Properties

Label 112.10.a.h.1.3
Level $112$
Weight $10$
Character 112.1
Self dual yes
Analytic conductor $57.684$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,10,Mod(1,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(18.2745\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+79.6469 q^{3} +1423.70 q^{5} -2401.00 q^{7} -13339.4 q^{9} -69354.4 q^{11} +105959. q^{13} +113393. q^{15} +568267. q^{17} +396405. q^{19} -191232. q^{21} +620765. q^{23} +73796.7 q^{25} -2.63013e6 q^{27} +4.87652e6 q^{29} +1.42482e6 q^{31} -5.52386e6 q^{33} -3.41830e6 q^{35} +1.31092e7 q^{37} +8.43931e6 q^{39} -2.03049e7 q^{41} +1.11768e7 q^{43} -1.89913e7 q^{45} +1.99352e7 q^{47} +5.76480e6 q^{49} +4.52607e7 q^{51} +5.65007e7 q^{53} -9.87398e7 q^{55} +3.15725e7 q^{57} +1.09340e8 q^{59} +3.20008e7 q^{61} +3.20278e7 q^{63} +1.50854e8 q^{65} -8.02869e7 q^{67} +4.94420e7 q^{69} -2.07893e8 q^{71} -2.70274e8 q^{73} +5.87768e6 q^{75} +1.66520e8 q^{77} +5.16196e8 q^{79} +5.30772e7 q^{81} +6.82693e8 q^{83} +8.09042e8 q^{85} +3.88400e8 q^{87} -1.47150e8 q^{89} -2.54408e8 q^{91} +1.13482e8 q^{93} +5.64362e8 q^{95} +1.09643e9 q^{97} +9.25144e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 84 q^{3} + 1554 q^{5} - 7203 q^{7} - 26001 q^{9} + 3444 q^{11} - 19782 q^{13} - 200304 q^{15} + 1016694 q^{17} - 222852 q^{19} + 201684 q^{21} - 1885632 q^{23} + 3073221 q^{25} - 551880 q^{27} + 4081818 q^{29}+ \cdots + 1900979172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 79.6469 0.567706 0.283853 0.958868i \(-0.408387\pi\)
0.283853 + 0.958868i \(0.408387\pi\)
\(4\) 0 0
\(5\) 1423.70 1.01872 0.509358 0.860554i \(-0.329883\pi\)
0.509358 + 0.860554i \(0.329883\pi\)
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) 0 0
\(9\) −13339.4 −0.677710
\(10\) 0 0
\(11\) −69354.4 −1.42826 −0.714129 0.700014i \(-0.753177\pi\)
−0.714129 + 0.700014i \(0.753177\pi\)
\(12\) 0 0
\(13\) 105959. 1.02895 0.514473 0.857506i \(-0.327987\pi\)
0.514473 + 0.857506i \(0.327987\pi\)
\(14\) 0 0
\(15\) 113393. 0.578331
\(16\) 0 0
\(17\) 568267. 1.65018 0.825092 0.564998i \(-0.191123\pi\)
0.825092 + 0.564998i \(0.191123\pi\)
\(18\) 0 0
\(19\) 396405. 0.697828 0.348914 0.937155i \(-0.386551\pi\)
0.348914 + 0.937155i \(0.386551\pi\)
\(20\) 0 0
\(21\) −191232. −0.214573
\(22\) 0 0
\(23\) 620765. 0.462543 0.231271 0.972889i \(-0.425712\pi\)
0.231271 + 0.972889i \(0.425712\pi\)
\(24\) 0 0
\(25\) 73796.7 0.0377839
\(26\) 0 0
\(27\) −2.63013e6 −0.952446
\(28\) 0 0
\(29\) 4.87652e6 1.28032 0.640161 0.768241i \(-0.278868\pi\)
0.640161 + 0.768241i \(0.278868\pi\)
\(30\) 0 0
\(31\) 1.42482e6 0.277096 0.138548 0.990356i \(-0.455756\pi\)
0.138548 + 0.990356i \(0.455756\pi\)
\(32\) 0 0
\(33\) −5.52386e6 −0.810830
\(34\) 0 0
\(35\) −3.41830e6 −0.385039
\(36\) 0 0
\(37\) 1.31092e7 1.14992 0.574960 0.818182i \(-0.305018\pi\)
0.574960 + 0.818182i \(0.305018\pi\)
\(38\) 0 0
\(39\) 8.43931e6 0.584139
\(40\) 0 0
\(41\) −2.03049e7 −1.12221 −0.561105 0.827744i \(-0.689624\pi\)
−0.561105 + 0.827744i \(0.689624\pi\)
\(42\) 0 0
\(43\) 1.11768e7 0.498551 0.249276 0.968433i \(-0.419807\pi\)
0.249276 + 0.968433i \(0.419807\pi\)
\(44\) 0 0
\(45\) −1.89913e7 −0.690395
\(46\) 0 0
\(47\) 1.99352e7 0.595909 0.297955 0.954580i \(-0.403696\pi\)
0.297955 + 0.954580i \(0.403696\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) 4.52607e7 0.936819
\(52\) 0 0
\(53\) 5.65007e7 0.983586 0.491793 0.870712i \(-0.336342\pi\)
0.491793 + 0.870712i \(0.336342\pi\)
\(54\) 0 0
\(55\) −9.87398e7 −1.45499
\(56\) 0 0
\(57\) 3.15725e7 0.396161
\(58\) 0 0
\(59\) 1.09340e8 1.17475 0.587375 0.809315i \(-0.300161\pi\)
0.587375 + 0.809315i \(0.300161\pi\)
\(60\) 0 0
\(61\) 3.20008e7 0.295921 0.147961 0.988993i \(-0.452729\pi\)
0.147961 + 0.988993i \(0.452729\pi\)
\(62\) 0 0
\(63\) 3.20278e7 0.256150
\(64\) 0 0
\(65\) 1.50854e8 1.04821
\(66\) 0 0
\(67\) −8.02869e7 −0.486752 −0.243376 0.969932i \(-0.578255\pi\)
−0.243376 + 0.969932i \(0.578255\pi\)
\(68\) 0 0
\(69\) 4.94420e7 0.262588
\(70\) 0 0
\(71\) −2.07893e8 −0.970906 −0.485453 0.874263i \(-0.661345\pi\)
−0.485453 + 0.874263i \(0.661345\pi\)
\(72\) 0 0
\(73\) −2.70274e8 −1.11391 −0.556957 0.830541i \(-0.688031\pi\)
−0.556957 + 0.830541i \(0.688031\pi\)
\(74\) 0 0
\(75\) 5.87768e6 0.0214501
\(76\) 0 0
\(77\) 1.66520e8 0.539831
\(78\) 0 0
\(79\) 5.16196e8 1.49105 0.745526 0.666477i \(-0.232198\pi\)
