Properties

Label 112.10.a.i.1.3
Level $112$
Weight $10$
Character 112.1
Self dual yes
Analytic conductor $57.684$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,92,0,274] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 823x - 4578 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(31.1447\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+273.944 q^{3} -187.226 q^{5} +2401.00 q^{7} +55362.2 q^{9} -6322.34 q^{11} +70415.3 q^{13} -51289.4 q^{15} +164999. q^{17} -482060. q^{19} +657739. q^{21} +571132. q^{23} -1.91807e6 q^{25} +9.77410e6 q^{27} +2.49049e6 q^{29} +8.74543e6 q^{31} -1.73196e6 q^{33} -449529. q^{35} +1.74181e7 q^{37} +1.92898e7 q^{39} -3.27790e7 q^{41} -1.01909e7 q^{43} -1.03652e7 q^{45} -2.96277e7 q^{47} +5.76480e6 q^{49} +4.52005e7 q^{51} +5.85308e7 q^{53} +1.18370e6 q^{55} -1.32057e8 q^{57} +1.04666e8 q^{59} -2.06399e8 q^{61} +1.32925e8 q^{63} -1.31836e7 q^{65} -1.79752e8 q^{67} +1.56458e8 q^{69} +1.16985e8 q^{71} +2.81318e8 q^{73} -5.25444e8 q^{75} -1.51799e7 q^{77} +3.44616e8 q^{79} +1.58786e9 q^{81} +2.85676e8 q^{83} -3.08921e7 q^{85} +6.82254e8 q^{87} +9.14231e8 q^{89} +1.69067e8 q^{91} +2.39576e9 q^{93} +9.02541e7 q^{95} -1.47825e9 q^{97} -3.50018e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 92 q^{3} + 274 q^{5} + 7203 q^{7} + 51871 q^{9} + 45364 q^{11} - 11158 q^{13} + 95584 q^{15} - 55866 q^{17} - 488772 q^{19} + 220892 q^{21} + 253888 q^{23} - 3872619 q^{25} + 10157192 q^{27} - 765318 q^{29}+ \cdots - 168732636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 273.944 1.95261 0.976306 0.216396i \(-0.0694302\pi\)
0.976306 + 0.216396i \(0.0694302\pi\)
\(4\) 0 0
\(5\) −187.226 −0.133968 −0.0669840 0.997754i \(-0.521338\pi\)
−0.0669840 + 0.997754i \(0.521338\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 0 0
\(9\) 55362.2 2.81269
\(10\) 0 0
\(11\) −6322.34 −0.130200 −0.0650999 0.997879i \(-0.520737\pi\)
−0.0650999 + 0.997879i \(0.520737\pi\)
\(12\) 0 0
\(13\) 70415.3 0.683789 0.341895 0.939738i \(-0.388931\pi\)
0.341895 + 0.939738i \(0.388931\pi\)
\(14\) 0 0
\(15\) −51289.4 −0.261587
\(16\) 0 0
\(17\) 164999. 0.479139 0.239569 0.970879i \(-0.422994\pi\)
0.239569 + 0.970879i \(0.422994\pi\)
\(18\) 0 0
\(19\) −482060. −0.848613 −0.424307 0.905519i \(-0.639482\pi\)
−0.424307 + 0.905519i \(0.639482\pi\)
\(20\) 0 0
\(21\) 657739. 0.738018
\(22\) 0 0
\(23\) 571132. 0.425560 0.212780 0.977100i \(-0.431748\pi\)
0.212780 + 0.977100i \(0.431748\pi\)
\(24\) 0 0
\(25\) −1.91807e6 −0.982053
\(26\) 0 0
\(27\) 9.77410e6 3.53948
\(28\) 0 0
\(29\) 2.49049e6 0.653874 0.326937 0.945046i \(-0.393984\pi\)
0.326937 + 0.945046i \(0.393984\pi\)
\(30\) 0 0
\(31\) 8.74543e6 1.70080 0.850400 0.526136i \(-0.176360\pi\)
0.850400 + 0.526136i \(0.176360\pi\)
\(32\) 0 0
\(33\) −1.73196e6 −0.254230
\(34\) 0 0
\(35\) −449529. −0.0506351
\(36\) 0 0
\(37\) 1.74181e7 1.52790 0.763948 0.645278i \(-0.223258\pi\)
0.763948 + 0.645278i \(0.223258\pi\)
\(38\) 0 0
\(39\) 1.92898e7 1.33517
\(40\) 0 0
\(41\) −3.27790e7 −1.81163 −0.905813 0.423677i \(-0.860739\pi\)
−0.905813 + 0.423677i \(0.860739\pi\)
\(42\) 0 0
\(43\) −1.01909e7 −0.454576 −0.227288 0.973828i \(-0.572986\pi\)
−0.227288 + 0.973828i \(0.572986\pi\)
\(44\) 0 0
\(45\) −1.03652e7 −0.376810
\(46\) 0 0
\(47\) −2.96277e7 −0.885639 −0.442820 0.896611i \(-0.646022\pi\)
−0.442820 + 0.896611i \(0.646022\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) 4.52005e7 0.935572
\(52\) 0 0
\(53\) 5.85308e7 1.01893 0.509463 0.860492i \(-0.329844\pi\)
0.509463 + 0.860492i \(0.329844\pi\)
\(54\) 0 0
\(55\) 1.18370e6 0.0174426
\(56\) 0 0
\(57\) −1.32057e8 −1.65701
\(58\) 0 0
\(59\) 1.04666e8 1.12453 0.562263 0.826958i \(-0.309931\pi\)
0.562263 + 0.826958i \(0.309931\pi\)
\(60\) 0 0
\(61\) −2.06399e8 −1.90864 −0.954318 0.298792i \(-0.903416\pi\)
−0.954318 + 0.298792i \(0.903416\pi\)
\(62\) 0 0
\(63\) 1.32925e8 1.06310
\(64\) 0 0
\(65\) −1.31836e7 −0.0916058
\(66\) 0 0
\(67\) −1.79752e8 −1.08977 −0.544887 0.838510i \(-0.683427\pi\)
−0.544887 + 0.838510i \(0.683427\pi\)
\(68\) 0 0
\(69\) 1.56458e8 0.830954
\(70\) 0 0
\(71\) 1.16985e8 0.546345 0.273172 0.961965i \(-0.411927\pi\)
0.273172 + 0.961965i \(0.411927\pi\)
\(72\) 0 0
\(73\) 2.81318e8 1.15943 0.579715 0.814819i \(-0.303164\pi\)
0.579715 + 0.814819i \(0.303164\pi\)
\(74\) 0 0
