Properties

Label 112.10.a.h.1.2
Level $112$
Weight $10$
Character 112.1
Self dual yes
Analytic conductor $57.684$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,10,Mod(1,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.96128\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.232339 q^{3} -1791.89 q^{5} -2401.00 q^{7} -19682.9 q^{9} -17401.5 q^{11} -122541. q^{13} +416.326 q^{15} +331933. q^{17} -761707. q^{19} +557.846 q^{21} -1.23249e6 q^{23} +1.25774e6 q^{25} +9146.25 q^{27} +634604. q^{29} +5.38069e6 q^{31} +4043.06 q^{33} +4.30232e6 q^{35} -3.03611e6 q^{37} +28471.1 q^{39} -7.37009e6 q^{41} +2.06990e7 q^{43} +3.52696e7 q^{45} -2.03632e7 q^{47} +5.76480e6 q^{49} -77120.9 q^{51} -5.97380e7 q^{53} +3.11816e7 q^{55} +176974. q^{57} -6.03461e7 q^{59} -9.44357e6 q^{61} +4.72588e7 q^{63} +2.19580e8 q^{65} +2.19187e8 q^{67} +286355. q^{69} +5.58741e7 q^{71} +4.54332e8 q^{73} -292222. q^{75} +4.17811e7 q^{77} -4.51057e7 q^{79} +3.87417e8 q^{81} +3.34665e8 q^{83} -5.94786e8 q^{85} -147443. q^{87} +6.51886e8 q^{89} +2.94221e8 q^{91} -1.25014e6 q^{93} +1.36489e9 q^{95} -1.42804e9 q^{97} +3.42514e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 84 q^{3} + 1554 q^{5} - 7203 q^{7} - 26001 q^{9} + 3444 q^{11} - 19782 q^{13} - 200304 q^{15} + 1016694 q^{17} - 222852 q^{19} + 201684 q^{21} - 1885632 q^{23} + 3073221 q^{25} - 551880 q^{27} + 4081818 q^{29}+ \cdots + 1900979172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.232339 −0.00165606 −0.000828031 1.00000i \(-0.500264\pi\)
−0.000828031 1.00000i \(0.500264\pi\)
\(4\) 0 0
\(5\) −1791.89 −1.28217 −0.641086 0.767469i \(-0.721516\pi\)
−0.641086 + 0.767469i \(0.721516\pi\)
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) 0 0
\(9\) −19682.9 −0.999997
\(10\) 0 0
\(11\) −17401.5 −0.358361 −0.179180 0.983816i \(-0.557345\pi\)
−0.179180 + 0.983816i \(0.557345\pi\)
\(12\) 0 0
\(13\) −122541. −1.18997 −0.594986 0.803736i \(-0.702842\pi\)
−0.594986 + 0.803736i \(0.702842\pi\)
\(14\) 0 0
\(15\) 416.326 0.00212335
\(16\) 0 0
\(17\) 331933. 0.963895 0.481948 0.876200i \(-0.339930\pi\)
0.481948 + 0.876200i \(0.339930\pi\)
\(18\) 0 0
\(19\) −761707. −1.34090 −0.670450 0.741954i \(-0.733899\pi\)
−0.670450 + 0.741954i \(0.733899\pi\)
\(20\) 0 0
\(21\) 557.846 0.000625933 0
\(22\) 0 0
\(23\) −1.23249e6 −0.918347 −0.459173 0.888347i \(-0.651854\pi\)
−0.459173 + 0.888347i \(0.651854\pi\)
\(24\) 0 0
\(25\) 1.25774e6 0.643963
\(26\) 0 0
\(27\) 9146.25 0.00331212
\(28\) 0 0
\(29\) 634604. 0.166614 0.0833071 0.996524i \(-0.473452\pi\)
0.0833071 + 0.996524i \(0.473452\pi\)
\(30\) 0 0
\(31\) 5.38069e6 1.04643 0.523215 0.852201i \(-0.324732\pi\)
0.523215 + 0.852201i \(0.324732\pi\)
\(32\) 0 0
\(33\) 4043.06 0.000593468 0
\(34\) 0 0
\(35\) 4.30232e6 0.484615
\(36\) 0 0
\(37\) −3.03611e6 −0.266324 −0.133162 0.991094i \(-0.542513\pi\)
−0.133162 + 0.991094i \(0.542513\pi\)
\(38\) 0 0
\(39\) 28471.1 0.00197067
\(40\) 0 0
\(41\) −7.37009e6 −0.407329 −0.203665 0.979041i \(-0.565285\pi\)
−0.203665 + 0.979041i \(0.565285\pi\)
\(42\) 0 0
\(43\) 2.06990e7 0.923297 0.461649 0.887063i \(-0.347258\pi\)
0.461649 + 0.887063i \(0.347258\pi\)
\(44\) 0 0
\(45\) 3.52696e7 1.28217
\(46\) 0 0
\(47\) −2.03632e7 −0.608702 −0.304351 0.952560i \(-0.598440\pi\)
−0.304351 + 0.952560i \(0.598440\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) −77120.9 −0.00159627
\(52\) 0 0
\(53\) −5.97380e7 −1.03994 −0.519971 0.854184i \(-0.674057\pi\)
−0.519971 + 0.854184i \(0.674057\pi\)
\(54\) 0 0
\(55\) 3.11816e7 0.459480
\(56\) 0 0
\(57\) 176974. 0.00222061
\(58\) 0 0
\(59\) −6.03461e7 −0.648358 −0.324179 0.945996i \(-0.605088\pi\)
−0.324179 + 0.945996i \(0.605088\pi\)
\(60\) 0 0
\(61\) −9.44357e6 −0.0873277 −0.0436639 0.999046i \(-0.513903\pi\)
−0.0436639 + 0.999046i \(0.513903\pi\)
\(62\) 0 0
\(63\) 4.72588e7 0.377963
\(64\) 0 0
\(65\) 2.19580e8 1.52575
\(66\) 0 0
\(67\) 2.19187e8 1.32885 0.664427 0.747353i \(-0.268676\pi\)
0.664427 + 0.747353i \(0.268676\pi\)
\(68\) 0 0
\(69\) 286355. 0.00152084
\(70\) 0 0
\(71\) 5.58741e7 0.260944 0.130472 0.991452i \(-0.458351\pi\)
0.130472 + 0.991452i \(0.458351\pi\)
\(72\) 0 0
\(73\) 4.54332e8 1.87250 0.936248 0.351340i \(-0.114274\pi\)
0.936248 + 0.351340i \(0.114274\pi\)