0.745526 + 0.666477i \(0.232198\pi\)
\(80\) 0 0
\(81\) 5.30772e7 0.137002
\(82\) 0 0
\(83\) 6.82693e8 1.57897 0.789486 0.613769i \(-0.210347\pi\)
0.789486 + 0.613769i \(0.210347\pi\)
\(84\) 0 0
\(85\) 8.09042e8 1.68107
\(86\) 0 0
\(87\) 3.88400e8 0.726846
\(88\) 0 0
\(89\) −1.47150e8 −0.248602 −0.124301 0.992245i \(-0.539669\pi\)
−0.124301 + 0.992245i \(0.539669\pi\)
\(90\) 0 0
\(91\) −2.54408e8 −0.388905
\(92\) 0 0
\(93\) 1.13482e8 0.157309
\(94\) 0 0
\(95\) 5.64362e8 0.710889
\(96\) 0 0
\(97\) 1.09643e9 1.25750 0.628750 0.777608i \(-0.283567\pi\)
0.628750 + 0.777608i \(0.283567\pi\)
\(98\) 0 0
\(99\) 9.25144e8 0.967945
\(100\) 0 0
\(101\) 2.08683e8 0.199545 0.0997727 0.995010i \(-0.468188\pi\)
0.0997727 + 0.995010i \(0.468188\pi\)
\(102\) 0 0
\(103\) −6.78194e8 −0.593727 −0.296863 0.954920i \(-0.595941\pi\)
−0.296863 + 0.954920i \(0.595941\pi\)
\(104\) 0 0
\(105\) −2.72257e8 −0.218589
\(106\) 0 0
\(107\) 4.59542e8 0.338921 0.169461 0.985537i \(-0.445797\pi\)
0.169461 + 0.985537i \(0.445797\pi\)
\(108\) 0 0
\(109\) 5.21086e8 0.353582 0.176791 0.984248i \(-0.443428\pi\)
0.176791 + 0.984248i \(0.443428\pi\)
\(110\) 0 0
\(111\) 1.04410e9 0.652816
\(112\) 0 0
\(113\) 4.45612e8 0.257101 0.128551 0.991703i \(-0.458968\pi\)
0.128551 + 0.991703i \(0.458968\pi\)
\(114\) 0 0
\(115\) 8.83783e8 0.471200
\(116\) 0 0
\(117\) −1.41343e9 −0.697328
\(118\) 0 0
\(119\) −1.36441e9 −0.623711
\(120\) 0 0
\(121\) 2.45208e9 1.03992
\(122\) 0 0
\(123\) −1.61723e9 −0.637086
\(124\) 0 0
\(125\) −2.67560e9 −0.980226
\(126\) 0 0
\(127\) −9.28626e8 −0.316755 −0.158378 0.987379i \(-0.550626\pi\)
−0.158378 + 0.987379i \(0.550626\pi\)
\(128\) 0 0
\(129\) 8.90198e8 0.283030
\(130\) 0 0
\(131\) −2.57694e9 −0.764509 −0.382255 0.924057i \(-0.624852\pi\)
−0.382255 + 0.924057i \(0.624852\pi\)
\(132\) 0 0
\(133\) −9.51769e8 −0.263754
\(134\) 0 0
\(135\) −3.74452e9 −0.970272
\(136\) 0 0
\(137\) −4.44116e9 −1.07710 −0.538548 0.842595i \(-0.681027\pi\)
−0.538548 + 0.842595i \(0.681027\pi\)
\(138\) 0 0
\(139\) 7.28389e9 1.65499 0.827497 0.561470i \(-0.189764\pi\)
0.827497 + 0.561470i \(0.189764\pi\)
\(140\) 0 0
\(141\) 1.58778e9 0.338301
\(142\) 0 0
\(143\) −7.34872e9 −1.46960
\(144\) 0 0
\(145\) 6.94270e9 1.30428
\(146\) 0 0
\(147\) 4.59149e8 0.0811008
\(148\) 0 0
\(149\) 4.87355e9 0.810042 0.405021 0.914307i \(-0.367264\pi\)
0.405021 + 0.914307i \(0.367264\pi\)
\(150\) 0 0
\(151\) 8.63776e9 1.35209 0.676044 0.736861i \(-0.263693\pi\)
0.676044 + 0.736861i \(0.263693\pi\)
\(152\) 0 0
\(153\) −7.58033e9 −1.11835
\(154\) 0 0
\(155\) 2.02851e9 0.282283
\(156\) 0 0
\(157\) −9.34170e9 −1.22709 −0.613546 0.789659i \(-0.710258\pi\)
−0.613546 + 0.789659i \(0.710258\pi\)
\(158\) 0 0
\(159\) 4.50010e9 0.558387
\(160\) 0 0
\(161\) −1.49046e9 −0.174825
\(162\) 0 0
\(163\) 2.10680e9 0.233765 0.116883 0.993146i \(-0.462710\pi\)
0.116883 + 0.993146i \(0.462710\pi\)
\(164\) 0 0
\(165\) −7.86432e9 −0.826006
\(166\) 0 0
\(167\) −1.39800e10 −1.39086 −0.695431 0.718593i \(-0.744787\pi\)
−0.695431 + 0.718593i \(0.744787\pi\)
\(168\) 0 0
\(169\) 6.22820e8 0.0587316
\(170\) 0 0
\(171\) −5.28780e9 −0.472925
\(172\) 0 0
\(173\) −1.24435e10 −1.05618 −0.528088 0.849190i \(-0.677091\pi\)
−0.528088 + 0.849190i \(0.677091\pi\)
\(174\) 0 0
\(175\) −1.77186e8 −0.0142810
\(176\) 0 0
\(177\) 8.70861e9 0.666913
\(178\) 0 0
\(179\) −7.30178e9 −0.531606 −0.265803 0.964027i \(-0.585637\pi\)
−0.265803 + 0.964027i \(0.585637\pi\)
\(180\) 0 0
\(181\) −1.27074e10 −0.880038 −0.440019 0.897988i \(-0.645028\pi\)
−0.440019 + 0.897988i \(0.645028\pi\)
\(182\) 0 0
\(183\) 2.54876e9 0.167996
\(184\) 0 0
\(185\) 1.86635e10 1.17144
\(186\) 0 0
\(187\) −3.94118e10 −2.35689
\(188\) 0 0
\(189\) 6.31494e9 0.359991
\(190\) 0 0
\(191\) −1.61547e10 −0.878311 −0.439155 0.898411i \(-0.644722\pi\)
−0.439155 + 0.898411i \(0.644722\pi\)
\(192\) 0 0
\(193\) −1.52841e10 −0.792924 −0.396462 0.918051i \(-0.629762\pi\)
−0.396462 + 0.918051i \(0.629762\pi\)
\(194\) 0 0
\(195\) 1.20150e10 0.595072
\(196\) 0 0
\(197\) 2.33886e10 1.10639 0.553193 0.833053i \(-0.313409\pi\)
0.553193 + 0.833053i \(0.313409\pi\)
\(198\) 0 0
\(199\) 2.53610e10 1.14638 0.573189 0.819423i \(-0.305706\pi\)
0.573189 + 0.819423i \(0.305706\pi\)
\(200\) 0 0
\(201\) −6.39460e9 −0.276332
\(202\) 0 0
\(203\) −1.17085e10 −0.483916
\(204\) 0 0
\(205\) −2.89082e10 −1.14322
\(206\) 0 0