\(75\) −5.25444e8 −1.91757
\(76\) 0 0
\(77\) −1.51799e7 −0.0492109
\(78\) 0 0
\(79\) 3.44616e8 0.995435 0.497718 0.867339i \(-0.334172\pi\)
0.497718 + 0.867339i \(0.334172\pi\)
\(80\) 0 0
\(81\) 1.58786e9 4.09854
\(82\) 0 0
\(83\) 2.85676e8 0.660728 0.330364 0.943854i \(-0.392828\pi\)
0.330364 + 0.943854i \(0.392828\pi\)
\(84\) 0 0
\(85\) −3.08921e7 −0.0641892
\(86\) 0 0
\(87\) 6.82254e8 1.27676
\(88\) 0 0
\(89\) 9.14231e8 1.54455 0.772273 0.635290i \(-0.219120\pi\)
0.772273 + 0.635290i \(0.219120\pi\)
\(90\) 0 0
\(91\) 1.69067e8 0.258448
\(92\) 0 0
\(93\) 2.39576e9 3.32100
\(94\) 0 0
\(95\) 9.02541e7 0.113687
\(96\) 0 0
\(97\) −1.47825e9 −1.69541 −0.847706 0.530466i \(-0.822017\pi\)
−0.847706 + 0.530466i \(0.822017\pi\)
\(98\) 0 0
\(99\) −3.50018e8 −0.366212
\(100\) 0 0
\(101\) −1.89175e9 −1.80891 −0.904455 0.426569i \(-0.859722\pi\)
−0.904455 + 0.426569i \(0.859722\pi\)
\(102\) 0 0
\(103\) 3.47776e8 0.304461 0.152231 0.988345i \(-0.451354\pi\)
0.152231 + 0.988345i \(0.451354\pi\)
\(104\) 0 0
\(105\) −1.23146e8 −0.0988707
\(106\) 0 0
\(107\) −8.95113e8 −0.660162 −0.330081 0.943953i \(-0.607076\pi\)
−0.330081 + 0.943953i \(0.607076\pi\)
\(108\) 0 0
\(109\) 4.17983e8 0.283621 0.141811 0.989894i \(-0.454708\pi\)
0.141811 + 0.989894i \(0.454708\pi\)
\(110\) 0 0
\(111\) 4.77159e9 2.98339
\(112\) 0 0
\(113\) −1.23275e9 −0.711249 −0.355625 0.934629i \(-0.615732\pi\)
−0.355625 + 0.934629i \(0.615732\pi\)
\(114\) 0 0
\(115\) −1.06931e8 −0.0570115
\(116\) 0 0
\(117\) 3.89835e9 1.92329
\(118\) 0 0
\(119\) 3.96163e8 0.181097
\(120\) 0 0
\(121\) −2.31798e9 −0.983048
\(122\) 0 0
\(123\) −8.97961e9 −3.53740
\(124\) 0 0
\(125\) 7.24788e8 0.265532
\(126\) 0 0
\(127\) 2.59443e9 0.884963 0.442482 0.896778i \(-0.354098\pi\)
0.442482 + 0.896778i \(0.354098\pi\)
\(128\) 0 0
\(129\) −2.79175e9 −0.887610
\(130\) 0 0
\(131\) 4.11259e9 1.22010 0.610048 0.792364i \(-0.291150\pi\)
0.610048 + 0.792364i \(0.291150\pi\)
\(132\) 0 0
\(133\) −1.15743e9 −0.320746
\(134\) 0 0
\(135\) −1.82996e9 −0.474177
\(136\) 0 0
\(137\) −2.25492e9 −0.546876 −0.273438 0.961890i \(-0.588161\pi\)
−0.273438 + 0.961890i \(0.588161\pi\)
\(138\) 0 0
\(139\) −2.20985e9 −0.502107 −0.251054 0.967973i \(-0.580777\pi\)
−0.251054 + 0.967973i \(0.580777\pi\)
\(140\) 0 0
\(141\) −8.11631e9 −1.72931
\(142\) 0 0
\(143\) −4.45189e8 −0.0890292
\(144\) 0 0
\(145\) −4.66284e8 −0.0875981
\(146\) 0 0
\(147\) 1.57923e9 0.278944
\(148\) 0 0
\(149\) −5.08122e9 −0.844559 −0.422280 0.906466i \(-0.638770\pi\)
−0.422280 + 0.906466i \(0.638770\pi\)
\(150\) 0 0
\(151\) 4.15987e8 0.0651153 0.0325576 0.999470i \(-0.489635\pi\)
0.0325576 + 0.999470i \(0.489635\pi\)
\(152\) 0 0
\(153\) 9.13471e9 1.34767
\(154\) 0 0
\(155\) −1.63737e9 −0.227853
\(156\) 0 0
\(157\) −3.01793e9 −0.396425 −0.198212 0.980159i \(-0.563514\pi\)
−0.198212 + 0.980159i \(0.563514\pi\)
\(158\) 0 0
\(159\) 1.60341e10 1.98957
\(160\) 0 0
\(161\) 1.37129e9 0.160847
\(162\) 0 0
\(163\) 9.54190e9 1.05874 0.529371 0.848390i \(-0.322428\pi\)
0.529371 + 0.848390i \(0.322428\pi\)
\(164\) 0 0
\(165\) 3.24269e8 0.0340586
\(166\) 0 0
\(167\) 6.92059e9 0.688524 0.344262 0.938874i \(-0.388129\pi\)
0.344262 + 0.938874i \(0.388129\pi\)
\(168\) 0 0
\(169\) −5.64618e9 −0.532433
\(170\) 0 0
\(171\) −2.66879e10 −2.38689
\(172\) 0 0
\(173\) 5.56394e9 0.472254 0.236127 0.971722i \(-0.424122\pi\)
0.236127 + 0.971722i \(0.424122\pi\)
\(174\) 0 0
\(175\) −4.60529e9 −0.371181
\(176\) 0 0
\(177\) 2.86725e10 2.19576
\(178\) 0 0
\(179\) 2.41361e9 0.175723 0.0878615 0.996133i \(-0.471997\pi\)
0.0878615 + 0.996133i \(0.471997\pi\)
\(180\) 0 0
\(181\) 2.84953e9 0.197342 0.0986710 0.995120i \(-0.468541\pi\)
0.0986710 + 0.995120i \(0.468541\pi\)
\(182\) 0 0
\(183\) −5.65417e10 −3.72683
\(184\) 0 0
\(185\) −3.26112e9 −0.204689
\(186\) 0 0
\(187\) −1.04318e9 −0.0623838
\(188\) 0 0
\(189\) 2.34676e10 1.33780
\(190\) 0 0
\(191\) −2.57074e10 −1.39768 −0.698839 0.715279i \(-0.746300\pi\)
−0.698839 + 0.715279i \(0.746300\pi\)
\(192\) 0 0
\(193\) −3.61507e10 −1.87547 −0.937733 0.347357i \(-0.887079\pi\)
−0.937733 + 0.347357i \(0.887079\pi\)
\(194\) 0 0
\(195\) −3.61156e9 −0.178871
\(196\) 0 0
\(197\) −2.21880e10 −1.04959 −0.524795 0.851229i \(-0.675858\pi\)
−0.524795 + 0.851229i \(0.675858\pi\)
\(198\) 0 0
\(199\) −1.97412e10 −0.892348 −0.446174 0.894946i \(-0.647214\pi\)