\(74\) 0 0
\(75\) −292222. −0.00106644
\(76\) 0 0
\(77\) 4.17811e7 0.135448
\(78\) 0 0
\(79\) −4.51057e7 −0.130289 −0.0651447 0.997876i \(-0.520751\pi\)
−0.0651447 + 0.997876i \(0.520751\pi\)
\(80\) 0 0
\(81\) 3.87417e8 0.999992
\(82\) 0 0
\(83\) 3.34665e8 0.774031 0.387016 0.922073i \(-0.373506\pi\)
0.387016 + 0.922073i \(0.373506\pi\)
\(84\) 0 0
\(85\) −5.94786e8 −1.23588
\(86\) 0 0
\(87\) −147443. −0.000275923 0
\(88\) 0 0
\(89\) 6.51886e8 1.10133 0.550664 0.834727i \(-0.314375\pi\)
0.550664 + 0.834727i \(0.314375\pi\)
\(90\) 0 0
\(91\) 2.94221e8 0.449767
\(92\) 0 0
\(93\) −1.25014e6 −0.00173295
\(94\) 0 0
\(95\) 1.36489e9 1.71926
\(96\) 0 0
\(97\) −1.42804e9 −1.63783 −0.818914 0.573916i \(-0.805424\pi\)
−0.818914 + 0.573916i \(0.805424\pi\)
\(98\) 0 0
\(99\) 3.42514e8 0.358360
\(100\) 0 0
\(101\) 8.91532e8 0.852493 0.426247 0.904607i \(-0.359836\pi\)
0.426247 + 0.904607i \(0.359836\pi\)
\(102\) 0 0
\(103\) 7.12000e8 0.623322 0.311661 0.950193i \(-0.399115\pi\)
0.311661 + 0.950193i \(0.399115\pi\)
\(104\) 0 0
\(105\) −999598. −0.000802553 0
\(106\) 0 0
\(107\) −2.48598e9 −1.83346 −0.916729 0.399510i \(-0.869180\pi\)
−0.916729 + 0.399510i \(0.869180\pi\)
\(108\) 0 0
\(109\) 3.83455e8 0.260193 0.130096 0.991501i \(-0.458471\pi\)
0.130096 + 0.991501i \(0.458471\pi\)
\(110\) 0 0
\(111\) 705407. 0.000441048 0
\(112\) 0 0
\(113\) 2.39582e9 1.38230 0.691148 0.722713i \(-0.257105\pi\)
0.691148 + 0.722713i \(0.257105\pi\)
\(114\) 0 0
\(115\) 2.20848e9 1.17748
\(116\) 0 0
\(117\) 2.41197e9 1.18997
\(118\) 0 0
\(119\) −7.96970e8 −0.364318
\(120\) 0 0
\(121\) −2.05513e9 −0.871578
\(122\) 0 0
\(123\) 1.71236e6 0.000674562 0
\(124\) 0 0
\(125\) 1.24605e9 0.456501
\(126\) 0 0
\(127\) −1.88261e9 −0.642161 −0.321080 0.947052i \(-0.604046\pi\)
−0.321080 + 0.947052i \(0.604046\pi\)
\(128\) 0 0
\(129\) −4.80919e6 −0.00152904
\(130\) 0 0
\(131\) 1.49241e9 0.442760 0.221380 0.975188i \(-0.428944\pi\)
0.221380 + 0.975188i \(0.428944\pi\)
\(132\) 0 0
\(133\) 1.82886e9 0.506813
\(134\) 0 0
\(135\) −1.63891e7 −0.00424670
\(136\) 0 0
\(137\) −3.21118e9 −0.778792 −0.389396 0.921070i \(-0.627316\pi\)
−0.389396 + 0.921070i \(0.627316\pi\)
\(138\) 0 0
\(139\) 3.03934e9 0.690577 0.345289 0.938497i \(-0.387781\pi\)
0.345289 + 0.938497i \(0.387781\pi\)
\(140\) 0 0
\(141\) 4.73116e6 0.00100805
\(142\) 0 0
\(143\) 2.13240e9 0.426439
\(144\) 0 0
\(145\) −1.13714e9 −0.213628
\(146\) 0 0
\(147\) −1.33939e6 −0.000236580 0
\(148\) 0 0
\(149\) −3.64286e9 −0.605487 −0.302743 0.953072i \(-0.597902\pi\)
−0.302743 + 0.953072i \(0.597902\pi\)
\(150\) 0 0
\(151\) −5.05862e9 −0.791837 −0.395919 0.918286i \(-0.629574\pi\)
−0.395919 + 0.918286i \(0.629574\pi\)
\(152\) 0 0
\(153\) −6.53341e9 −0.963893
\(154\) 0 0
\(155\) −9.64159e9 −1.34170
\(156\) 0 0
\(157\) −1.19687e10 −1.57216 −0.786082 0.618122i \(-0.787894\pi\)
−0.786082 + 0.618122i \(0.787894\pi\)
\(158\) 0 0
\(159\) 1.38795e7 0.00172221
\(160\) 0 0
\(161\) 2.95920e9 0.347102
\(162\) 0 0
\(163\) −1.40960e10 −1.56405 −0.782027 0.623245i \(-0.785814\pi\)
−0.782027 + 0.623245i \(0.785814\pi\)
\(164\) 0 0
\(165\) −7.24471e6 −0.000760927 0
\(166\) 0 0
\(167\) −3.56028e9 −0.354210 −0.177105 0.984192i \(-0.556673\pi\)
−0.177105 + 0.984192i \(0.556673\pi\)
\(168\) 0 0
\(169\) 4.41184e9 0.416034
\(170\) 0 0
\(171\) 1.49926e10 1.34090
\(172\) 0 0
\(173\) 2.64068e9 0.224134 0.112067 0.993701i \(-0.464253\pi\)
0.112067 + 0.993701i \(0.464253\pi\)
\(174\) 0 0
\(175\) −3.01983e9 −0.243395
\(176\) 0 0
\(177\) 1.40208e7 0.00107372
\(178\) 0 0
\(179\) −1.26973e9 −0.0924430 −0.0462215 0.998931i \(-0.514718\pi\)
−0.0462215 + 0.998931i \(0.514718\pi\)
\(180\) 0 0
\(181\) −2.17242e10 −1.50449 −0.752247 0.658881i \(-0.771030\pi\)
−0.752247 + 0.658881i \(0.771030\pi\)
\(182\) 0 0
\(183\) 2.19411e6 0.000144620 0
\(184\) 0 0
\(185\) 5.44037e9 0.341473
\(186\) 0 0
\(187\) −5.77614e9 −0.345422
\(188\) 0 0
\(189\) −2.19601e7 −0.00125186
\(190\) 0 0
\(191\) 1.07035e10 0.581937 0.290968 0.956733i \(-0.406023\pi\)
0.290968 + 0.956733i \(0.406023\pi\)
\(192\) 0 0
\(193\) 7.66063e9 0.397426 0.198713 0.980058i \(-0.436324\pi\)
0.198713 + 0.980058i \(0.436324\pi\)
\(194\) 0 0
\(195\) −5.10170e7 −0.00252673
\(196\) 0 0