\(207\) −8.28061e9 −0.313470
\(208\) 0 0
\(209\) −2.74924e10 −0.996678
\(210\) 0 0
\(211\) 9.23757e8 0.0320838 0.0160419 0.999871i \(-0.494893\pi\)
0.0160419 + 0.999871i \(0.494893\pi\)
\(212\) 0 0
\(213\) −1.65580e10 −0.551189
\(214\) 0 0
\(215\) 1.59124e10 0.507883
\(216\) 0 0
\(217\) −3.42098e9 −0.104733
\(218\) 0 0
\(219\) −2.15265e10 −0.632375
\(220\) 0 0
\(221\) 6.02130e10 1.69795
\(222\) 0 0
\(223\) −6.68635e9 −0.181058 −0.0905290 0.995894i \(-0.528856\pi\)
−0.0905290 + 0.995894i \(0.528856\pi\)
\(224\) 0 0
\(225\) −9.84401e8 −0.0256065
\(226\) 0 0
\(227\) 4.82876e10 1.20703 0.603516 0.797351i \(-0.293766\pi\)
0.603516 + 0.797351i \(0.293766\pi\)
\(228\) 0 0
\(229\) −2.34264e10 −0.562918 −0.281459 0.959573i \(-0.590818\pi\)
−0.281459 + 0.959573i \(0.590818\pi\)
\(230\) 0 0
\(231\) 1.32628e10 0.306465
\(232\) 0 0
\(233\) −3.29140e10 −0.731609 −0.365805 0.930692i \(-0.619206\pi\)
−0.365805 + 0.930692i \(0.619206\pi\)
\(234\) 0 0
\(235\) 2.83817e10 0.607063
\(236\) 0 0
\(237\) 4.11134e10 0.846479
\(238\) 0 0
\(239\) −2.51973e10 −0.499533 −0.249766 0.968306i \(-0.580354\pi\)
−0.249766 + 0.968306i \(0.580354\pi\)
\(240\) 0 0
\(241\) 7.00815e10 1.33822 0.669109 0.743165i \(-0.266676\pi\)
0.669109 + 0.743165i \(0.266676\pi\)
\(242\) 0 0
\(243\) 5.59963e10 1.03022
\(244\) 0 0
\(245\) 8.20735e9 0.145531
\(246\) 0 0
\(247\) 4.20027e10 0.718028
\(248\) 0 0
\(249\) 5.43744e10 0.896391
\(250\) 0 0
\(251\) −4.19681e10 −0.667401 −0.333701 0.942679i \(-0.608297\pi\)
−0.333701 + 0.942679i \(0.608297\pi\)
\(252\) 0 0
\(253\) −4.30527e10 −0.660630
\(254\) 0 0
\(255\) 6.44377e10 0.954353
\(256\) 0 0
\(257\) 8.37595e10 1.19766 0.598832 0.800875i \(-0.295632\pi\)
0.598832 + 0.800875i \(0.295632\pi\)
\(258\) 0 0
\(259\) −3.14751e10 −0.434629
\(260\) 0 0
\(261\) −6.50497e10 −0.867687
\(262\) 0 0
\(263\) 2.34604e9 0.0302367 0.0151184 0.999886i \(-0.495187\pi\)
0.0151184 + 0.999886i \(0.495187\pi\)
\(264\) 0 0
\(265\) 8.04400e10 1.00200
\(266\) 0 0
\(267\) −1.17200e10 −0.141133
\(268\) 0 0
\(269\) −6.44659e10 −0.750663 −0.375332 0.926891i \(-0.622471\pi\)
−0.375332 + 0.926891i \(0.622471\pi\)
\(270\) 0 0
\(271\) 1.40530e10 0.158273 0.0791365 0.996864i \(-0.474784\pi\)
0.0791365 + 0.996864i \(0.474784\pi\)
\(272\) 0 0
\(273\) −2.02628e10 −0.220784
\(274\) 0 0
\(275\) −5.11812e9 −0.0539652
\(276\) 0 0
\(277\) −7.52768e10 −0.768249 −0.384124 0.923281i \(-0.625497\pi\)
−0.384124 + 0.923281i \(0.625497\pi\)
\(278\) 0 0
\(279\) −1.90061e10 −0.187791
\(280\) 0 0
\(281\) 9.56085e10 0.914783 0.457391 0.889266i \(-0.348784\pi\)
0.457391 + 0.889266i \(0.348784\pi\)
\(282\) 0 0
\(283\) −4.82806e10 −0.447439 −0.223719 0.974654i \(-0.571820\pi\)
−0.223719 + 0.974654i \(0.571820\pi\)
\(284\) 0 0
\(285\) 4.49497e10 0.403576
\(286\) 0 0
\(287\) 4.87522e10 0.424156
\(288\) 0 0
\(289\) 2.04340e11 1.72311
\(290\) 0 0
\(291\) 8.73272e10 0.713890
\(292\) 0 0
\(293\) −7.07439e10 −0.560770 −0.280385 0.959888i \(-0.590462\pi\)
−0.280385 + 0.959888i \(0.590462\pi\)
\(294\) 0 0
\(295\) 1.55668e11 1.19674
\(296\) 0 0
\(297\) 1.82411e11 1.36034
\(298\) 0 0
\(299\) 6.57756e10 0.475932
\(300\) 0 0
\(301\) −2.68355e10 −0.188435
\(302\) 0 0
\(303\) 1.66210e10 0.113283
\(304\) 0 0
\(305\) 4.55595e10 0.301460
\(306\) 0 0
\(307\) −1.30493e11 −0.838429 −0.419214 0.907887i \(-0.637694\pi\)
−0.419214 + 0.907887i \(0.637694\pi\)
\(308\) 0 0
\(309\) −5.40161e10 −0.337062
\(310\) 0 0
\(311\) −8.51715e10 −0.516265 −0.258132 0.966110i \(-0.583107\pi\)
−0.258132 + 0.966110i \(0.583107\pi\)
\(312\) 0 0
\(313\) −1.21745e11 −0.716969 −0.358484 0.933536i \(-0.616706\pi\)
−0.358484 + 0.933536i \(0.616706\pi\)
\(314\) 0 0
\(315\) 4.55980e10 0.260945
\(316\) 0 0
\(317\) −2.14595e11 −1.19358 −0.596791 0.802397i \(-0.703558\pi\)
−0.596791 + 0.802397i \(0.703558\pi\)
\(318\) 0 0
\(319\) −3.38208e11 −1.82863
\(320\) 0 0
\(321\) 3.66011e10 0.192407
\(322\) 0 0
\(323\) 2.25264e11 1.15154
\(324\) 0 0
\(325\) 7.81943e9 0.0388776
\(326\) 0 0
\(327\) 4.15029e10 0.200731
\(328\) 0 0
\(329\) −4.78644e10 −0.225233
\(330\) 0 0
\(331\) 5.48000e10 0.250931 0.125466 0.992098i \(-0.459958\pi\)
0.125466 + 0.992098i \(0.459958\pi\)
\(332\) 0 0
\(333\) −1.74868e11 −0.779312
\(334\) 0 0
\(335\) −1.14304e11 −0.495863
\(336\) 0 0
\(337\) −2.34297e11 −0.989538 −0.494769 0.869025i \(-0.664747\pi\)
−0.494769 + 0.869025i \(0.664747\pi\)
\(338\) 0 0
