.184261\pi\)
−0.837080 + 0.547080i \(0.815739\pi\)
\(882\) 0 0
\(883\) 2.03572e13i 1.12693i 0.826141 + 0.563463i \(0.190531\pi\)
−0.826141 + 0.563463i \(0.809469\pi\)
\(884\) 0 0
\(885\) −4.01459e11 + 2.31783e11i −0.0219987 + 0.0127010i
\(886\) 0 0
\(887\) −1.09697e13 + 1.90001e13i −0.595029 + 1.03062i 0.398514 + 0.917162i \(0.369526\pi\)
−0.993543 + 0.113458i \(0.963807\pi\)
\(888\) 0 0
\(889\) −9.19626e12 + 3.41944e12i −0.493803 + 0.183610i
\(890\) 0 0
\(891\) 1.49385e12 + 8.62472e11i 0.0794065 + 0.0458454i
\(892\) 0 0
\(893\) 1.23357e13 + 2.13660e13i 0.649129 + 1.12432i
\(894\) 0 0
\(895\) −4.98320e11 −0.0259600
\(896\) 0 0
\(897\) −7.74410e12 −0.399397
\(898\) 0 0
\(899\) 7.57314e12 + 1.31171e13i 0.386685 + 0.669758i
\(900\) 0 0
\(901\) 1.35158e12 + 7.80337e11i 0.0683253 + 0.0394476i
\(902\) 0 0
\(903\) 3.49346e13 + 2.89039e13i 1.74848 + 1.44664i
\(904\) 0 0
\(905\) −1.28425e12 + 2.22439e12i −0.0636403 + 0.110228i
\(906\) 0 0
\(907\) 4.84003e9 2.79439e9i 0.000237473 0.000137105i −0.499881 0.866094i \(-0.666623\pi\)
0.500119 + 0.865957i \(0.333290\pi\)
\(908\) 0 0
\(909\) 2.34868e13i 1.14100i
\(910\) 0 0
\(911\) 1.64389e13i 0.790752i −0.918519 0.395376i \(-0.870614\pi\)
0.918519 0.395376i \(-0.129386\pi\)
\(912\) 0 0
\(913\) 1.23871e12 7.15172e11i 0.0590001 0.0340637i
\(914\) 0 0
\(915\) 2.94249e12 5.09654e12i 0.138778 0.240370i
\(916\) 0 0
\(917\) 3.49894e13 + 5.92016e12i 1.63409 + 0.276485i
\(918\) 0 0
\(919\) −7.93400e12 4.58069e12i −0.366921 0.211842i 0.305192 0.952291i \(-0.401279\pi\)
−0.672112 + 0.740449i \(0.734613\pi\)
\(920\) 0 0
\(921\) 8.10846e12 + 1.40443e13i 0.371339 + 0.643177i
\(922\) 0 0
\(923\) 6.73359e12 0.305379
\(924\) 0 0
\(925\) −2.77608e13 −1.24679
\(926\) 0 0
\(927\) 6.25859e11 + 1.08402e12i 0.0278367 + 0.0482146i
\(928\) 0 0
\(929\) −1.12765e13 6.51049e12i −0.496711 0.286776i 0.230643 0.973038i \(-0.425917\pi\)
−0.727354 + 0.686262i \(0.759250\pi\)
\(930\) 0 0
\(931\) −3.62905e12 1.90365e13i −0.158314 0.830448i
\(932\) 0 0
\(933\) −3.55306e13 + 6.15408e13i −1.53510 + 2.65886i
\(934\) 0 0
\(935\) 9.64013e10 5.56573e10i 0.00412506 0.00238161i
\(936\) 0 0
\(937\) 3.96658e13i 1.68108i 0.541749 + 0.840540i \(0.317762\pi\)
−0.541749 + 0.840540i \(0.682238\pi\)
\(938\) 0 0
\(939\) 3.20732e13i 1.34631i
\(940\) 0 0
\(941\) 1.10093e13 6.35625e12i 0.457729 0.264270i −0.253360 0.967372i \(-0.581536\pi\)
0.711089 + 0.703102i \(0.248202\pi\)
\(942\) 0 0
\(943\) −1.19861e13 + 2.07605e13i −0.493600 + 0.854940i
\(944\) 0 0
\(945\) 1.94813e12 1.15138e13i 0.0794647 0.469653i
