Properties

Label 112.10.a.i
Level $112$
Weight $10$
Character orbit 112.a
Self dual yes
Analytic conductor $57.684$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,10,Mod(1,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 823x - 4578 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 31) q^{3} + ( - \beta_{2} + \beta_1 + 92) q^{5} + 2401 q^{7} + (31 \beta_{2} + 90 \beta_1 + 17310) q^{9} + ( - \beta_{2} - 86 \beta_1 + 15093) q^{11} + ( - 57 \beta_{2} + 427 \beta_1 - 3558) q^{13}+ \cdots + (307731 \beta_{2} - 1867662 \beta_1 - 56969343) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 92 q^{3} + 274 q^{5} + 7203 q^{7} + 51871 q^{9} + 45364 q^{11} - 11158 q^{13} + 95584 q^{15} - 55866 q^{17} - 488772 q^{19} + 220892 q^{21} + 253888 q^{23} - 3872619 q^{25} + 10157192 q^{27} - 765318 q^{29}+ \cdots - 168732636 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 823x - 4578 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{2} + 12\nu - 1099 ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -8\nu^{2} + 192\nu + 4391 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 4\beta _1 + 1 ) / 48 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + 16\beta _1 + 4395 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.79960
−25.3451
31.1447
0 −189.265 0 −729.944 0 2401.00 0 16138.2 0
1.2 0 7.32110 0 1191.17 0 2401.00 0 −19629.4 0
1.3 0 273.944 0 −187.226 0 2401.00 0 55362.2 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.10.a.i 3
4.b odd 2 1 56.10.a.a 3
28.d even 2 1 392.10.a.d 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.10.a.a 3 4.b odd 2 1
112.10.a.i 3 1.a even 1 1 trivial
392.10.a.d 3 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 92T_{3}^{2} - 51228T_{3} + 379584 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(112))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 92 T^{2} + \cdots + 379584 \) Copy content Toggle raw display
$5$ \( T^{3} - 274 T^{2} + \cdots - 162790400 \) Copy content Toggle raw display
$7$ \( (T - 2401)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 3858186796800 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots + 467510359287776 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots + 23\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 36\!\cdots\!88 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 83\!\cdots\!52 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 28\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots + 35\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 33\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 99\!\cdots\!68 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 45\!\cdots\!16 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots + 24\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 17\!\cdots\!84 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots - 98\!\cdots\!56 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots - 17\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots + 82\!\cdots\!92 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 54\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots - 11\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots + 15\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 27\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 18\!\cdots\!04 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 92\!\cdots\!28 \) Copy content Toggle raw display
show more
show less