\(197\) −4.26160e9 −0.201592 −0.100796 0.994907i \(-0.532139\pi\)
−0.100796 + 0.994907i \(0.532139\pi\)
\(198\) 0 0
\(199\) −3.16291e10 −1.42971 −0.714856 0.699272i \(-0.753508\pi\)
−0.714856 + 0.699272i \(0.753508\pi\)
\(200\) 0 0
\(201\) −5.09256e7 −0.00220066
\(202\) 0 0
\(203\) −1.52368e9 −0.0629742
\(204\) 0 0
\(205\) 1.32064e10 0.522266
\(206\) 0 0
\(207\) 2.42590e10 0.918344
\(208\) 0 0
\(209\) 1.32549e10 0.480526
\(210\) 0 0
\(211\) −1.76561e10 −0.613229 −0.306615 0.951834i \(-0.599196\pi\)
−0.306615 + 0.951834i \(0.599196\pi\)
\(212\) 0 0
\(213\) −1.29817e7 −0.000432140 0
\(214\) 0 0
\(215\) −3.70903e10 −1.18383
\(216\) 0 0
\(217\) −1.29190e10 −0.395513
\(218\) 0 0
\(219\) −1.05559e8 −0.00310097
\(220\) 0 0
\(221\) −4.06754e10 −1.14701
\(222\) 0 0
\(223\) 1.04686e10 0.283476 0.141738 0.989904i \(-0.454731\pi\)
0.141738 + 0.989904i \(0.454731\pi\)
\(224\) 0 0
\(225\) −2.47560e10 −0.643961
\(226\) 0 0
\(227\) −1.95043e10 −0.487543 −0.243772 0.969833i \(-0.578385\pi\)
−0.243772 + 0.969833i \(0.578385\pi\)
\(228\) 0 0
\(229\) −5.96135e10 −1.43247 −0.716234 0.697860i \(-0.754136\pi\)
−0.716234 + 0.697860i \(0.754136\pi\)
\(230\) 0 0
\(231\) −9.70738e6 −0.000224310 0
\(232\) 0 0
\(233\) 8.42619e10 1.87296 0.936482 0.350716i \(-0.114062\pi\)
0.936482 + 0.350716i \(0.114062\pi\)
\(234\) 0 0
\(235\) 3.64885e10 0.780460
\(236\) 0 0
\(237\) 1.04798e7 0.000215767 0
\(238\) 0 0
\(239\) 7.28353e10 1.44395 0.721974 0.691920i \(-0.243235\pi\)
0.721974 + 0.691920i \(0.243235\pi\)
\(240\) 0 0
\(241\) 4.45555e10 0.850795 0.425397 0.905007i \(-0.360134\pi\)
0.425397 + 0.905007i \(0.360134\pi\)
\(242\) 0 0
\(243\) −2.70038e8 −0.00496817
\(244\) 0 0
\(245\) −1.03299e10 −0.183167
\(246\) 0 0
\(247\) 9.33404e10 1.59564
\(248\) 0 0
\(249\) −7.77557e7 −0.00128184
\(250\) 0 0
\(251\) 9.55068e10 1.51881 0.759404 0.650620i \(-0.225491\pi\)
0.759404 + 0.650620i \(0.225491\pi\)
\(252\) 0 0
\(253\) 2.14472e10 0.329100
\(254\) 0 0
\(255\) 1.38192e8 0.00204669
\(256\) 0 0
\(257\) 9.12794e10 1.30519 0.652595 0.757707i \(-0.273680\pi\)
0.652595 + 0.757707i \(0.273680\pi\)
\(258\) 0 0
\(259\) 7.28970e9 0.100661
\(260\) 0 0
\(261\) −1.24909e10 −0.166614
\(262\) 0 0
\(263\) −1.50976e11 −1.94584 −0.972921 0.231138i \(-0.925755\pi\)
−0.972921 + 0.231138i \(0.925755\pi\)
\(264\) 0 0
\(265\) 1.07044e11 1.33338
\(266\) 0 0
\(267\) −1.51458e8 −0.00182387
\(268\) 0 0
\(269\) 2.39622e10 0.279024 0.139512 0.990220i \(-0.455447\pi\)
0.139512 + 0.990220i \(0.455447\pi\)
\(270\) 0 0
\(271\) 5.51248e10 0.620848 0.310424 0.950598i \(-0.399529\pi\)
0.310424 + 0.950598i \(0.399529\pi\)
\(272\) 0 0
\(273\) −6.83591e7 −0.000744842 0
\(274\) 0 0
\(275\) −2.18866e10 −0.230771
\(276\) 0 0
\(277\) 2.19632e10 0.224149 0.112074 0.993700i \(-0.464251\pi\)
0.112074 + 0.993700i \(0.464251\pi\)
\(278\) 0 0
\(279\) −1.05908e11 −1.04643
\(280\) 0 0
\(281\) −1.62670e10 −0.155643 −0.0778213 0.996967i \(-0.524796\pi\)
−0.0778213 + 0.996967i \(0.524796\pi\)
\(282\) 0 0
\(283\) −1.35590e10 −0.125657 −0.0628287 0.998024i \(-0.520012\pi\)
−0.0628287 + 0.998024i \(0.520012\pi\)
\(284\) 0 0
\(285\) −3.17118e8 −0.00284721
\(286\) 0 0
\(287\) 1.76956e10 0.153956
\(288\) 0 0
\(289\) −8.40858e9 −0.0709059
\(290\) 0 0
\(291\) 3.31790e8 0.00271235
\(292\) 0 0
\(293\) 5.41900e10 0.429551 0.214776 0.976663i \(-0.431098\pi\)
0.214776 + 0.976663i \(0.431098\pi\)
\(294\) 0 0
\(295\) 1.08133e11 0.831306
\(296\) 0 0
\(297\) −1.59159e8 −0.00118693
\(298\) 0 0
\(299\) 1.51030e11 1.09281
\(300\) 0 0
\(301\) −4.96983e10 −0.348974
\(302\) 0 0
\(303\) −2.07138e8 −0.00141178
\(304\) 0 0
\(305\) 1.69218e10 0.111969
\(306\) 0 0
\(307\) −7.32498e10 −0.470634 −0.235317 0.971919i \(-0.575613\pi\)
−0.235317 + 0.971919i \(0.575613\pi\)
\(308\) 0 0
\(309\) −1.65425e8 −0.00103226
\(310\) 0 0
\(311\) 2.44502e11 1.48204 0.741021 0.671482i \(-0.234342\pi\)
0.741021 + 0.671482i \(0.234342\pi\)
\(312\) 0 0
\(313\) −4.39895e10 −0.259060 −0.129530 0.991576i \(-0.541347\pi\)
−0.129530 + 0.991576i \(0.541347\pi\)
\(314\) 0 0
\(315\) −8.46824e10 −0.484614
\(316\) 0 0
\(317\) −2.17653e11 −1.21059 −0.605297 0.795999i \(-0.706946\pi\)
−0.605297 + 0.795999i \(0.706946\pi\)
\(318\) 0 0
\(319\) −1.10431e10 −0.0597080
\(320\) 0 0
\(321\) 5.77591e8 0.00303632