\(339\) 3.54916e10 0.145958
\(340\) 0 0
\(341\) −9.88172e10 −0.395765
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) 0 0
\(345\) 7.03905e10 0.267503
\(346\) 0 0
\(347\) −3.43449e10 −0.127169 −0.0635843 0.997976i \(-0.520253\pi\)
−0.0635843 + 0.997976i \(0.520253\pi\)
\(348\) 0 0
\(349\) −2.13485e11 −0.770288 −0.385144 0.922856i \(-0.625848\pi\)
−0.385144 + 0.922856i \(0.625848\pi\)
\(350\) 0 0
\(351\) −2.78686e11 −0.980016
\(352\) 0 0
\(353\) 2.75882e11 0.945664 0.472832 0.881153i \(-0.343232\pi\)
0.472832 + 0.881153i \(0.343232\pi\)
\(354\) 0 0
\(355\) −2.95977e11 −0.989079
\(356\) 0 0
\(357\) −1.08671e11 −0.354084
\(358\) 0 0
\(359\) 3.46238e11 1.10015 0.550073 0.835117i \(-0.314600\pi\)
0.550073 + 0.835117i \(0.314600\pi\)
\(360\) 0 0
\(361\) −1.65550e11 −0.513036
\(362\) 0 0
\(363\) 1.95300e11 0.590369
\(364\) 0 0
\(365\) −3.84789e11 −1.13476
\(366\) 0 0
\(367\) −3.56842e11 −1.02678 −0.513391 0.858155i \(-0.671611\pi\)
−0.513391 + 0.858155i \(0.671611\pi\)
\(368\) 0 0
\(369\) 2.70855e11 0.760534
\(370\) 0 0
\(371\) −1.35658e11 −0.371760
\(372\) 0 0
\(373\) 6.73833e11 1.80245 0.901224 0.433354i \(-0.142670\pi\)
0.901224 + 0.433354i \(0.142670\pi\)
\(374\) 0 0
\(375\) −2.13103e11 −0.556480
\(376\) 0 0
\(377\) 5.16711e11 1.31738
\(378\) 0 0
\(379\) −5.90163e11 −1.46925 −0.734625 0.678473i \(-0.762642\pi\)
−0.734625 + 0.678473i \(0.762642\pi\)
\(380\) 0 0
\(381\) −7.39622e10 −0.179824
\(382\) 0 0
\(383\) 1.58931e11 0.377412 0.188706 0.982034i \(-0.439571\pi\)
0.188706 + 0.982034i \(0.439571\pi\)
\(384\) 0 0
\(385\) 2.37074e11 0.549935
\(386\) 0 0
\(387\) −1.49092e11 −0.337873
\(388\) 0 0
\(389\) −3.75434e11 −0.831304 −0.415652 0.909524i \(-0.636447\pi\)
−0.415652 + 0.909524i \(0.636447\pi\)
\(390\) 0 0
\(391\) 3.52760e11 0.763280
\(392\) 0 0
\(393\) −2.05245e11 −0.434016
\(394\) 0 0
\(395\) 7.34908e11 1.51896
\(396\) 0 0
\(397\) −4.33507e11 −0.875869 −0.437935 0.899007i \(-0.644290\pi\)
−0.437935 + 0.899007i \(0.644290\pi\)
\(398\) 0 0
\(399\) −7.58055e10 −0.149735
\(400\) 0 0
\(401\) −1.77805e11 −0.343395 −0.171698 0.985150i \(-0.554925\pi\)
−0.171698 + 0.985150i \(0.554925\pi\)
\(402\) 0 0
\(403\) 1.50972e11 0.285118
\(404\) 0 0
\(405\) 7.55660e10 0.139566
\(406\) 0 0
\(407\) −9.09178e11 −1.64238
\(408\) 0 0
\(409\) −7.67870e11 −1.35685 −0.678427 0.734668i \(-0.737338\pi\)
−0.678427 + 0.734668i \(0.737338\pi\)
\(410\) 0 0
\(411\) −3.53725e11 −0.611473
\(412\) 0 0
\(413\) −2.62526e11 −0.444014
\(414\) 0 0
\(415\) 9.71951e11 1.60852
\(416\) 0 0
\(417\) 5.80139e11 0.939550
\(418\) 0 0
\(419\) −4.96552e11 −0.787048 −0.393524 0.919314i \(-0.628744\pi\)
−0.393524 + 0.919314i \(0.628744\pi\)
\(420\) 0 0
\(421\) −4.48514e11 −0.695835 −0.347917 0.937525i \(-0.613111\pi\)
−0.347917 + 0.937525i \(0.613111\pi\)
\(422\) 0 0
\(423\) −2.65923e11 −0.403854
\(424\) 0 0
\(425\) 4.19362e10 0.0623504
\(426\) 0 0
\(427\) −7.68338e10 −0.111848
\(428\) 0 0
\(429\) −5.85303e11 −0.834301
\(430\) 0 0
\(431\) 1.65940e11 0.231635 0.115817 0.993271i \(-0.463051\pi\)
0.115817 + 0.993271i \(0.463051\pi\)
\(432\) 0 0
\(433\) −4.10674e11 −0.561438 −0.280719 0.959790i \(-0.590573\pi\)
−0.280719 + 0.959790i \(0.590573\pi\)
\(434\) 0 0
\(435\) 5.52965e11 0.740450
\(436\) 0 0
\(437\) 2.46074e11 0.322775
\(438\) 0 0
\(439\) 3.29593e11 0.423534 0.211767 0.977320i \(-0.432078\pi\)
0.211767 + 0.977320i \(0.432078\pi\)
\(440\) 0 0
\(441\) −7.68988e10 −0.0968158
\(442\) 0 0
\(443\) −5.09091e11 −0.628027 −0.314014 0.949418i \(-0.601674\pi\)
−0.314014 + 0.949418i \(0.601674\pi\)
\(444\) 0 0
\(445\) −2.09497e11 −0.253255
\(446\) 0 0
\(447\) 3.88163e11 0.459865
\(448\) 0 0
\(449\) 1.49596e12 1.73705 0.868525 0.495646i \(-0.165069\pi\)
0.868525 + 0.495646i \(0.165069\pi\)
\(450\) 0 0
\(451\) 1.40824e12 1.60281
\(452\) 0 0
\(453\) 6.87971e11 0.767588
\(454\) 0 0
\(455\) −3.62200e11 −0.396184
\(456\) 0 0
\(457\) 1.43920e12 1.54347 0.771735 0.635944i \(-0.219389\pi\)
0.771735 + 0.635944i \(0.219389\pi\)
\(458\) 0 0
\(459\) −1.49462e12 −1.57171
\(460\) 0 0
\(461\) −1.37741e12 −1.42039 −0.710195 0.704005i \(-0.751393\pi\)
−0.710195 + 0.704005i \(0.751393\pi\)
\(462\) 0 0
\(463\) −1.76612e12 −1.78610 −0.893049 0.449960i \(-0.851438\pi\)
−0.893049 + 0.449960i \(0.851438\pi\)
\(464\) 0 0
\(465\) 1.61565e11 0.160254
\(466\) 0 0
\(467\) 1.17323e12 1.14145 0.570727 0.821140i \(-0.306661\pi\)