−0.446174 + 0.894946i \(0.647214\pi\)
\(200\) 0 0
\(201\) −4.92418e10 −2.12790
\(202\) 0 0
\(203\) 5.97967e9 0.247141
\(204\) 0 0
\(205\) 6.13708e9 0.242700
\(206\) 0 0
\(207\) 3.16191e10 1.19697
\(208\) 0 0
\(209\) 3.04775e9 0.110489
\(210\) 0 0
\(211\) −2.27897e10 −0.791531 −0.395766 0.918352i \(-0.629521\pi\)
−0.395766 + 0.918352i \(0.629521\pi\)
\(212\) 0 0
\(213\) 3.20473e10 1.06680
\(214\) 0 0
\(215\) 1.90801e9 0.0608986
\(216\) 0 0
\(217\) 2.09978e10 0.642842
\(218\) 0 0
\(219\) 7.70653e10 2.26392
\(220\) 0 0
\(221\) 1.16185e10 0.327630
\(222\) 0 0
\(223\) 1.46742e10 0.397357 0.198679 0.980065i \(-0.436335\pi\)
0.198679 + 0.980065i \(0.436335\pi\)
\(224\) 0 0
\(225\) −1.06189e11 −2.76221
\(226\) 0 0
\(227\) −3.73991e10 −0.934857 −0.467429 0.884031i \(-0.654819\pi\)
−0.467429 + 0.884031i \(0.654819\pi\)
\(228\) 0 0
\(229\) −4.04940e10 −0.973040 −0.486520 0.873670i \(-0.661734\pi\)
−0.486520 + 0.873670i \(0.661734\pi\)
\(230\) 0 0
\(231\) −4.15845e9 −0.0960898
\(232\) 0 0
\(233\) −7.79707e9 −0.173313 −0.0866563 0.996238i \(-0.527618\pi\)
−0.0866563 + 0.996238i \(0.527618\pi\)
\(234\) 0 0
\(235\) 5.54706e9 0.118647
\(236\) 0 0
\(237\) 9.44053e10 1.94370
\(238\) 0 0
\(239\) −4.99554e10 −0.990357 −0.495178 0.868791i \(-0.664897\pi\)
−0.495178 + 0.868791i \(0.664897\pi\)
\(240\) 0 0
\(241\) −1.44796e10 −0.276490 −0.138245 0.990398i \(-0.544146\pi\)
−0.138245 + 0.990398i \(0.544146\pi\)
\(242\) 0 0
\(243\) 2.42600e11 4.46338
\(244\) 0 0
\(245\) −1.07932e9 −0.0191383
\(246\) 0 0
\(247\) −3.39444e10 −0.580273
\(248\) 0 0
\(249\) 7.82593e10 1.29015
\(250\) 0 0
\(251\) −7.53524e10 −1.19830 −0.599150 0.800637i \(-0.704495\pi\)
−0.599150 + 0.800637i \(0.704495\pi\)
\(252\) 0 0
\(253\) −3.61089e9 −0.0554079
\(254\) 0 0
\(255\) −8.46270e9 −0.125337
\(256\) 0 0
\(257\) 6.97951e10 0.997990 0.498995 0.866605i \(-0.333703\pi\)
0.498995 + 0.866605i \(0.333703\pi\)
\(258\) 0 0
\(259\) 4.18209e10 0.577490
\(260\) 0 0
\(261\) 1.37879e11 1.83914
\(262\) 0 0
\(263\) −6.51074e10 −0.839130 −0.419565 0.907725i \(-0.637817\pi\)
−0.419565 + 0.907725i \(0.637817\pi\)
\(264\) 0 0
\(265\) −1.09585e10 −0.136503
\(266\) 0 0
\(267\) 2.50448e11 3.01590
\(268\) 0 0
\(269\) −3.07988e10 −0.358632 −0.179316 0.983792i \(-0.557388\pi\)
−0.179316 + 0.983792i \(0.557388\pi\)
\(270\) 0 0
\(271\) 2.16598e10 0.243946 0.121973 0.992533i \(-0.461078\pi\)
0.121973 + 0.992533i \(0.461078\pi\)
\(272\) 0 0
\(273\) 4.63149e10 0.504648
\(274\) 0 0
\(275\) 1.21267e10 0.127863
\(276\) 0 0
\(277\) 7.43648e9 0.0758942 0.0379471 0.999280i \(-0.487918\pi\)
0.0379471 + 0.999280i \(0.487918\pi\)
\(278\) 0 0
\(279\) 4.84166e11 4.78383
\(280\) 0 0
\(281\) −3.90190e9 −0.0373334 −0.0186667 0.999826i \(-0.505942\pi\)
−0.0186667 + 0.999826i \(0.505942\pi\)
\(282\) 0 0
\(283\) −1.27084e10 −0.117774 −0.0588872 0.998265i \(-0.518755\pi\)
−0.0588872 + 0.998265i \(0.518755\pi\)
\(284\) 0 0
\(285\) 2.47246e10 0.221987
\(286\) 0 0
\(287\) −7.87025e10 −0.684731
\(288\) 0 0
\(289\) −9.13632e10 −0.770426
\(290\) 0 0
\(291\) −4.04958e11 −3.31048
\(292\) 0 0
\(293\) −9.00027e10 −0.713430 −0.356715 0.934213i \(-0.616103\pi\)
−0.356715 + 0.934213i \(0.616103\pi\)
\(294\) 0 0
\(295\) −1.95961e10 −0.150650
\(296\) 0 0
\(297\) −6.17951e10 −0.460840
\(298\) 0 0
\(299\) 4.02164e10 0.290994
\(300\) 0 0
\(301\) −2.44685e10 −0.171813
\(302\) 0 0
\(303\) −5.18232e11 −3.53210
\(304\) 0 0
\(305\) 3.86432e10 0.255696
\(306\) 0 0
\(307\) −8.38744e10 −0.538898 −0.269449 0.963015i \(-0.586842\pi\)
−0.269449 + 0.963015i \(0.586842\pi\)
\(308\) 0 0
\(309\) 9.52711e10 0.594495
\(310\) 0 0
\(311\) −5.69975e10 −0.345489 −0.172744 0.984967i \(-0.555263\pi\)
−0.172744 + 0.984967i \(0.555263\pi\)
\(312\) 0 0
\(313\) −7.69060e9 −0.0452909 −0.0226454 0.999744i \(-0.507209\pi\)
−0.0226454 + 0.999744i \(0.507209\pi\)
\(314\) 0 0
\(315\) −2.48869e10 −0.142421
\(316\) 0 0
\(317\) 2.76038e11 1.53533 0.767665 0.640851i \(-0.221418\pi\)
0.767665 + 0.640851i \(0.221418\pi\)
\(318\) 0 0
\(319\) −1.57457e10 −0.0851343
\(320\) 0 0
\(321\) −2.45211e11 −1.28904
\(322\) 0 0
\(323\) −7.95395e10 −0.406604
\(324\) 0 0
\(325\) −1.35062e11 −0.671517
\(326\) 0 0
\(327\) 1.14504e11 0.553802
\(328\) 0 0
\(329\) −7.11360e10 −0.334740
\(330\) 0 0
\(331\) −5.74005e10 −0.262839 −0.131419 0.991327i \(-0.541953\pi\)