\(322\) 0 0
\(323\) −2.52835e11 −1.29249
\(324\) 0 0
\(325\) −1.54125e11 −0.766298
\(326\) 0 0
\(327\) −8.90917e7 −0.000430896 0
\(328\) 0 0
\(329\) 4.88920e10 0.230068
\(330\) 0 0
\(331\) 3.66945e11 1.68026 0.840128 0.542389i \(-0.182480\pi\)
0.840128 + 0.542389i \(0.182480\pi\)
\(332\) 0 0
\(333\) 5.97596e10 0.266323
\(334\) 0 0
\(335\) −3.92758e11 −1.70382
\(336\) 0 0
\(337\) 1.99451e11 0.842367 0.421183 0.906976i \(-0.361615\pi\)
0.421183 + 0.906976i \(0.361615\pi\)
\(338\) 0 0
\(339\) −5.56642e8 −0.00228917
\(340\) 0 0
\(341\) −9.36322e10 −0.374999
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) 0 0
\(345\) −5.13116e8 −0.00194998
\(346\) 0 0
\(347\) −6.63180e10 −0.245555 −0.122777 0.992434i \(-0.539180\pi\)
−0.122777 + 0.992434i \(0.539180\pi\)
\(348\) 0 0
\(349\) −1.20301e11 −0.434065 −0.217033 0.976164i \(-0.569638\pi\)
−0.217033 + 0.976164i \(0.569638\pi\)
\(350\) 0 0
\(351\) −1.12079e9 −0.00394133
\(352\) 0 0
\(353\) 2.43060e11 0.833159 0.416580 0.909099i \(-0.363229\pi\)
0.416580 + 0.909099i \(0.363229\pi\)
\(354\) 0 0
\(355\) −1.00120e11 −0.334575
\(356\) 0 0
\(357\) 1.85167e8 0.000603333 0
\(358\) 0 0
\(359\) −2.81654e11 −0.894933 −0.447466 0.894301i \(-0.647674\pi\)
−0.447466 + 0.894301i \(0.647674\pi\)
\(360\) 0 0
\(361\) 2.57510e11 0.798015
\(362\) 0 0
\(363\) 4.77488e8 0.00144339
\(364\) 0 0
\(365\) −8.14113e11 −2.40086
\(366\) 0 0
\(367\) 2.41000e11 0.693458 0.346729 0.937965i \(-0.387292\pi\)
0.346729 + 0.937965i \(0.387292\pi\)
\(368\) 0 0
\(369\) 1.45065e11 0.407328
\(370\) 0 0
\(371\) 1.43431e11 0.393061
\(372\) 0 0
\(373\) −1.33921e11 −0.358227 −0.179114 0.983828i \(-0.557323\pi\)
−0.179114 + 0.983828i \(0.557323\pi\)
\(374\) 0 0
\(375\) −2.89507e8 −0.000755993 0
\(376\) 0 0
\(377\) −7.77651e10 −0.198266
\(378\) 0 0
\(379\) −5.67201e11 −1.41208 −0.706042 0.708170i \(-0.749521\pi\)
−0.706042 + 0.708170i \(0.749521\pi\)
\(380\) 0 0
\(381\) 4.37404e8 0.00106346
\(382\) 0 0
\(383\) 1.03509e11 0.245800 0.122900 0.992419i \(-0.460781\pi\)
0.122900 + 0.992419i \(0.460781\pi\)
\(384\) 0 0
\(385\) −7.48671e10 −0.173667
\(386\) 0 0
\(387\) −4.07417e11 −0.923295
\(388\) 0 0
\(389\) −5.83600e11 −1.29224 −0.646119 0.763237i \(-0.723609\pi\)
−0.646119 + 0.763237i \(0.723609\pi\)
\(390\) 0 0
\(391\) −4.09102e11 −0.885190
\(392\) 0 0
\(393\) −3.46746e8 −0.000733238 0
\(394\) 0 0
\(395\) 8.08243e10 0.167053
\(396\) 0 0
\(397\) −6.54542e10 −0.132245 −0.0661226 0.997812i \(-0.521063\pi\)
−0.0661226 + 0.997812i \(0.521063\pi\)
\(398\) 0 0
\(399\) −4.24915e8 −0.000839313 0
\(400\) 0 0
\(401\) 4.06647e10 0.0785359 0.0392679 0.999229i \(-0.487497\pi\)
0.0392679 + 0.999229i \(0.487497\pi\)
\(402\) 0 0
\(403\) −6.59356e11 −1.24522
\(404\) 0 0
\(405\) −6.94209e11 −1.28216
\(406\) 0 0
\(407\) 5.28330e10 0.0954400
\(408\) 0 0
\(409\) 1.06163e12 1.87594 0.937970 0.346716i \(-0.112703\pi\)
0.937970 + 0.346716i \(0.112703\pi\)
\(410\) 0 0
\(411\) 7.46081e8 0.00128973
\(412\) 0 0
\(413\) 1.44891e11 0.245056
\(414\) 0 0
\(415\) −5.99682e11 −0.992441
\(416\) 0 0
\(417\) −7.06157e8 −0.00114364
\(418\) 0 0
\(419\) 1.19335e12 1.89149 0.945744 0.324912i \(-0.105335\pi\)
0.945744 + 0.324912i \(0.105335\pi\)
\(420\) 0 0
\(421\) −5.88397e11 −0.912853 −0.456427 0.889761i \(-0.650871\pi\)
−0.456427 + 0.889761i \(0.650871\pi\)
\(422\) 0 0
\(423\) 4.00807e11 0.608701
\(424\) 0 0
\(425\) 4.17485e11 0.620713
\(426\) 0 0
\(427\) 2.26740e10 0.0330068
\(428\) 0 0
\(429\) −4.95441e8 −0.000706210 0
\(430\) 0 0
\(431\) 1.22932e12 1.71599 0.857997 0.513655i \(-0.171709\pi\)
0.857997 + 0.513655i \(0.171709\pi\)
\(432\) 0 0
\(433\) −4.73819e10 −0.0647764 −0.0323882 0.999475i \(-0.510311\pi\)
−0.0323882 + 0.999475i \(0.510311\pi\)
\(434\) 0 0
\(435\) 2.64202e8 0.000353781 0
\(436\) 0 0
\(437\) 9.38793e11 1.23141
\(438\) 0 0
\(439\) −6.14236e11 −0.789305 −0.394652 0.918830i \(-0.629135\pi\)
−0.394652 + 0.918830i \(0.629135\pi\)
\(440\) 0 0
\(441\) −1.13468e11 −0.142857
\(442\) 0 0
\(443\) 8.19199e11 1.01058 0.505292 0.862948i \(-0.331385\pi\)
0.505292 + 0.862948i \(0.331385\pi\)
\(444\) 0 0
\(445\) −1.16811e12 −1.41209
\(446\) 0 0
\(447\) 8.46379e8 0.00100272
\(448\) 0 0
\(449\) 4.81029e11 0.558551 0.279276 0.960211i \(-0.409906\pi\)