0.570727 + 0.821140i \(0.306661\pi\)
\(468\) 0 0
\(469\) 1.92769e11 0.183975
\(470\) 0 0
\(471\) −7.44037e11 −0.696627
\(472\) 0 0
\(473\) −7.75161e11 −0.712060
\(474\) 0 0
\(475\) 2.92534e10 0.0263667
\(476\) 0 0
\(477\) −7.53683e11 −0.666586
\(478\) 0 0
\(479\) 1.98723e12 1.72480 0.862401 0.506225i \(-0.168960\pi\)
0.862401 + 0.506225i \(0.168960\pi\)
\(480\) 0 0
\(481\) 1.38903e12 1.18321
\(482\) 0 0
\(483\) −1.18710e11 −0.0992489
\(484\) 0 0
\(485\) 1.56099e12 1.28104
\(486\) 0 0
\(487\) 1.23240e12 0.992825 0.496413 0.868087i \(-0.334650\pi\)
0.496413 + 0.868087i \(0.334650\pi\)
\(488\) 0 0
\(489\) 1.67800e11 0.132710
\(490\) 0 0
\(491\) 2.03763e12 1.58219 0.791095 0.611693i \(-0.209511\pi\)
0.791095 + 0.611693i \(0.209511\pi\)
\(492\) 0 0
\(493\) 2.77117e12 2.11277
\(494\) 0 0
\(495\) 1.31713e12 0.986062
\(496\) 0 0
\(497\) 4.99151e11 0.366968
\(498\) 0 0
\(499\) 3.26299e11 0.235594 0.117797 0.993038i \(-0.462417\pi\)
0.117797 + 0.993038i \(0.462417\pi\)
\(500\) 0 0
\(501\) −1.11347e12 −0.789601
\(502\) 0 0
\(503\) 4.46869e11 0.311261 0.155630 0.987815i \(-0.450259\pi\)
0.155630 + 0.987815i \(0.450259\pi\)
\(504\) 0 0
\(505\) 2.97103e11 0.203280
\(506\) 0 0
\(507\) 4.96056e10 0.0333423
\(508\) 0 0
\(509\) 1.34100e12 0.885523 0.442761 0.896639i \(-0.353999\pi\)
0.442761 + 0.896639i \(0.353999\pi\)
\(510\) 0 0
\(511\) 6.48928e11 0.421020
\(512\) 0 0
\(513\) −1.04260e12 −0.664643
\(514\) 0 0
\(515\) −9.65545e11 −0.604839
\(516\) 0 0
\(517\) −1.38259e12 −0.851112
\(518\) 0 0
\(519\) −9.91089e11 −0.599597
\(520\) 0 0
\(521\) 2.98523e12 1.77504 0.887520 0.460769i \(-0.152426\pi\)
0.887520 + 0.460769i \(0.152426\pi\)
\(522\) 0 0
\(523\) −1.64651e12 −0.962289 −0.481145 0.876641i \(-0.659779\pi\)
−0.481145 + 0.876641i \(0.659779\pi\)
\(524\) 0 0
\(525\) −1.41123e10 −0.00810739
\(526\) 0 0
\(527\) 8.09676e11 0.457260
\(528\) 0 0
\(529\) −1.41580e12 −0.786054
\(530\) 0 0
\(531\) −1.45853e12 −0.796141
\(532\) 0 0
\(533\) −2.15149e12 −1.15470
\(534\) 0 0
\(535\) 6.54250e11 0.345265
\(536\) 0 0
\(537\) −5.81564e11 −0.301796
\(538\) 0 0
\(539\) −3.99814e11 −0.204037
\(540\) 0 0
\(541\) −4.57968e11 −0.229852 −0.114926 0.993374i \(-0.536663\pi\)
−0.114926 + 0.993374i \(0.536663\pi\)
\(542\) 0 0
\(543\) −1.01210e12 −0.499603
\(544\) 0 0
\(545\) 7.41871e11 0.360200
\(546\) 0 0
\(547\) −2.39624e12 −1.14443 −0.572213 0.820105i \(-0.693915\pi\)
−0.572213 + 0.820105i \(0.693915\pi\)
\(548\) 0 0
\(549\) −4.26870e11 −0.200549
\(550\) 0 0
\(551\) 1.93308e12 0.893444
\(552\) 0 0
\(553\) −1.23939e12 −0.563565
\(554\) 0 0
\(555\) 1.48649e12 0.665034
\(556\) 0 0
\(557\) 1.07863e12 0.474814 0.237407 0.971410i \(-0.423702\pi\)
0.237407 + 0.971410i \(0.423702\pi\)
\(558\) 0 0
\(559\) 1.18428e12 0.512983
\(560\) 0 0
\(561\) −3.13903e12 −1.33802
\(562\) 0 0
\(563\) −2.33140e11 −0.0977976 −0.0488988 0.998804i \(-0.515571\pi\)
−0.0488988 + 0.998804i \(0.515571\pi\)
\(564\) 0 0
\(565\) 6.34418e11 0.261913
\(566\) 0 0
\(567\) −1.27438e11 −0.0517817
\(568\) 0 0
\(569\) 4.50535e11 0.180187 0.0900934 0.995933i \(-0.471283\pi\)
0.0900934 + 0.995933i \(0.471283\pi\)
\(570\) 0 0
\(571\) 4.38839e12 1.72760 0.863800 0.503835i \(-0.168078\pi\)
0.863800 + 0.503835i \(0.168078\pi\)
\(572\) 0 0
\(573\) −1.28667e12 −0.498622
\(574\) 0 0
\(575\) 4.58104e10 0.0174767
\(576\) 0 0
\(577\) 3.13994e12 1.17932 0.589658 0.807653i \(-0.299263\pi\)
0.589658 + 0.807653i \(0.299263\pi\)
\(578\) 0 0
\(579\) −1.21733e12 −0.450148
\(580\) 0 0
\(581\) −1.63915e12 −0.596795
\(582\) 0 0
\(583\) −3.91857e12 −1.40481
\(584\) 0 0
\(585\) −2.01230e12 −0.710380
\(586\) 0 0
\(587\) −2.52512e12 −0.877829 −0.438915 0.898529i \(-0.644637\pi\)
−0.438915 + 0.898529i \(0.644637\pi\)
\(588\) 0 0
\(589\) 5.64805e11 0.193366
\(590\) 0 0
\(591\) 1.86283e12 0.628102
\(592\) 0 0
\(593\) −9.35417e11 −0.310641 −0.155321 0.987864i \(-0.549641\pi\)
−0.155321 + 0.987864i \(0.549641\pi\)
\(594\) 0 0
\(595\) −1.94251e12 −0.635385
\(596\) 0 0
\(597\) 2.01993e12 0.650805
\(598\) 0 0
\(599\) −4.73586e12 −1.50307 −0.751534 0.659694i \(-0.770686\pi\)
−0.751534 + 0.659694i \(0.770686\pi\)
\(600\) 0 0
\(601\) −5.99855e12 −1.87548 −0.937738 0.347344i \(-0.887084\pi\)
−0.937738 + 0.347344i \(0.887084\pi\)
\(602\) 0 0
\(603\) 1.07098e12 0.329877
\(604\) 0 0
\(605\) 3.49103e12 1.05938
\(606\) 0 0
\(607\) −3.43715e12 −1.02766 −0.513830 0.857892i \(-0.671774\pi\)