−0.131419 + 0.991327i \(0.541953\pi\)
\(332\) 0 0
\(333\) 9.64306e11 4.29750
\(334\) 0 0
\(335\) 3.36542e10 0.145995
\(336\) 0 0
\(337\) −3.13050e11 −1.32215 −0.661073 0.750321i \(-0.729899\pi\)
−0.661073 + 0.750321i \(0.729899\pi\)
\(338\) 0 0
\(339\) −3.37704e11 −1.38879
\(340\) 0 0
\(341\) −5.52915e10 −0.221444
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 0 0
\(345\) −2.92930e10 −0.111321
\(346\) 0 0
\(347\) −1.24609e11 −0.461389 −0.230695 0.973026i \(-0.574100\pi\)
−0.230695 + 0.973026i \(0.574100\pi\)
\(348\) 0 0
\(349\) −1.79519e11 −0.647734 −0.323867 0.946103i \(-0.604983\pi\)
−0.323867 + 0.946103i \(0.604983\pi\)
\(350\) 0 0
\(351\) 6.88246e11 2.42026
\(352\) 0 0
\(353\) −9.79970e8 −0.00335913 −0.00167956 0.999999i \(-0.500535\pi\)
−0.00167956 + 0.999999i \(0.500535\pi\)
\(354\) 0 0
\(355\) −2.19026e10 −0.0731927
\(356\) 0 0
\(357\) 1.08526e11 0.353613
\(358\) 0 0
\(359\) 3.73991e11 1.18833 0.594164 0.804344i \(-0.297483\pi\)
0.594164 + 0.804344i \(0.297483\pi\)
\(360\) 0 0
\(361\) −9.03059e10 −0.279855
\(362\) 0 0
\(363\) −6.34995e11 −1.91951
\(364\) 0 0
\(365\) −5.26700e10 −0.155326
\(366\) 0 0
\(367\) 5.35893e11 1.54199 0.770993 0.636843i \(-0.219760\pi\)
0.770993 + 0.636843i \(0.219760\pi\)
\(368\) 0 0
\(369\) −1.81472e12 −5.09555
\(370\) 0 0
\(371\) 1.40532e11 0.385118
\(372\) 0 0
\(373\) −4.04569e11 −1.08219 −0.541094 0.840962i \(-0.681990\pi\)
−0.541094 + 0.840962i \(0.681990\pi\)
\(374\) 0 0
\(375\) 1.98551e11 0.518480
\(376\) 0 0
\(377\) 1.75369e11 0.447112
\(378\) 0 0
\(379\) 7.02688e11 1.74939 0.874693 0.484677i \(-0.161063\pi\)
0.874693 + 0.484677i \(0.161063\pi\)
\(380\) 0 0
\(381\) 7.10728e11 1.72799
\(382\) 0 0
\(383\) −4.69960e11 −1.11601 −0.558003 0.829839i \(-0.688432\pi\)
−0.558003 + 0.829839i \(0.688432\pi\)
\(384\) 0 0
\(385\) 2.84208e9 0.00659269
\(386\) 0 0
\(387\) −5.64193e11 −1.27858
\(388\) 0 0
\(389\) −4.73136e10 −0.104764 −0.0523821 0.998627i \(-0.516681\pi\)
−0.0523821 + 0.998627i \(0.516681\pi\)
\(390\) 0 0
\(391\) 9.42363e10 0.203903
\(392\) 0 0
\(393\) 1.12662e12 2.38237
\(394\) 0 0
\(395\) −6.45210e10 −0.133356
\(396\) 0 0
\(397\) −5.68408e11 −1.14843 −0.574213 0.818706i \(-0.694692\pi\)
−0.574213 + 0.818706i \(0.694692\pi\)
\(398\) 0 0
\(399\) −3.17070e11 −0.626292
\(400\) 0 0
\(401\) 7.44652e10 0.143815 0.0719074 0.997411i \(-0.477091\pi\)
0.0719074 + 0.997411i \(0.477091\pi\)
\(402\) 0 0
\(403\) 6.15812e11 1.16299
\(404\) 0 0
\(405\) −2.97288e11 −0.549073
\(406\) 0 0
\(407\) −1.10123e11 −0.198932
\(408\) 0 0
\(409\) −1.18444e11 −0.209295 −0.104648 0.994509i \(-0.533372\pi\)
−0.104648 + 0.994509i \(0.533372\pi\)
\(410\) 0 0
\(411\) −6.17721e11 −1.06784
\(412\) 0 0
\(413\) 2.51302e11 0.425031
\(414\) 0 0
\(415\) −5.34860e10 −0.0885164
\(416\) 0 0
\(417\) −6.05375e11 −0.980420
\(418\) 0 0
\(419\) 3.16733e11 0.502030 0.251015 0.967983i \(-0.419236\pi\)
0.251015 + 0.967983i \(0.419236\pi\)
\(420\) 0 0
\(421\) 3.05566e11 0.474063 0.237032 0.971502i \(-0.423826\pi\)
0.237032 + 0.971502i \(0.423826\pi\)
\(422\) 0 0
\(423\) −1.64025e12 −2.49103
\(424\) 0 0
\(425\) −3.16480e11 −0.470540
\(426\) 0 0
\(427\) −4.95564e11 −0.721397
\(428\) 0 0
\(429\) −1.21957e11 −0.173839
\(430\) 0 0
\(431\) 1.00084e12 1.39707 0.698535 0.715576i \(-0.253836\pi\)
0.698535 + 0.715576i \(0.253836\pi\)
\(432\) 0 0
\(433\) −8.50664e11 −1.16295 −0.581477 0.813563i \(-0.697525\pi\)
−0.581477 + 0.813563i \(0.697525\pi\)
\(434\) 0 0
\(435\) −1.27736e11 −0.171045
\(436\) 0 0
\(437\) −2.75320e11 −0.361136
\(438\) 0 0
\(439\) 4.13624e11 0.531515 0.265758 0.964040i \(-0.414378\pi\)
0.265758 + 0.964040i \(0.414378\pi\)
\(440\) 0 0
\(441\) 3.19152e11 0.401813
\(442\) 0 0
\(443\) −9.79404e11 −1.20822 −0.604109 0.796902i \(-0.706471\pi\)
−0.604109 + 0.796902i \(0.706471\pi\)
\(444\) 0 0
\(445\) −1.71168e11 −0.206920
\(446\) 0 0
\(447\) −1.39197e12 −1.64910
\(448\) 0 0
\(449\) 7.09255e11 0.823558 0.411779 0.911284i \(-0.364908\pi\)
0.411779 + 0.911284i \(0.364908\pi\)
\(450\) 0 0
\(451\) 2.07240e11 0.235874
\(452\) 0 0
\(453\) 1.13957e11 0.127145
\(454\) 0 0
\(455\) −3.16538e10 −0.0346237
\(456\) 0 0
\(457\) −8.30945e11 −0.891147 −0.445574 0.895245i \(-0.647000\pi\)
−0.445574 + 0.895245i \(0.647000\pi\)
\(458\) 0 0
\(459\) 1.61272e12 1.69590
\(460\) 0 0
\(461\) 1.57811e12 1.62736 0.813678 0.581315i \(-0.197462\pi\)