0.279276 + 0.960211i \(0.409906\pi\)
\(450\) 0 0
\(451\) 1.28251e11 0.145971
\(452\) 0 0
\(453\) 1.17532e9 0.00131133
\(454\) 0 0
\(455\) −5.27212e11 −0.576679
\(456\) 0 0
\(457\) 1.15328e12 1.23684 0.618419 0.785849i \(-0.287774\pi\)
0.618419 + 0.785849i \(0.287774\pi\)
\(458\) 0 0
\(459\) 3.03594e9 0.00319254
\(460\) 0 0
\(461\) −6.06986e11 −0.625928 −0.312964 0.949765i \(-0.601322\pi\)
−0.312964 + 0.949765i \(0.601322\pi\)
\(462\) 0 0
\(463\) 8.87758e11 0.897801 0.448900 0.893582i \(-0.351816\pi\)
0.448900 + 0.893582i \(0.351816\pi\)
\(464\) 0 0
\(465\) 2.24012e9 0.00222194
\(466\) 0 0
\(467\) 1.09779e12 1.06806 0.534029 0.845466i \(-0.320677\pi\)
0.534029 + 0.845466i \(0.320677\pi\)
\(468\) 0 0
\(469\) −5.26267e11 −0.502260
\(470\) 0 0
\(471\) 2.78079e9 0.00260360
\(472\) 0 0
\(473\) −3.60195e11 −0.330874
\(474\) 0 0
\(475\) −9.58029e11 −0.863490
\(476\) 0 0
\(477\) 1.17582e12 1.03994
\(478\) 0 0
\(479\) 3.12229e11 0.270996 0.135498 0.990778i \(-0.456737\pi\)
0.135498 + 0.990778i \(0.456737\pi\)
\(480\) 0 0
\(481\) 3.72048e11 0.316918
\(482\) 0 0
\(483\) −6.87537e8 −0.000574823 0
\(484\) 0 0
\(485\) 2.55889e12 2.09998
\(486\) 0 0
\(487\) −1.08377e12 −0.873088 −0.436544 0.899683i \(-0.643798\pi\)
−0.436544 + 0.899683i \(0.643798\pi\)
\(488\) 0 0
\(489\) 3.27505e9 0.00259017
\(490\) 0 0
\(491\) −2.14702e12 −1.66713 −0.833567 0.552419i \(-0.813705\pi\)
−0.833567 + 0.552419i \(0.813705\pi\)
\(492\) 0 0
\(493\) 2.10646e11 0.160599
\(494\) 0 0
\(495\) −6.13746e11 −0.459479
\(496\) 0 0
\(497\) −1.34154e11 −0.0986277
\(498\) 0 0
\(499\) 1.85705e12 1.34082 0.670411 0.741990i \(-0.266118\pi\)
0.670411 + 0.741990i \(0.266118\pi\)
\(500\) 0 0
\(501\) 8.27193e8 0.000586593 0
\(502\) 0 0
\(503\) 1.59040e12 1.10777 0.553885 0.832593i \(-0.313145\pi\)
0.553885 + 0.832593i \(0.313145\pi\)
\(504\) 0 0
\(505\) −1.59753e12 −1.09304
\(506\) 0 0
\(507\) −1.02504e9 −0.000688979 0
\(508\) 0 0
\(509\) 2.32864e12 1.53771 0.768853 0.639426i \(-0.220828\pi\)
0.768853 + 0.639426i \(0.220828\pi\)
\(510\) 0 0
\(511\) −1.09085e12 −0.707737
\(512\) 0 0
\(513\) −6.96676e9 −0.00444122
\(514\) 0 0
\(515\) −1.27582e12 −0.799205
\(516\) 0 0
\(517\) 3.54350e11 0.218135
\(518\) 0 0
\(519\) −6.13532e8 −0.000371180 0
\(520\) 0 0
\(521\) −1.48366e12 −0.882197 −0.441099 0.897459i \(-0.645411\pi\)
−0.441099 + 0.897459i \(0.645411\pi\)
\(522\) 0 0
\(523\) 1.95584e12 1.14308 0.571540 0.820574i \(-0.306346\pi\)
0.571540 + 0.820574i \(0.306346\pi\)
\(524\) 0 0
\(525\) 7.01625e8 0.000403077 0
\(526\) 0 0
\(527\) 1.78603e12 1.00865
\(528\) 0 0
\(529\) −2.82131e11 −0.156639
\(530\) 0 0
\(531\) 1.18779e12 0.648357
\(532\) 0 0
\(533\) 9.03139e11 0.484710
\(534\) 0 0
\(535\) 4.45460e12 2.35081
\(536\) 0 0
\(537\) 2.95009e8 0.000153091 0
\(538\) 0 0
\(539\) −1.00316e11 −0.0511944
\(540\) 0 0
\(541\) −1.34802e12 −0.676563 −0.338281 0.941045i \(-0.609846\pi\)
−0.338281 + 0.941045i \(0.609846\pi\)
\(542\) 0 0
\(543\) 5.04738e9 0.00249154
\(544\) 0 0
\(545\) −6.87109e11 −0.333612
\(546\) 0 0
\(547\) −1.02503e12 −0.489548 −0.244774 0.969580i \(-0.578714\pi\)
−0.244774 + 0.969580i \(0.578714\pi\)
\(548\) 0 0
\(549\) 1.85877e11 0.0873275
\(550\) 0 0
\(551\) −4.83382e11 −0.223413
\(552\) 0 0
\(553\) 1.08299e11 0.0492448
\(554\) 0 0
\(555\) −1.26401e9 −0.000565500 0
\(556\) 0 0
\(557\) 1.75343e12 0.771864 0.385932 0.922527i \(-0.373880\pi\)
0.385932 + 0.922527i \(0.373880\pi\)
\(558\) 0 0
\(559\) −2.53648e12 −1.09870
\(560\) 0 0
\(561\) 1.34202e9 0.000572041 0
\(562\) 0 0
\(563\) 2.17456e12 0.912185 0.456092 0.889932i \(-0.349249\pi\)
0.456092 + 0.889932i \(0.349249\pi\)
\(564\) 0 0
\(565\) −4.29304e12 −1.77234
\(566\) 0 0
\(567\) −9.30189e11 −0.377961
\(568\) 0 0
\(569\) 3.13812e12 1.25506 0.627531 0.778592i \(-0.284066\pi\)
0.627531 + 0.778592i \(0.284066\pi\)
\(570\) 0 0
\(571\) −2.05979e12 −0.810887 −0.405444 0.914120i \(-0.632883\pi\)
−0.405444 + 0.914120i \(0.632883\pi\)
\(572\) 0 0
\(573\) −2.48684e9 −0.000963723 0
\(574\) 0 0
\(575\) −1.55015e12 −0.591381
\(576\) 0 0
\(577\) 3.94380e12 1.48123 0.740617 0.671927i \(-0.234533\pi\)
0.740617 + 0.671927i \(0.234533\pi\)
\(578\) 0 0
\(579\) −1.77986e9 −0.000658162 0
\(580\) 0 0
\(581\) −8.03530e11 −0.292556
\(582\) 0 0
\(583\) 1.03953e12 0.372675