−0.513830 + 0.857892i \(0.671774\pi\)
\(608\) 0 0
\(609\) −9.32548e11 −0.274722
\(610\) 0 0
\(611\) 2.11231e12 0.613159
\(612\) 0 0
\(613\) 4.15273e12 1.18785 0.593925 0.804520i \(-0.297577\pi\)
0.593925 + 0.804520i \(0.297577\pi\)
\(614\) 0 0
\(615\) −2.30244e12 −0.649010
\(616\) 0 0
\(617\) −1.12196e12 −0.311669 −0.155834 0.987783i \(-0.549807\pi\)
−0.155834 + 0.987783i \(0.549807\pi\)
\(618\) 0 0
\(619\) 5.98940e12 1.63974 0.819871 0.572549i \(-0.194045\pi\)
0.819871 + 0.572549i \(0.194045\pi\)
\(620\) 0 0
\(621\) −1.63269e12 −0.440547
\(622\) 0 0
\(623\) 3.53307e11 0.0939628
\(624\) 0 0
\(625\) −3.95339e12 −1.03636
\(626\) 0 0
\(627\) −2.18969e12 −0.565820
\(628\) 0 0
\(629\) 7.44951e12 1.89758
\(630\) 0 0
\(631\) −4.97135e12 −1.24837 −0.624184 0.781277i \(-0.714568\pi\)
−0.624184 + 0.781277i \(0.714568\pi\)
\(632\) 0 0
\(633\) 7.35743e10 0.0182142
\(634\) 0 0
\(635\) −1.32208e12 −0.322684
\(636\) 0 0
\(637\) 6.10833e11 0.146992
\(638\) 0 0
\(639\) 2.77316e12 0.657993
\(640\) 0 0
\(641\) −2.41181e12 −0.564263 −0.282131 0.959376i \(-0.591041\pi\)
−0.282131 + 0.959376i \(0.591041\pi\)
\(642\) 0 0
\(643\) −6.86804e12 −1.58447 −0.792234 0.610217i \(-0.791082\pi\)
−0.792234 + 0.610217i \(0.791082\pi\)
\(644\) 0 0
\(645\) 1.26738e12 0.288328
\(646\) 0 0
\(647\) 1.73394e12 0.389013 0.194506 0.980901i \(-0.437690\pi\)
0.194506 + 0.980901i \(0.437690\pi\)
\(648\) 0 0
\(649\) −7.58322e12 −1.67785
\(650\) 0 0
\(651\) −2.72471e11 −0.0594573
\(652\) 0 0
\(653\) 2.86440e10 0.00616488 0.00308244 0.999995i \(-0.499019\pi\)
0.00308244 + 0.999995i \(0.499019\pi\)
\(654\) 0 0
\(655\) −3.66878e12 −0.778818
\(656\) 0 0
\(657\) 3.60529e12 0.754911
\(658\) 0 0
\(659\) 6.31728e12 1.30481 0.652403 0.757872i \(-0.273761\pi\)
0.652403 + 0.757872i \(0.273761\pi\)
\(660\) 0 0
\(661\) −3.49558e12 −0.712217 −0.356109 0.934445i \(-0.615897\pi\)
−0.356109 + 0.934445i \(0.615897\pi\)
\(662\) 0 0
\(663\) 4.79578e12 0.963937
\(664\) 0 0
\(665\) −1.35503e12 −0.268691
\(666\) 0 0
\(667\) 3.02717e12 0.592203
\(668\) 0 0
\(669\) −5.32547e11 −0.102788
\(670\) 0 0
\(671\) −2.21939e12 −0.422652
\(672\) 0 0
\(673\) −8.02535e12 −1.50798 −0.753991 0.656885i \(-0.771874\pi\)
−0.753991 + 0.656885i \(0.771874\pi\)
\(674\) 0 0
\(675\) −1.94095e11 −0.0359871
\(676\) 0 0
\(677\) 1.17163e12 0.214358 0.107179 0.994240i \(-0.465818\pi\)
0.107179 + 0.994240i \(0.465818\pi\)
\(678\) 0 0
\(679\) −2.63253e12 −0.475290
\(680\) 0 0
\(681\) 3.84596e12 0.685239
\(682\) 0 0
\(683\) −4.69754e12 −0.825995 −0.412997 0.910732i \(-0.635518\pi\)
−0.412997 + 0.910732i \(0.635518\pi\)
\(684\) 0 0
\(685\) −6.32288e12 −1.09726
\(686\) 0 0
\(687\) −1.86584e12 −0.319572
\(688\) 0 0
\(689\) 5.98676e12 1.01206
\(690\) 0 0
\(691\) 7.83193e12 1.30683 0.653413 0.757001i \(-0.273336\pi\)
0.653413 + 0.757001i \(0.273336\pi\)
\(692\) 0 0
\(693\) −2.22127e12 −0.365849
\(694\) 0 0
\(695\) 1.03701e13 1.68597
\(696\) 0 0
\(697\) −1.15386e13 −1.85185
\(698\) 0 0
\(699\) −2.62150e12 −0.415339
\(700\) 0 0
\(701\) 7.13243e12 1.11559 0.557797 0.829977i \(-0.311647\pi\)
0.557797 + 0.829977i \(0.311647\pi\)
\(702\) 0 0
\(703\) 5.19655e12 0.802446
\(704\) 0 0
\(705\) 2.26052e12 0.344633
\(706\) 0 0
\(707\) −5.01049e11 −0.0754211
\(708\) 0 0
\(709\) 8.65274e12 1.28601 0.643007 0.765861i \(-0.277687\pi\)
0.643007 + 0.765861i \(0.277687\pi\)
\(710\) 0 0
\(711\) −6.88573e12 −1.01050
\(712\) 0 0
\(713\) 8.84475e11 0.128169
\(714\) 0 0
\(715\) −1.04624e13 −1.49711
\(716\) 0 0
\(717\) −2.00689e12 −0.283588
\(718\) 0 0
\(719\) −4.58446e11 −0.0639747 −0.0319873 0.999488i \(-0.510184\pi\)
−0.0319873 + 0.999488i \(0.510184\pi\)
\(720\) 0 0
\(721\) 1.62834e12 0.224408
\(722\) 0 0
\(723\) 5.58177e12 0.759713
\(724\) 0 0
\(725\) 3.59871e11 0.0483755
\(726\) 0 0
\(727\) 2.53850e12 0.337033 0.168517 0.985699i \(-0.446102\pi\)
0.168517 + 0.985699i \(0.446102\pi\)
\(728\) 0 0
\(729\) 3.41521e12 0.447861
\(730\) 0 0
\(731\) 6.35141e12 0.822701
\(732\) 0 0
\(733\) 1.09361e13 1.39925 0.699624 0.714511i \(-0.253351\pi\)
0.699624 + 0.714511i \(0.253351\pi\)
\(734\) 0 0
\(735\) 6.53690e11 0.0826188
\(736\) 0 0
\(737\) 5.56824e12 0.695208
\(738\) 0 0
\(739\) −7.34996e12 −0.906536 −0.453268 0.891374i \(-0.649742\pi\)
−0.453268 + 0.891374i \(0.649742\pi\)
\(740\) 0 0
\(741\) 3.34539e12 0.407628
\(742\) 0 0
\(743\) 1.60813e12 0.193584 0.0967922 0.995305i \(-0.469142\pi\)