0.813678 + 0.581315i \(0.197462\pi\)
\(462\) 0 0
\(463\) 1.26972e12 1.28409 0.642043 0.766669i \(-0.278087\pi\)
0.642043 + 0.766669i \(0.278087\pi\)
\(464\) 0 0
\(465\) −4.48547e11 −0.444908
\(466\) 0 0
\(467\) 1.19937e12 1.16688 0.583442 0.812155i \(-0.301706\pi\)
0.583442 + 0.812155i \(0.301706\pi\)
\(468\) 0 0
\(469\) −4.31584e11 −0.411896
\(470\) 0 0
\(471\) −8.26744e11 −0.774064
\(472\) 0 0
\(473\) 6.44306e10 0.0591857
\(474\) 0 0
\(475\) 9.24625e11 0.833383
\(476\) 0 0
\(477\) 3.24039e12 2.86593
\(478\) 0 0
\(479\) −3.35551e11 −0.291239 −0.145619 0.989341i \(-0.546517\pi\)
−0.145619 + 0.989341i \(0.546517\pi\)
\(480\) 0 0
\(481\) 1.22650e12 1.04476
\(482\) 0 0
\(483\) 3.75656e11 0.314071
\(484\) 0 0
\(485\) 2.76767e11 0.227131
\(486\) 0 0
\(487\) −1.44592e12 −1.16483 −0.582417 0.812890i \(-0.697893\pi\)
−0.582417 + 0.812890i \(0.697893\pi\)
\(488\) 0 0
\(489\) 2.61394e12 2.06731
\(490\) 0 0
\(491\) 1.76921e12 1.37376 0.686882 0.726769i \(-0.258979\pi\)
0.686882 + 0.726769i \(0.258979\pi\)
\(492\) 0 0
\(493\) 4.10929e11 0.313296
\(494\) 0 0
\(495\) 6.55325e10 0.0490607
\(496\) 0 0
\(497\) 2.80881e11 0.206499
\(498\) 0 0
\(499\) 1.01090e12 0.729887 0.364943 0.931030i \(-0.381088\pi\)
0.364943 + 0.931030i \(0.381088\pi\)
\(500\) 0 0
\(501\) 1.89585e12 1.34442
\(502\) 0 0
\(503\) −2.12466e12 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(504\) 0 0
\(505\) 3.54184e11 0.242336
\(506\) 0 0
\(507\) −1.54674e12 −1.03963
\(508\) 0 0
\(509\) 2.40756e12 1.58981 0.794907 0.606731i \(-0.207519\pi\)
0.794907 + 0.606731i \(0.207519\pi\)
\(510\) 0 0
\(511\) 6.75444e11 0.438223
\(512\) 0 0
\(513\) −4.71170e12 −3.00365
\(514\) 0 0
\(515\) −6.51127e10 −0.0407881
\(516\) 0 0
\(517\) 1.87316e11 0.115310
\(518\) 0 0
\(519\) 1.52421e12 0.922128
\(520\) 0 0
\(521\) 1.13069e12 0.672317 0.336159 0.941805i \(-0.390872\pi\)
0.336159 + 0.941805i \(0.390872\pi\)
\(522\) 0 0
\(523\) −1.86264e11 −0.108861 −0.0544303 0.998518i \(-0.517334\pi\)
−0.0544303 + 0.998518i \(0.517334\pi\)
\(524\) 0 0
\(525\) −1.26159e12 −0.724772
\(526\) 0 0
\(527\) 1.44299e12 0.814920
\(528\) 0 0
\(529\) −1.47496e12 −0.818898
\(530\) 0 0
\(531\) 5.79451e12 3.16295
\(532\) 0 0
\(533\) −2.30815e12 −1.23877
\(534\) 0 0
\(535\) 1.67588e11 0.0884406
\(536\) 0 0
\(537\) 6.61194e11 0.343119
\(538\) 0 0
\(539\) −3.64470e10 −0.0186000
\(540\) 0 0
\(541\) 2.16613e12 1.08717 0.543583 0.839355i \(-0.317067\pi\)
0.543583 + 0.839355i \(0.317067\pi\)
\(542\) 0 0
\(543\) 7.80611e11 0.385332
\(544\) 0 0
\(545\) −7.82572e10 −0.0379962
\(546\) 0 0
\(547\) −2.69320e12 −1.28625 −0.643125 0.765762i \(-0.722362\pi\)
−0.643125 + 0.765762i \(0.722362\pi\)
\(548\) 0 0
\(549\) −1.14267e13 −5.36840
\(550\) 0 0
\(551\) −1.20057e12 −0.554886
\(552\) 0 0
\(553\) 8.27422e11 0.376239
\(554\) 0 0
\(555\) −8.93365e11 −0.399678
\(556\) 0 0
\(557\) 3.72511e12 1.63980 0.819899 0.572508i \(-0.194030\pi\)
0.819899 + 0.572508i \(0.194030\pi\)
\(558\) 0 0
\(559\) −7.17599e11 −0.310834
\(560\) 0 0
\(561\) −2.85773e11 −0.121811
\(562\) 0 0
\(563\) 2.84268e12 1.19245 0.596226 0.802817i \(-0.296666\pi\)
0.596226 + 0.802817i \(0.296666\pi\)
\(564\) 0 0
\(565\) 2.30803e11 0.0952846
\(566\) 0 0
\(567\) 3.81245e12 1.54910
\(568\) 0 0
\(569\) 3.65600e12 1.46218 0.731090 0.682281i \(-0.239012\pi\)
0.731090 + 0.682281i \(0.239012\pi\)
\(570\) 0 0
\(571\) 2.69092e12 1.05935 0.529674 0.848201i \(-0.322314\pi\)
0.529674 + 0.848201i \(0.322314\pi\)
\(572\) 0 0
\(573\) −7.04237e12 −2.72912
\(574\) 0 0
\(575\) −1.09547e12 −0.417923
\(576\) 0 0
\(577\) −2.39332e12 −0.898895 −0.449447 0.893307i \(-0.648379\pi\)
−0.449447 + 0.893307i \(0.648379\pi\)
\(578\) 0 0
\(579\) −9.90327e12 −3.66206
\(580\) 0 0
\(581\) 6.85909e11 0.249732
\(582\) 0 0
\(583\) −3.70051e11 −0.132664
\(584\) 0 0
\(585\) −7.29872e11 −0.257659
\(586\) 0 0
\(587\) 4.80967e12 1.67203 0.836015 0.548707i \(-0.184880\pi\)
0.836015 + 0.548707i \(0.184880\pi\)
\(588\) 0 0
\(589\) −4.21582e12 −1.44332
\(590\) 0 0
\(591\) −6.07826e12 −2.04944
\(592\) 0 0
\(593\) 4.89458e11 0.162544 0.0812718 0.996692i \(-0.474102\pi\)
0.0812718 + 0.996692i \(0.474102\pi\)
\(594\) 0 0
\(595\) −7.41719e10 −0.0242613
\(596\) 0 0
\(597\) −5.40797e12 −1.74241
\(598\) 0 0
\(599\) −1.81979e12 −0.577566 −0.288783 0.957395i \(-0.593251\pi\)