\(946\) 0 0
\(947\) 8.68822e11 + 5.01615e11i 0.0351040 + 0.0202673i 0.517449 0.855714i \(-0.326882\pi\)
−0.482345 + 0.875981i \(0.660215\pi\)
\(948\) 0 0
\(949\) −2.02742e11 3.51160e11i −0.00811420 0.0140542i
\(950\) 0 0
\(951\) 1.37722e13 0.546000
\(952\) 0 0
\(953\) 1.32384e13 0.519899 0.259949 0.965622i \(-0.416294\pi\)
0.259949 + 0.965622i \(0.416294\pi\)
\(954\) 0 0
\(955\) −2.14693e12 3.71859e12i −0.0835223 0.144665i
\(956\) 0 0
\(957\) 1.04427e12 + 6.02910e11i 0.0402448 + 0.0232353i
\(958\) 0 0
\(959\) −2.57608e13 + 3.11357e13i −0.983503 + 1.18871i
\(960\) 0 0
\(961\) −1.13646e13 + 1.96841e13i −0.429833 + 0.744493i
\(962\) 0 0
\(963\) −5.94560e13 + 3.43269e13i −2.22781 + 1.28622i
\(964\) 0 0
\(965\) 8.46945e12i 0.314400i
\(966\) 0 0
\(967\) 2.39024e13i 0.879066i −0.898226 0.439533i \(-0.855144\pi\)
0.898226 0.439533i \(-0.144856\pi\)
\(968\) 0 0
\(969\) −1.94129e13 + 1.12080e13i −0.707348 + 0.408387i
\(970\) 0 0
\(971\) 2.80985e12 4.86680e12i 0.101437 0.175694i −0.810840 0.585268i \(-0.800989\pi\)
0.912277 + 0.409574i \(0.134323\pi\)
\(972\) 0 0
\(973\) −1.21126e13 3.25758e13i −0.433242 1.16516i
\(974\) 0 0
\(975\) −6.74777e12 3.89583e12i −0.239133 0.138063i
\(976\) 0 0
\(977\) 1.03784e13 + 1.79759e13i 0.364422 + 0.631197i 0.988683 0.150018i \(-0.0479333\pi\)
−0.624261 + 0.781216i \(0.714600\pi\)
\(978\) 0 0
\(979\) 1.79931e12 0.0626014
\(980\) 0 0
\(981\) 5.27547e13 1.81866
\(982\) 0 0
\(983\) 1.16489e13 + 2.01765e13i 0.397919 + 0.689215i 0.993469 0.114103i \(-0.0363993\pi\)
−0.595550 + 0.803318i \(0.703066\pi\)
\(984\) 0 0
\(985\) 2.38663e12 + 1.37792e12i 0.0807833 + 0.0466403i
\(986\) 0 0
\(987\) −2.90437e13 7.81105e13i −0.974149 2.61988i
\(988\) 0 0
\(989\) 2.60519e13 4.51232e13i 0.865876 1.49974i
\(990\) 0 0
\(991\) 1.53189e13 8.84438e12i 0.504541 0.291297i −0.226046 0.974117i \(-0.572580\pi\)
0.730587 + 0.682820i \(0.239247\pi\)
\(992\) 0 0
\(993\) 7.85501e13i 2.56375i
\(994\) 0 0
\(995\) 2.83820e12i 0.0917994i
\(996\) 0 0
\(997\) 4.60266e13 2.65735e13i 1.47530 0.851766i 0.475690 0.879613i \(-0.342198\pi\)
0.999612 + 0.0278467i \(0.00886502\pi\)
\(998\) 0 0
\(999\) −4.88382e13 + 8.45903e13i −1.55137 + 2.68705i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.a.47.12 yes 24
4.3 odd 2 112.10.p.c.47.1 yes 24
7.3 odd 6 112.10.p.c.31.1 yes 24
28.3 even 6 inner 112.10.p.a.31.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.a.31.12 24 28.3 even 6 inner
112.10.p.a.47.12 yes 24 1.1 even 1 trivial
112.10.p.c.31.1 yes 24 7.3 odd 6
112.10.p.c.47.1 yes 24 4.3 odd 2