0.0967922 + 0.995305i \(0.469142\pi\)
\(744\) 0 0
\(745\) 6.93848e12 0.825203
\(746\) 0 0
\(747\) −9.10670e12 −1.07009
\(748\) 0 0
\(749\) −1.10336e12 −0.128100
\(750\) 0 0
\(751\) 2.95903e12 0.339446 0.169723 0.985492i \(-0.445713\pi\)
0.169723 + 0.985492i \(0.445713\pi\)
\(752\) 0 0
\(753\) −3.34263e12 −0.378888
\(754\) 0 0
\(755\) 1.22976e13 1.37739
\(756\) 0 0
\(757\) −4.83223e12 −0.534830 −0.267415 0.963581i \(-0.586170\pi\)
−0.267415 + 0.963581i \(0.586170\pi\)
\(758\) 0 0
\(759\) −3.42902e12 −0.375043
\(760\) 0 0
\(761\) 3.15213e12 0.340701 0.170350 0.985384i \(-0.445510\pi\)
0.170350 + 0.985384i \(0.445510\pi\)
\(762\) 0 0
\(763\) −1.25113e12 −0.133642
\(764\) 0 0
\(765\) −1.07921e13 −1.13928
\(766\) 0 0
\(767\) 1.15856e13 1.20876
\(768\) 0 0
\(769\) −6.87650e12 −0.709086 −0.354543 0.935040i \(-0.615364\pi\)
−0.354543 + 0.935040i \(0.615364\pi\)
\(770\) 0 0
\(771\) 6.67118e12 0.679920
\(772\) 0 0
\(773\) 1.16083e13 1.16939 0.584696 0.811253i \(-0.301214\pi\)
0.584696 + 0.811253i \(0.301214\pi\)
\(774\) 0 0
\(775\) 1.05147e11 0.0104698
\(776\) 0 0
\(777\) −2.50690e12 −0.246741
\(778\) 0 0
\(779\) −8.04899e12 −0.783110
\(780\) 0 0
\(781\) 1.44183e13 1.38670
\(782\) 0 0
\(783\) −1.28259e13 −1.21944
\(784\) 0 0
\(785\) −1.32998e13 −1.25006
\(786\) 0 0
\(787\) 2.50005e12 0.232307 0.116154 0.993231i \(-0.462943\pi\)
0.116154 + 0.993231i \(0.462943\pi\)
\(788\) 0 0
\(789\) 1.86855e11 0.0171656
\(790\) 0 0
\(791\) −1.06991e12 −0.0971751
\(792\) 0 0
\(793\) 3.39077e12 0.304487
\(794\) 0 0
\(795\) 6.40680e12 0.568838
\(796\) 0 0
\(797\) 2.77023e12 0.243194 0.121597 0.992580i \(-0.461198\pi\)
0.121597 + 0.992580i \(0.461198\pi\)
\(798\) 0 0
\(799\) 1.13285e13 0.983360
\(800\) 0 0
\(801\) 1.96289e12 0.168480
\(802\) 0 0
\(803\) 1.87447e13 1.59096
\(804\) 0 0
\(805\) −2.12196e12 −0.178097
\(806\) 0 0
\(807\) −5.13451e12 −0.426156
\(808\) 0 0
\(809\) −2.96640e12 −0.243479 −0.121739 0.992562i \(-0.538847\pi\)
−0.121739 + 0.992562i \(0.538847\pi\)
\(810\) 0 0
\(811\) 9.01447e12 0.731722 0.365861 0.930669i \(-0.380775\pi\)
0.365861 + 0.930669i \(0.380775\pi\)
\(812\) 0 0
\(813\) 1.11928e12 0.0898524
\(814\) 0 0
\(815\) 2.99946e12 0.238140
\(816\) 0 0
\(817\) 4.43055e12 0.347903
\(818\) 0 0
\(819\) 3.39364e12 0.263565
\(820\) 0 0
\(821\) 1.25176e13 0.961563 0.480782 0.876840i \(-0.340353\pi\)
0.480782 + 0.876840i \(0.340353\pi\)
\(822\) 0 0
\(823\) 1.50348e13 1.14234 0.571172 0.820830i \(-0.306489\pi\)
0.571172 + 0.820830i \(0.306489\pi\)
\(824\) 0 0
\(825\) −4.07642e11 −0.0306363
\(826\) 0 0
\(827\) −2.31522e13 −1.72115 −0.860574 0.509325i \(-0.829895\pi\)
−0.860574 + 0.509325i \(0.829895\pi\)
\(828\) 0 0
\(829\) 4.88071e12 0.358912 0.179456 0.983766i \(-0.442566\pi\)
0.179456 + 0.983766i \(0.442566\pi\)
\(830\) 0 0
\(831\) −5.99556e12 −0.436139
\(832\) 0 0
\(833\) 3.27595e12 0.235741
\(834\) 0 0
\(835\) −1.99034e13 −1.41690
\(836\) 0 0
\(837\) −3.74745e12 −0.263919
\(838\) 0 0
\(839\) 1.18015e13 0.822258 0.411129 0.911577i \(-0.365135\pi\)
0.411129 + 0.911577i \(0.365135\pi\)
\(840\) 0 0
\(841\) 9.27330e12 0.639223
\(842\) 0 0
\(843\) 7.61492e12 0.519327
\(844\) 0 0
\(845\) 8.86708e11 0.0598309
\(846\) 0 0
\(847\) −5.88744e12 −0.393053
\(848\) 0 0
\(849\) −3.84540e12 −0.254014
\(850\) 0 0
\(851\) 8.13771e12 0.531887
\(852\) 0 0
\(853\) −2.54707e13 −1.64729 −0.823646 0.567104i \(-0.808064\pi\)
−0.823646 + 0.567104i \(0.808064\pi\)
\(854\) 0 0
\(855\) −7.52824e12 −0.481777
\(856\) 0 0
\(857\) 1.26584e13 0.801615 0.400807 0.916162i \(-0.368730\pi\)
0.400807 + 0.916162i \(0.368730\pi\)
\(858\) 0 0
\(859\) −2.01387e13 −1.26201 −0.631004 0.775779i \(-0.717357\pi\)
−0.631004 + 0.775779i \(0.717357\pi\)
\(860\) 0 0
\(861\) 3.88296e12 0.240796
\(862\) 0 0
\(863\) 1.44977e13 0.889716 0.444858 0.895601i \(-0.353254\pi\)
0.444858 + 0.895601i \(0.353254\pi\)
\(864\) 0 0
\(865\) −1.77159e13 −1.07594
\(866\) 0 0
\(867\) 1.62750e13 0.978217
\(868\) 0 0
\(869\) −3.58004e13 −2.12961
\(870\) 0 0
\(871\) −8.50712e12 −0.500842
\(872\) 0 0
\(873\) −1.46257e13 −0.852221
\(874\) 0 0
\(875\) 6.42411e12 0.370490
\(876\) 0 0
\(877\) 1.83297e13 1.04630 0.523150 0.852241i \(-0.324757\pi\)
0.523150 + 0.852241i \(0.324757\pi\)
\(878\) 0 0
\(879\) −5.63453e12 −0.318352
\(880\) 0 0
\(881\) 4.57369e12 0.255785 0.127892 0.991788i \(-0.459179\pi\)
0.127892 + 0.991788i \(0.459179\pi\)