−0.288783 + 0.957395i \(0.593251\pi\)
\(600\) 0 0
\(601\) 3.86475e12 1.20833 0.604165 0.796859i \(-0.293507\pi\)
0.604165 + 0.796859i \(0.293507\pi\)
\(602\) 0 0
\(603\) −9.95144e12 −3.06520
\(604\) 0 0
\(605\) 4.33985e11 0.131697
\(606\) 0 0
\(607\) −2.84934e12 −0.851914 −0.425957 0.904743i \(-0.640063\pi\)
−0.425957 + 0.904743i \(0.640063\pi\)
\(608\) 0 0
\(609\) 1.63809e12 0.482570
\(610\) 0 0
\(611\) −2.08624e12 −0.605590
\(612\) 0 0
\(613\) 3.41042e12 0.975519 0.487759 0.872978i \(-0.337814\pi\)
0.487759 + 0.872978i \(0.337814\pi\)
\(614\) 0 0
\(615\) 1.68122e12 0.473899
\(616\) 0 0
\(617\) 3.44371e12 0.956630 0.478315 0.878188i \(-0.341248\pi\)
0.478315 + 0.878188i \(0.341248\pi\)
\(618\) 0 0
\(619\) −1.70276e12 −0.466170 −0.233085 0.972456i \(-0.574882\pi\)
−0.233085 + 0.972456i \(0.574882\pi\)
\(620\) 0 0
\(621\) 5.58230e12 1.50626
\(622\) 0 0
\(623\) 2.19507e12 0.583784
\(624\) 0 0
\(625\) 3.61053e12 0.946480
\(626\) 0 0
\(627\) 8.34911e11 0.215743
\(628\) 0 0
\(629\) 2.87398e12 0.732074
\(630\) 0 0
\(631\) 4.09336e12 1.02789 0.513946 0.857823i \(-0.328183\pi\)
0.513946 + 0.857823i \(0.328183\pi\)
\(632\) 0 0
\(633\) −6.24310e12 −1.54555
\(634\) 0 0
\(635\) −4.85744e11 −0.118557
\(636\) 0 0
\(637\) 4.05930e11 0.0976841
\(638\) 0 0
\(639\) 6.47654e12 1.53670
\(640\) 0 0
\(641\) −6.60642e12 −1.54563 −0.772814 0.634633i \(-0.781151\pi\)
−0.772814 + 0.634633i \(0.781151\pi\)
\(642\) 0 0
\(643\) −6.27495e12 −1.44764 −0.723821 0.689988i \(-0.757616\pi\)
−0.723821 + 0.689988i \(0.757616\pi\)
\(644\) 0 0
\(645\) 5.22687e11 0.118911
\(646\) 0 0
\(647\) 5.06881e12 1.13720 0.568600 0.822614i \(-0.307485\pi\)
0.568600 + 0.822614i \(0.307485\pi\)
\(648\) 0 0
\(649\) −6.61731e11 −0.146413
\(650\) 0 0
\(651\) 5.75221e12 1.25522
\(652\) 0 0
\(653\) −3.49805e12 −0.752865 −0.376432 0.926444i \(-0.622849\pi\)
−0.376432 + 0.926444i \(0.622849\pi\)
\(654\) 0 0
\(655\) −7.69983e11 −0.163454
\(656\) 0 0
\(657\) 1.55744e13 3.26112
\(658\) 0 0
\(659\) 4.13419e12 0.853897 0.426949 0.904276i \(-0.359589\pi\)
0.426949 + 0.904276i \(0.359589\pi\)
\(660\) 0 0
\(661\) −4.48641e12 −0.914098 −0.457049 0.889442i \(-0.651094\pi\)
−0.457049 + 0.889442i \(0.651094\pi\)
\(662\) 0 0
\(663\) 3.18281e12 0.639734
\(664\) 0 0
\(665\) 2.16700e11 0.0429696
\(666\) 0 0
\(667\) 1.42240e12 0.278263
\(668\) 0 0
\(669\) 4.01989e12 0.775884
\(670\) 0 0
\(671\) 1.30492e12 0.248504
\(672\) 0 0
\(673\) −3.49560e12 −0.656832 −0.328416 0.944533i \(-0.606515\pi\)
−0.328416 + 0.944533i \(0.606515\pi\)
\(674\) 0 0
\(675\) −1.87474e13 −3.47596
\(676\) 0 0
\(677\) 5.96605e12 1.09153 0.545767 0.837937i \(-0.316238\pi\)
0.545767 + 0.837937i \(0.316238\pi\)
\(678\) 0 0
\(679\) −3.54928e12 −0.640806
\(680\) 0 0
\(681\) −1.02453e13 −1.82541
\(682\) 0 0
\(683\) 3.88138e12 0.682485 0.341243 0.939975i \(-0.389152\pi\)
0.341243 + 0.939975i \(0.389152\pi\)
\(684\) 0 0
\(685\) 4.22179e11 0.0732638
\(686\) 0 0
\(687\) −1.10931e13 −1.89997
\(688\) 0 0
\(689\) 4.12146e12 0.696731
\(690\) 0 0
\(691\) 1.42915e12 0.238465 0.119233 0.992866i \(-0.461957\pi\)
0.119233 + 0.992866i \(0.461957\pi\)
\(692\) 0 0
\(693\) −8.40394e11 −0.138415
\(694\) 0 0
\(695\) 4.13741e11 0.0672663
\(696\) 0 0
\(697\) −5.40851e12 −0.868021
\(698\) 0 0
\(699\) −2.13596e12 −0.338412
\(700\) 0 0
\(701\) −7.99721e12 −1.25086 −0.625428 0.780282i \(-0.715076\pi\)
−0.625428 + 0.780282i \(0.715076\pi\)
\(702\) 0 0
\(703\) −8.39658e12 −1.29659
\(704\) 0 0
\(705\) 1.51958e12 0.231672
\(706\) 0 0
\(707\) −4.54208e12 −0.683704
\(708\) 0 0
\(709\) −9.16623e11 −0.136233 −0.0681166 0.997677i \(-0.521699\pi\)
−0.0681166 + 0.997677i \(0.521699\pi\)
\(710\) 0 0
\(711\) 1.90787e13 2.79985
\(712\) 0 0
\(713\) 4.99479e12 0.723793
\(714\) 0 0
\(715\) 8.33510e10 0.0119271
\(716\) 0 0
\(717\) −1.36850e13 −1.93378
\(718\) 0 0
\(719\) 6.02145e12 0.840275 0.420137 0.907460i \(-0.361982\pi\)
0.420137 + 0.907460i \(0.361982\pi\)
\(720\) 0 0
\(721\) 8.35011e11 0.115076
\(722\) 0 0
\(723\) −3.96659e12 −0.539877
\(724\) 0 0
\(725\) −4.77694e12 −0.642138
\(726\) 0 0
\(727\) 2.44115e12 0.324108 0.162054 0.986782i \(-0.448188\pi\)
0.162054 + 0.986782i \(0.448188\pi\)
\(728\) 0 0
\(729\) 3.52051e13 4.61670
\(730\) 0 0
\(731\) −1.68150e12 −0.217805
\(732\) 0 0
\(733\) 1.88589e12 0.241296 0.120648 0.992695i \(-0.461503\pi\)