\(584\) 0 0
\(585\) −4.32198e12 −1.52574
\(586\) 0 0
\(587\) −3.68239e12 −1.28014 −0.640071 0.768315i \(-0.721095\pi\)
−0.640071 + 0.768315i \(0.721095\pi\)
\(588\) 0 0
\(589\) −4.09851e12 −1.40316
\(590\) 0 0
\(591\) 9.90135e8 0.000333850 0
\(592\) 0 0
\(593\) −1.17114e12 −0.388921 −0.194460 0.980910i \(-0.562296\pi\)
−0.194460 + 0.980910i \(0.562296\pi\)
\(594\) 0 0
\(595\) 1.42808e12 0.467118
\(596\) 0 0
\(597\) 7.34868e9 0.00236769
\(598\) 0 0
\(599\) −2.83757e12 −0.900586 −0.450293 0.892881i \(-0.648681\pi\)
−0.450293 + 0.892881i \(0.648681\pi\)
\(600\) 0 0
\(601\) 2.37066e12 0.741198 0.370599 0.928793i \(-0.379152\pi\)
0.370599 + 0.928793i \(0.379152\pi\)
\(602\) 0 0
\(603\) −4.31424e12 −1.32885
\(604\) 0 0
\(605\) 3.68257e12 1.11751
\(606\) 0 0
\(607\) −4.40080e12 −1.31578 −0.657889 0.753115i \(-0.728550\pi\)
−0.657889 + 0.753115i \(0.728550\pi\)
\(608\) 0 0
\(609\) 3.54011e8 0.000104289 0
\(610\) 0 0
\(611\) 2.49533e12 0.724339
\(612\) 0 0
\(613\) −1.87570e12 −0.536527 −0.268264 0.963346i \(-0.586450\pi\)
−0.268264 + 0.963346i \(0.586450\pi\)
\(614\) 0 0
\(615\) −3.06836e9 −0.000864904 0
\(616\) 0 0
\(617\) −3.18170e12 −0.883845 −0.441922 0.897053i \(-0.645703\pi\)
−0.441922 + 0.897053i \(0.645703\pi\)
\(618\) 0 0
\(619\) 1.16476e11 0.0318880 0.0159440 0.999873i \(-0.494925\pi\)
0.0159440 + 0.999873i \(0.494925\pi\)
\(620\) 0 0
\(621\) −1.12726e10 −0.00304167
\(622\) 0 0
\(623\) −1.56518e12 −0.416263
\(624\) 0 0
\(625\) −4.68931e12 −1.22927
\(626\) 0 0
\(627\) −3.07962e9 −0.000795781 0
\(628\) 0 0
\(629\) −1.00778e12 −0.256708
\(630\) 0 0
\(631\) 3.71283e12 0.932338 0.466169 0.884696i \(-0.345634\pi\)
0.466169 + 0.884696i \(0.345634\pi\)
\(632\) 0 0
\(633\) 4.10219e9 0.00101555
\(634\) 0 0
\(635\) 3.37343e12 0.823360
\(636\) 0 0
\(637\) −7.06425e11 −0.169996
\(638\) 0 0
\(639\) −1.09977e12 −0.260944
\(640\) 0 0
\(641\) 2.93764e11 0.0687285 0.0343642 0.999409i \(-0.489059\pi\)
0.0343642 + 0.999409i \(0.489059\pi\)
\(642\) 0 0
\(643\) −5.27980e12 −1.21806 −0.609029 0.793148i \(-0.708441\pi\)
−0.609029 + 0.793148i \(0.708441\pi\)
\(644\) 0 0
\(645\) 8.61753e9 0.00196049
\(646\) 0 0
\(647\) 2.62000e12 0.587804 0.293902 0.955836i \(-0.405046\pi\)
0.293902 + 0.955836i \(0.405046\pi\)
\(648\) 0 0
\(649\) 1.05011e12 0.232346
\(650\) 0 0
\(651\) 3.00160e9 0.000654995 0
\(652\) 0 0
\(653\) 3.15918e12 0.679931 0.339965 0.940438i \(-0.389585\pi\)
0.339965 + 0.940438i \(0.389585\pi\)
\(654\) 0 0
\(655\) −2.67424e12 −0.567694
\(656\) 0 0
\(657\) −8.94260e12 −1.87249
\(658\) 0 0
\(659\) −8.77292e11 −0.181201 −0.0906004 0.995887i \(-0.528879\pi\)
−0.0906004 + 0.995887i \(0.528879\pi\)
\(660\) 0 0
\(661\) 8.22108e12 1.67503 0.837514 0.546416i \(-0.184008\pi\)
0.837514 + 0.546416i \(0.184008\pi\)
\(662\) 0 0
\(663\) 9.45049e9 0.00189952
\(664\) 0 0
\(665\) −3.27711e12 −0.649821
\(666\) 0 0
\(667\) −7.82140e11 −0.153010
\(668\) 0 0
\(669\) −2.43226e9 −0.000469454 0
\(670\) 0 0
\(671\) 1.64333e11 0.0312948
\(672\) 0 0
\(673\) −7.47304e12 −1.40420 −0.702101 0.712077i \(-0.747754\pi\)
−0.702101 + 0.712077i \(0.747754\pi\)
\(674\) 0 0
\(675\) 1.15036e10 0.00213288
\(676\) 0 0
\(677\) 8.71309e12 1.59413 0.797064 0.603895i \(-0.206386\pi\)
0.797064 + 0.603895i \(0.206386\pi\)
\(678\) 0 0
\(679\) 3.42873e12 0.619041
\(680\) 0 0
\(681\) 4.53160e9 0.000807402 0
\(682\) 0 0
\(683\) 3.73903e12 0.657455 0.328727 0.944425i \(-0.393380\pi\)
0.328727 + 0.944425i \(0.393380\pi\)
\(684\) 0 0
\(685\) 5.75407e12 0.998545
\(686\) 0 0
\(687\) 1.38505e10 0.00237226
\(688\) 0 0
\(689\) 7.32036e12 1.23750
\(690\) 0 0
\(691\) 6.26971e12 1.04616 0.523078 0.852285i \(-0.324784\pi\)
0.523078 + 0.852285i \(0.324784\pi\)
\(692\) 0 0
\(693\) −8.22375e11 −0.135447
\(694\) 0 0
\(695\) −5.44616e12 −0.885439
\(696\) 0 0
\(697\) −2.44637e12 −0.392623
\(698\) 0 0
\(699\) −1.95773e10 −0.00310174
\(700\) 0 0
\(701\) −5.13904e12 −0.803805 −0.401903 0.915682i \(-0.631651\pi\)
−0.401903 + 0.915682i \(0.631651\pi\)
\(702\) 0 0
\(703\) 2.31263e12 0.357114
\(704\) 0 0
\(705\) −8.47771e9 −0.00129249
\(706\) 0 0
\(707\) −2.14057e12 −0.322212
\(708\) 0 0
\(709\) −2.95438e12 −0.439094 −0.219547 0.975602i \(-0.570458\pi\)
−0.219547 + 0.975602i \(0.570458\pi\)