\(882\) 0 0
\(883\) −3.07854e13 −1.70420 −0.852101 0.523377i \(-0.824672\pi\)
−0.852101 + 0.523377i \(0.824672\pi\)
\(884\) 0 0
\(885\) 1.23984e13 0.679395
\(886\) 0 0
\(887\) 2.58803e13 1.40382 0.701911 0.712264i \(-0.252330\pi\)
0.701911 + 0.712264i \(0.252330\pi\)
\(888\) 0 0
\(889\) 2.22963e12 0.119722
\(890\) 0 0
\(891\) −3.68114e12 −0.195674
\(892\) 0 0
\(893\) 7.90242e12 0.415842
\(894\) 0 0
\(895\) −1.03955e13 −0.541556
\(896\) 0 0
\(897\) 5.23882e12 0.270189
\(898\) 0 0
\(899\) 6.94814e12 0.354773
\(900\) 0 0
\(901\) 3.21075e13 1.62310
\(902\) 0 0
\(903\) −2.13737e12 −0.106975
\(904\) 0 0
\(905\) −1.80915e13 −0.896510
\(906\) 0 0
\(907\) −9.64118e12 −0.473040 −0.236520 0.971627i \(-0.576007\pi\)
−0.236520 + 0.971627i \(0.576007\pi\)
\(908\) 0 0
\(909\) −2.78371e12 −0.135234
\(910\) 0 0
\(911\) −7.28746e12 −0.350545 −0.175272 0.984520i \(-0.556081\pi\)
−0.175272 + 0.984520i \(0.556081\pi\)
\(912\) 0 0
\(913\) −4.73478e13 −2.25518
\(914\) 0 0
\(915\) 3.62867e12 0.171140
\(916\) 0 0
\(917\) 6.18722e12 0.288957
\(918\) 0 0
\(919\) −2.73276e13 −1.26381 −0.631906 0.775045i \(-0.717727\pi\)
−0.631906 + 0.775045i \(0.717727\pi\)
\(920\) 0 0
\(921\) −1.03934e13 −0.475981
\(922\) 0 0
\(923\) −2.20281e13 −0.999011
\(924\) 0 0
\(925\) 9.67413e11 0.0434484
\(926\) 0 0
\(927\) 9.04668e12 0.402375
\(928\) 0 0
\(929\) −7.21805e12 −0.317943 −0.158971 0.987283i \(-0.550818\pi\)
−0.158971 + 0.987283i \(0.550818\pi\)
\(930\) 0 0
\(931\) 2.28520e12 0.0996897
\(932\) 0 0
\(933\) −6.78365e12 −0.293087
\(934\) 0 0
\(935\) −5.61106e13 −2.40100
\(936\) 0 0
\(937\) 1.41988e13 0.601761 0.300880 0.953662i \(-0.402719\pi\)
0.300880 + 0.953662i \(0.402719\pi\)
\(938\) 0 0
\(939\) −9.69658e12 −0.407027
\(940\) 0 0
\(941\) −2.53242e13 −1.05289 −0.526445 0.850209i \(-0.676475\pi\)
−0.526445 + 0.850209i \(0.676475\pi\)
\(942\) 0 0
\(943\) −1.26046e13 −0.519070
\(944\) 0 0
\(945\) 8.99058e12 0.366728
\(946\) 0 0
\(947\) 1.37160e13 0.554182 0.277091 0.960844i \(-0.410630\pi\)
0.277091 + 0.960844i \(0.410630\pi\)
\(948\) 0 0
\(949\) −2.86380e13 −1.14616
\(950\) 0 0
\(951\) −1.70918e13 −0.677604
\(952\) 0 0
\(953\) 2.44096e13 0.958610 0.479305 0.877648i \(-0.340889\pi\)
0.479305 + 0.877648i \(0.340889\pi\)
\(954\) 0 0
\(955\) −2.29994e13 −0.894750
\(956\) 0 0
\(957\) −2.69372e13 −1.03812
\(958\) 0 0
\(959\) 1.06632e13 0.407104
\(960\) 0 0
\(961\) −2.44095e13 −0.923218
\(962\) 0 0
\(963\) −6.13001e12 −0.229690
\(964\) 0 0
\(965\) −2.17600e13 −0.807765
\(966\) 0 0
\(967\) 4.19850e13 1.54410 0.772049 0.635563i \(-0.219232\pi\)
0.772049 + 0.635563i \(0.219232\pi\)
\(968\) 0 0
\(969\) 1.79416e13 0.653738
\(970\) 0 0
\(971\) −3.13254e12 −0.113086 −0.0565432 0.998400i \(-0.518008\pi\)
−0.0565432 + 0.998400i \(0.518008\pi\)
\(972\) 0 0
\(973\) −1.74886e13 −0.625529
\(974\) 0 0
\(975\) 6.22793e11 0.0220710
\(976\) 0 0
\(977\) 4.53124e13 1.59108 0.795539 0.605902i \(-0.207188\pi\)
0.795539 + 0.605902i \(0.207188\pi\)
\(978\) 0 0
\(979\) 1.02055e13 0.355068
\(980\) 0 0
\(981\) −6.95097e12 −0.239626
\(982\) 0 0
\(983\) 2.54481e13 0.869290 0.434645 0.900602i \(-0.356874\pi\)
0.434645 + 0.900602i \(0.356874\pi\)
\(984\) 0 0
\(985\) 3.32984e13 1.12709
\(986\) 0 0
\(987\) −3.81225e12 −0.127866
\(988\) 0 0
\(989\) 6.93817e12 0.230601
\(990\) 0 0
\(991\) 5.41691e13 1.78410 0.892052 0.451933i \(-0.149266\pi\)
0.892052 + 0.451933i \(0.149266\pi\)
\(992\) 0 0
\(993\) 4.36465e12 0.142455
\(994\) 0 0
\(995\) 3.61065e13 1.16783
\(996\) 0 0
\(997\) −4.29329e13 −1.37614 −0.688069 0.725646i \(-0.741541\pi\)
−0.688069 + 0.725646i \(0.741541\pi\)
\(998\) 0 0
\(999\) −3.44788e13 −1.09524
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.a.h.1.3 3
4.3 odd 2 7.10.a.b.1.1 3
12.11 even 2 63.10.a.e.1.3 3
20.3 even 4 175.10.b.d.99.5 6
20.7 even 4 175.10.b.d.99.2 6
20.19 odd 2 175.10.a.d.1.3 3
28.3 even 6 49.10.c.e.30.3 6
28.11 odd 6 49.10.c.d.30.3 6
28.19 even 6 49.10.c.e.18.3 6
28.23 odd 6 49.10.c.d.18.3 6
28.27 even 2 49.10.a.c.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.1 3 4.3 odd 2
49.10.a.c.1.1 3 28.27 even 2
49.10.c.d.18.3 6 28.23 odd 6
49.10.c.d.30.3 6 28.11 odd 6
49.10.c.e.18.3 6 28.19 even 6
49.10.c.e.30.3 6 28.3 even 6
63.10.a.e.1.3 3 12.11 even 2
112.10.a.h.1.3 3 1.1 even 1 trivial
175.10.a.d.1.3 3 20.19 odd 2
175.10.b.d.99.2 6 20.7 even 4
175.10.b.d.99.5 6 20.3 even 4