0.120648 + 0.992695i \(0.461503\pi\)
\(734\) 0 0
\(735\) −2.95673e11 −0.0373696
\(736\) 0 0
\(737\) 1.13645e12 0.141888
\(738\) 0 0
\(739\) 9.41376e11 0.116108 0.0580542 0.998313i \(-0.481510\pi\)
0.0580542 + 0.998313i \(0.481510\pi\)
\(740\) 0 0
\(741\) −9.29886e12 −1.13305
\(742\) 0 0
\(743\) 8.77855e12 1.05675 0.528376 0.849011i \(-0.322801\pi\)
0.528376 + 0.849011i \(0.322801\pi\)
\(744\) 0 0
\(745\) 9.51336e11 0.113144
\(746\) 0 0
\(747\) 1.58157e13 1.85842
\(748\) 0 0
\(749\) −2.14917e12 −0.249518
\(750\) 0 0
\(751\) −1.42629e13 −1.63616 −0.818082 0.575102i \(-0.804963\pi\)
−0.818082 + 0.575102i \(0.804963\pi\)
\(752\) 0 0
\(753\) −2.06423e13 −2.33981
\(754\) 0 0
\(755\) −7.78835e10 −0.00872336
\(756\) 0 0
\(757\) 4.46366e12 0.494038 0.247019 0.969011i \(-0.420549\pi\)
0.247019 + 0.969011i \(0.420549\pi\)
\(758\) 0 0
\(759\) −9.89180e11 −0.108190
\(760\) 0 0
\(761\) −5.03864e12 −0.544605 −0.272303 0.962212i \(-0.587785\pi\)
−0.272303 + 0.962212i \(0.587785\pi\)
\(762\) 0 0
\(763\) 1.00358e12 0.107199
\(764\) 0 0
\(765\) −1.71025e12 −0.180545
\(766\) 0 0
\(767\) 7.37006e12 0.768939
\(768\) 0 0
\(769\) 3.65365e12 0.376754 0.188377 0.982097i \(-0.439677\pi\)
0.188377 + 0.982097i \(0.439677\pi\)
\(770\) 0 0
\(771\) 1.91199e13 1.94869
\(772\) 0 0
\(773\) −1.74477e13 −1.75764 −0.878822 0.477149i \(-0.841670\pi\)
−0.878822 + 0.477149i \(0.841670\pi\)
\(774\) 0 0
\(775\) −1.67744e13 −1.67028
\(776\) 0 0
\(777\) 1.14566e13 1.12761
\(778\) 0 0
\(779\) 1.58015e13 1.53737
\(780\) 0 0
\(781\) −7.39617e11 −0.0711340
\(782\) 0 0
\(783\) 2.43423e13 2.31437
\(784\) 0 0
\(785\) 5.65035e11 0.0531082
\(786\) 0 0
\(787\) 1.38487e13 1.28683 0.643415 0.765517i \(-0.277517\pi\)
0.643415 + 0.765517i \(0.277517\pi\)
\(788\) 0 0
\(789\) −1.78358e13 −1.63850
\(790\) 0 0
\(791\) −2.95983e12 −0.268827
\(792\) 0 0
\(793\) −1.45336e13 −1.30510
\(794\) 0 0
\(795\) −3.00201e12 −0.266538
\(796\) 0 0
\(797\) 9.44767e11 0.0829397 0.0414698 0.999140i \(-0.486796\pi\)
0.0414698 + 0.999140i \(0.486796\pi\)
\(798\) 0 0
\(799\) −4.88854e12 −0.424344
\(800\) 0 0
\(801\) 5.06139e13 4.34433
\(802\) 0 0
\(803\) −1.77859e12 −0.150958
\(804\) 0 0
\(805\) −2.56741e11 −0.0215483
\(806\) 0 0
\(807\) −8.43714e12 −0.700268
\(808\) 0 0
\(809\) 1.11474e13 0.914964 0.457482 0.889219i \(-0.348751\pi\)
0.457482 + 0.889219i \(0.348751\pi\)
\(810\) 0 0
\(811\) −1.46259e13 −1.18721 −0.593606 0.804755i \(-0.702296\pi\)
−0.593606 + 0.804755i \(0.702296\pi\)
\(812\) 0 0
\(813\) 5.93357e12 0.476331
\(814\) 0 0
\(815\) −1.78649e12 −0.141838
\(816\) 0 0
\(817\) 4.91265e12 0.385759
\(818\) 0 0
\(819\) 9.35993e12 0.726934
\(820\) 0 0
\(821\) 2.10452e13 1.61663 0.808313 0.588754i \(-0.200381\pi\)
0.808313 + 0.588754i \(0.200381\pi\)
\(822\) 0 0
\(823\) −7.02381e12 −0.533671 −0.266835 0.963742i \(-0.585978\pi\)
−0.266835 + 0.963742i \(0.585978\pi\)
\(824\) 0 0
\(825\) 3.32203e12 0.249667
\(826\) 0 0
\(827\) 2.09001e13 1.55372 0.776862 0.629671i \(-0.216810\pi\)
0.776862 + 0.629671i \(0.216810\pi\)
\(828\) 0 0
\(829\) −1.83964e12 −0.135281 −0.0676406 0.997710i \(-0.521547\pi\)
−0.0676406 + 0.997710i \(0.521547\pi\)
\(830\) 0 0
\(831\) 2.03718e12 0.148192
\(832\) 0 0
\(833\) 9.51187e11 0.0684484
\(834\) 0 0
\(835\) −1.29571e12 −0.0922401
\(836\) 0 0
\(837\) 8.54786e13 6.01995
\(838\) 0 0
\(839\) −1.33010e13 −0.926735 −0.463367 0.886166i \(-0.653359\pi\)
−0.463367 + 0.886166i \(0.653359\pi\)
\(840\) 0 0
\(841\) −8.30460e12 −0.572449
\(842\) 0 0
\(843\) −1.06890e12 −0.0728976
\(844\) 0 0
\(845\) 1.05711e12 0.0713289
\(846\) 0 0
\(847\) −5.56546e12 −0.371557
\(848\) 0 0
\(849\) −3.48138e12 −0.229967
\(850\) 0 0
\(851\) 9.94805e12 0.650212
\(852\) 0 0
\(853\) −4.55820e12 −0.294797 −0.147399 0.989077i \(-0.547090\pi\)
−0.147399 + 0.989077i \(0.547090\pi\)
\(854\) 0 0
\(855\) 4.99667e12 0.319766
\(856\) 0 0
\(857\) −1.65785e13 −1.04986 −0.524930 0.851146i \(-0.675908\pi\)
−0.524930 + 0.851146i \(0.675908\pi\)
\(858\) 0 0
\(859\) −1.45198e13 −0.909896 −0.454948 0.890518i \(-0.650342\pi\)
−0.454948 + 0.890518i \(0.650342\pi\)
\(860\) 0 0
\(861\) −2.15600e13 −1.33701
\(862\) 0 0
\(863\) −1.56245e13 −0.958862 −0.479431 0.877580i \(-0.659157\pi\)
−0.479431 + 0.877580i \(0.659157\pi\)
\(864\) 0 0
\(865\) −1.04171e12 −0.0632669
\(866\) 0 0
\(867\) −2.50284e13 −1.50434
\(868\) 0 0