\(710\) 0 0
\(711\) 8.87813e11 0.130289
\(712\) 0 0
\(713\) −6.63162e12 −0.960986
\(714\) 0 0
\(715\) −3.82103e12 −0.546768
\(716\) 0 0
\(717\) −1.69225e10 −0.00239127
\(718\) 0 0
\(719\) 1.21819e13 1.69994 0.849971 0.526829i \(-0.176619\pi\)
0.849971 + 0.526829i \(0.176619\pi\)
\(720\) 0 0
\(721\) −1.70951e12 −0.235594
\(722\) 0 0
\(723\) −1.03520e10 −0.00140897
\(724\) 0 0
\(725\) 7.98167e11 0.107293
\(726\) 0 0
\(727\) −1.26291e13 −1.67675 −0.838376 0.545093i \(-0.816494\pi\)
−0.838376 + 0.545093i \(0.816494\pi\)
\(728\) 0 0
\(729\) −7.62547e12 −0.999984
\(730\) 0 0
\(731\) 6.87068e12 0.889962
\(732\) 0 0
\(733\) 9.16594e12 1.17276 0.586380 0.810036i \(-0.300553\pi\)
0.586380 + 0.810036i \(0.300553\pi\)
\(734\) 0 0
\(735\) 2.40003e9 0.000303336 0
\(736\) 0 0
\(737\) −3.81418e12 −0.476209
\(738\) 0 0
\(739\) −1.10658e13 −1.36484 −0.682420 0.730960i \(-0.739073\pi\)
−0.682420 + 0.730960i \(0.739073\pi\)
\(740\) 0 0
\(741\) −2.16866e10 −0.00264247
\(742\) 0 0
\(743\) −1.84642e12 −0.222270 −0.111135 0.993805i \(-0.535449\pi\)
−0.111135 + 0.993805i \(0.535449\pi\)
\(744\) 0 0
\(745\) 6.52760e12 0.776337
\(746\) 0 0
\(747\) −6.58719e12 −0.774029
\(748\) 0 0
\(749\) 5.96884e12 0.692982
\(750\) 0 0
\(751\) 9.19672e12 1.05500 0.527501 0.849555i \(-0.323129\pi\)
0.527501 + 0.849555i \(0.323129\pi\)
\(752\) 0 0
\(753\) −2.21900e10 −0.00251524
\(754\) 0 0
\(755\) 9.06449e12 1.01527
\(756\) 0 0
\(757\) 8.81778e12 0.975950 0.487975 0.872858i \(-0.337736\pi\)
0.487975 + 0.872858i \(0.337736\pi\)
\(758\) 0 0
\(759\) −4.98301e9 −0.000545009 0
\(760\) 0 0
\(761\) −2.42043e12 −0.261614 −0.130807 0.991408i \(-0.541757\pi\)
−0.130807 + 0.991408i \(0.541757\pi\)
\(762\) 0 0
\(763\) −9.20676e11 −0.0983437
\(764\) 0 0
\(765\) 1.17071e13 1.23588
\(766\) 0 0
\(767\) 7.39488e12 0.771528
\(768\) 0 0
\(769\) 7.67945e12 0.791885 0.395942 0.918275i \(-0.370418\pi\)
0.395942 + 0.918275i \(0.370418\pi\)
\(770\) 0 0
\(771\) −2.12078e10 −0.00216148
\(772\) 0 0
\(773\) 1.04693e13 1.05466 0.527328 0.849662i \(-0.323194\pi\)
0.527328 + 0.849662i \(0.323194\pi\)
\(774\) 0 0
\(775\) 6.76751e12 0.673862
\(776\) 0 0
\(777\) −1.69368e9 −0.000166701 0
\(778\) 0 0
\(779\) 5.61385e12 0.546188
\(780\) 0 0
\(781\) −9.72296e11 −0.0935123
\(782\) 0 0
\(783\) 5.80424e9 0.000551846 0
\(784\) 0 0
\(785\) 2.14465e13 2.01578
\(786\) 0 0
\(787\) 1.26490e13 1.17535 0.587677 0.809095i \(-0.300042\pi\)
0.587677 + 0.809095i \(0.300042\pi\)
\(788\) 0 0
\(789\) 3.50777e10 0.00322243
\(790\) 0 0
\(791\) −5.75236e12 −0.522459
\(792\) 0 0
\(793\) 1.15723e12 0.103918
\(794\) 0 0
\(795\) −2.48705e10 −0.00220817
\(796\) 0 0
\(797\) −6.02337e11 −0.0528782 −0.0264391 0.999650i \(-0.508417\pi\)
−0.0264391 + 0.999650i \(0.508417\pi\)
\(798\) 0 0
\(799\) −6.75920e12 −0.586725
\(800\) 0 0
\(801\) −1.28310e13 −1.10132
\(802\) 0 0
\(803\) −7.90608e12 −0.671029
\(804\) 0 0
\(805\) −5.30256e12 −0.445045
\(806\) 0 0
\(807\) −5.56736e9 −0.000462081 0
\(808\) 0 0
\(809\) −7.72967e12 −0.634443 −0.317222 0.948351i \(-0.602750\pi\)
−0.317222 + 0.948351i \(0.602750\pi\)
\(810\) 0 0
\(811\) 1.20157e13 0.975335 0.487668 0.873029i \(-0.337848\pi\)
0.487668 + 0.873029i \(0.337848\pi\)
\(812\) 0 0
\(813\) −1.28077e10 −0.00102816
\(814\) 0 0
\(815\) 2.52585e13 2.00538
\(816\) 0 0
\(817\) −1.57666e13 −1.23805
\(818\) 0 0
\(819\) −5.79114e12 −0.449766
\(820\) 0 0
\(821\) 1.39952e13 1.07507 0.537533 0.843243i \(-0.319356\pi\)
0.537533 + 0.843243i \(0.319356\pi\)
\(822\) 0 0
\(823\) −1.61982e13 −1.23074 −0.615371 0.788238i \(-0.710994\pi\)
−0.615371 + 0.788238i \(0.710994\pi\)
\(824\) 0 0
\(825\) 5.08511e9 0.000382171 0
\(826\) 0 0
\(827\) 1.30127e13 0.967374 0.483687 0.875241i \(-0.339297\pi\)
0.483687 + 0.875241i \(0.339297\pi\)
\(828\) 0 0
\(829\) −1.31364e13 −0.966007 −0.483004 0.875618i \(-0.660454\pi\)
−0.483004 + 0.875618i \(0.660454\pi\)
\(830\) 0 0
\(831\) −5.10290e9 −0.000371204 0
\(832\) 0 0
\(833\) 1.91353e12 0.137699
\(834\) 0 0
\(835\) 6.37963e12 0.454157
\(836\) 0 0
\(837\) 4.92131e10 0.00346590
\(838\) 0 0
\(839\) 5.22420e12 0.363991 0.181996 0.983299i \(-0.441744\pi\)
0.181996 + 0.983299i \(0.441744\pi\)
\(840\) 0 0
\(841\) −1.41044e13 −0.972240
\(842\) 0 0
\(843\) 3.77945e9 0.000257754 0
\(844\) 0 0