\(869\) −2.17878e12 −0.129606
\(870\) 0 0
\(871\) −1.26573e13 −0.745175
\(872\) 0 0
\(873\) −8.18393e13 −4.76867
\(874\) 0 0
\(875\) 1.74022e12 0.100361
\(876\) 0 0
\(877\) 1.20199e13 0.686122 0.343061 0.939313i \(-0.388536\pi\)
0.343061 + 0.939313i \(0.388536\pi\)
\(878\) 0 0
\(879\) −2.46557e13 −1.39305
\(880\) 0 0
\(881\) −3.20627e12 −0.179312 −0.0896559 0.995973i \(-0.528577\pi\)
−0.0896559 + 0.995973i \(0.528577\pi\)
\(882\) 0 0
\(883\) 1.83352e13 1.01499 0.507497 0.861654i \(-0.330571\pi\)
0.507497 + 0.861654i \(0.330571\pi\)
\(884\) 0 0
\(885\) −5.36823e12 −0.294162
\(886\) 0 0
\(887\) −3.19067e13 −1.73072 −0.865359 0.501153i \(-0.832909\pi\)
−0.865359 + 0.501153i \(0.832909\pi\)
\(888\) 0 0
\(889\) 6.22923e12 0.334485
\(890\) 0 0
\(891\) −1.00390e13 −0.533629
\(892\) 0 0
\(893\) 1.42823e13 0.751565
\(894\) 0 0
\(895\) −4.51890e11 −0.0235412
\(896\) 0 0
\(897\) 1.10170e13 0.568197
\(898\) 0 0
\(899\) 2.17804e13 1.11211
\(900\) 0 0
\(901\) 9.65752e12 0.488207
\(902\) 0 0
\(903\) −6.70298e12 −0.335485
\(904\) 0 0
\(905\) −5.33506e11 −0.0264375
\(906\) 0 0
\(907\) −3.39519e13 −1.66583 −0.832917 0.553398i \(-0.813331\pi\)
−0.832917 + 0.553398i \(0.813331\pi\)
\(908\) 0 0
\(909\) −1.04731e14 −5.08790
\(910\) 0 0
\(911\) 2.84171e13 1.36693 0.683466 0.729982i \(-0.260472\pi\)
0.683466 + 0.729982i \(0.260472\pi\)
\(912\) 0 0
\(913\) −1.80614e12 −0.0860267
\(914\) 0 0
\(915\) 1.05861e13 0.499275
\(916\) 0 0
\(917\) 9.87432e12 0.461153
\(918\) 0 0
\(919\) −1.79635e13 −0.830750 −0.415375 0.909650i \(-0.636350\pi\)
−0.415375 + 0.909650i \(0.636350\pi\)
\(920\) 0 0
\(921\) −2.29769e13 −1.05226
\(922\) 0 0
\(923\) 8.23752e12 0.373585
\(924\) 0 0
\(925\) −3.34092e13 −1.50047
\(926\) 0 0
\(927\) 1.92537e13 0.856356
\(928\) 0 0
\(929\) −1.69946e10 −0.000748582 0 −0.000374291 1.00000i \(-0.500119\pi\)
−0.000374291 1.00000i \(0.500119\pi\)
\(930\) 0 0
\(931\) −2.77898e12 −0.121230
\(932\) 0 0
\(933\) −1.56141e13 −0.674605
\(934\) 0 0
\(935\) 1.95310e11 0.00835743
\(936\) 0 0
\(937\) 1.73276e13 0.734362 0.367181 0.930149i \(-0.380323\pi\)
0.367181 + 0.930149i \(0.380323\pi\)
\(938\) 0 0
\(939\) −2.10679e12 −0.0884355
\(940\) 0 0
\(941\) 3.37061e13 1.40138 0.700689 0.713467i \(-0.252876\pi\)
0.700689 + 0.713467i \(0.252876\pi\)
\(942\) 0 0
\(943\) −1.87212e13 −0.770957
\(944\) 0 0
\(945\) −4.39374e12 −0.179222
\(946\) 0 0
\(947\) −2.02156e13 −0.816793 −0.408396 0.912805i \(-0.633912\pi\)
−0.408396 + 0.912805i \(0.633912\pi\)
\(948\) 0 0
\(949\) 1.98091e13 0.792805
\(950\) 0 0
\(951\) 7.56188e13 2.99790
\(952\) 0 0
\(953\) 1.01564e13 0.398863 0.199431 0.979912i \(-0.436091\pi\)
0.199431 + 0.979912i \(0.436091\pi\)
\(954\) 0 0
\(955\) 4.81308e12 0.187244
\(956\) 0 0
\(957\) −4.31344e12 −0.166234
\(958\) 0 0
\(959\) −5.41406e12 −0.206700
\(960\) 0 0
\(961\) 5.00429e13 1.89272
\(962\) 0 0
\(963\) −4.95554e13 −1.85683
\(964\) 0 0
\(965\) 6.76835e12 0.251252
\(966\) 0 0
\(967\) −1.01682e13 −0.373960 −0.186980 0.982364i \(-0.559870\pi\)
−0.186980 + 0.982364i \(0.559870\pi\)
\(968\) 0 0
\(969\) −2.17893e13 −0.793939
\(970\) 0 0
\(971\) 7.38490e12 0.266599 0.133299 0.991076i \(-0.457443\pi\)
0.133299 + 0.991076i \(0.457443\pi\)
\(972\) 0 0
\(973\) −5.30585e12 −0.189779
\(974\) 0 0
\(975\) −3.69993e13 −1.31121
\(976\) 0 0
\(977\) −2.59982e13 −0.912889 −0.456444 0.889752i \(-0.650877\pi\)
−0.456444 + 0.889752i \(0.650877\pi\)
\(978\) 0 0
\(979\) −5.78008e12 −0.201100
\(980\) 0 0
\(981\) 2.31404e13 0.797739
\(982\) 0 0
\(983\) 1.44993e13 0.495287 0.247643 0.968851i \(-0.420344\pi\)
0.247643 + 0.968851i \(0.420344\pi\)
\(984\) 0 0
\(985\) 4.15416e12 0.140611
\(986\) 0 0
\(987\) −1.94873e13 −0.653618
\(988\) 0 0
\(989\) −5.82037e12 −0.193449
\(990\) 0 0
\(991\) 2.21059e13 0.728077 0.364039 0.931384i \(-0.381398\pi\)
0.364039 + 0.931384i \(0.381398\pi\)
\(992\) 0 0
\(993\) −1.57245e13 −0.513222
\(994\) 0 0
\(995\) 3.69606e12 0.119546
\(996\) 0 0
\(997\) −4.74598e13 −1.52124 −0.760620 0.649198i \(-0.775105\pi\)
−0.760620 + 0.649198i \(0.775105\pi\)
\(998\) 0 0
\(999\) 1.70246e14 5.40796
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.a.i.1.3 3
4.3 odd 2 56.10.a.a.1.1 3
28.27 even 2 392.10.a.d.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.10.a.a.1.1 3 4.3 odd 2
112.10.a.i.1.3 3 1.1 even 1 trivial
392.10.a.d.1.3 3 28.27 even 2