\(845\) −7.90552e12 −0.533427
\(846\) 0 0
\(847\) 4.93438e12 0.329425
\(848\) 0 0
\(849\) 3.15028e9 0.000208096 0
\(850\) 0 0
\(851\) 3.74196e12 0.244578
\(852\) 0 0
\(853\) −5.65076e12 −0.365457 −0.182728 0.983163i \(-0.558493\pi\)
−0.182728 + 0.983163i \(0.558493\pi\)
\(854\) 0 0
\(855\) −2.68651e13 −1.71926
\(856\) 0 0
\(857\) 1.42516e12 0.0902503 0.0451251 0.998981i \(-0.485631\pi\)
0.0451251 + 0.998981i \(0.485631\pi\)
\(858\) 0 0
\(859\) −2.77961e13 −1.74186 −0.870932 0.491404i \(-0.836484\pi\)
−0.870932 + 0.491404i \(0.836484\pi\)
\(860\) 0 0
\(861\) −4.11137e9 −0.000254960 0
\(862\) 0 0
\(863\) 1.14117e13 0.700326 0.350163 0.936689i \(-0.386126\pi\)
0.350163 + 0.936689i \(0.386126\pi\)
\(864\) 0 0
\(865\) −4.73180e12 −0.287378
\(866\) 0 0
\(867\) 1.95364e9 0.000117425 0
\(868\) 0 0
\(869\) 7.84908e11 0.0466906
\(870\) 0 0
\(871\) −2.68594e13 −1.58130
\(872\) 0 0
\(873\) 2.81081e13 1.63782
\(874\) 0 0
\(875\) −2.99177e12 −0.172541
\(876\) 0 0
\(877\) −1.21188e13 −0.691769 −0.345884 0.938277i \(-0.612421\pi\)
−0.345884 + 0.938277i \(0.612421\pi\)
\(878\) 0 0
\(879\) −1.25905e10 −0.000711364 0
\(880\) 0 0
\(881\) −4.60741e12 −0.257671 −0.128836 0.991666i \(-0.541124\pi\)
−0.128836 + 0.991666i \(0.541124\pi\)
\(882\) 0 0
\(883\) −1.04709e13 −0.579642 −0.289821 0.957081i \(-0.593596\pi\)
−0.289821 + 0.957081i \(0.593596\pi\)
\(884\) 0 0
\(885\) −2.51236e10 −0.00137669
\(886\) 0 0
\(887\) 3.68711e12 0.200000 0.0999999 0.994987i \(-0.468116\pi\)
0.0999999 + 0.994987i \(0.468116\pi\)
\(888\) 0 0
\(889\) 4.52015e12 0.242714
\(890\) 0 0
\(891\) −6.74166e12 −0.358358
\(892\) 0 0
\(893\) 1.55108e13 0.816209
\(894\) 0 0
\(895\) 2.27522e12 0.118528
\(896\) 0 0
\(897\) −3.50902e10 −0.00180976
\(898\) 0 0
\(899\) 3.41461e12 0.174350
\(900\) 0 0
\(901\) −1.98290e13 −1.00240
\(902\) 0 0
\(903\) 1.15469e10 0.000577922 0
\(904\) 0 0
\(905\) 3.89274e13 1.92902
\(906\) 0 0
\(907\) 6.05209e11 0.0296943 0.0148471 0.999890i \(-0.495274\pi\)
0.0148471 + 0.999890i \(0.495274\pi\)
\(908\) 0 0
\(909\) −1.75480e13 −0.852491
\(910\) 0 0
\(911\) 3.27450e12 0.157512 0.0787559 0.996894i \(-0.474905\pi\)
0.0787559 + 0.996894i \(0.474905\pi\)
\(912\) 0 0
\(913\) −5.82368e12 −0.277383
\(914\) 0 0
\(915\) −3.93160e9 −0.000185428 0
\(916\) 0 0
\(917\) −3.58329e12 −0.167348
\(918\) 0 0
\(919\) −2.21117e11 −0.0102259 −0.00511295 0.999987i \(-0.501628\pi\)
−0.00511295 + 0.999987i \(0.501628\pi\)
\(920\) 0 0
\(921\) 1.70188e10 0.000779400 0
\(922\) 0 0
\(923\) −6.84688e12 −0.310517
\(924\) 0 0
\(925\) −3.81864e12 −0.171503
\(926\) 0 0
\(927\) −1.40143e13 −0.623320
\(928\) 0 0
\(929\) −4.00147e12 −0.176258 −0.0881290 0.996109i \(-0.528089\pi\)
−0.0881290 + 0.996109i \(0.528089\pi\)
\(930\) 0 0
\(931\) −4.39109e12 −0.191557
\(932\) 0 0
\(933\) −5.68073e10 −0.00245435
\(934\) 0 0
\(935\) 1.03502e13 0.442890
\(936\) 0 0
\(937\) −3.76138e10 −0.00159411 −0.000797056 1.00000i \(-0.500254\pi\)
−0.000797056 1.00000i \(0.500254\pi\)
\(938\) 0 0
\(939\) 1.02205e10 0.000429019 0
\(940\) 0 0
\(941\) −2.21494e12 −0.0920894 −0.0460447 0.998939i \(-0.514662\pi\)
−0.0460447 + 0.998939i \(0.514662\pi\)
\(942\) 0 0
\(943\) 9.08353e12 0.374069
\(944\) 0 0
\(945\) 3.93501e10 0.00160510
\(946\) 0 0
\(947\) −2.36266e13 −0.954610 −0.477305 0.878738i \(-0.658386\pi\)
−0.477305 + 0.878738i \(0.658386\pi\)
\(948\) 0 0
\(949\) −5.56744e13 −2.22822
\(950\) 0 0
\(951\) 5.05694e10 0.00200482
\(952\) 0 0
\(953\) −1.15037e13 −0.451771 −0.225885 0.974154i \(-0.572527\pi\)
−0.225885 + 0.974154i \(0.572527\pi\)
\(954\) 0 0
\(955\) −1.91795e13 −0.746142
\(956\) 0 0
\(957\) 2.56574e9 9.88801e−5 0
\(958\) 0 0
\(959\) 7.71003e12 0.294356
\(960\) 0 0
\(961\) 2.51218e12 0.0950156
\(962\) 0 0
\(963\) 4.89314e13 1.83345
\(964\) 0 0
\(965\) −1.37270e13 −0.509568
\(966\) 0 0
\(967\) 1.36863e13 0.503346 0.251673 0.967812i \(-0.419019\pi\)
0.251673 + 0.967812i \(0.419019\pi\)
\(968\) 0 0
\(969\) 5.87435e10 0.00214044
\(970\) 0 0
\(971\) −9.95259e12 −0.359294 −0.179647 0.983731i \(-0.557496\pi\)
−0.179647 + 0.983731i \(0.557496\pi\)
\(972\) 0 0
\(973\) −7.29745e12 −0.261014
\(974\) 0 0
\(975\) 3.58092e10 0.00126904
\(976\) 0 0
\(977\) 1.51387e13 0.531575 0.265787 0.964032i \(-0.414368\pi\)
0.265787 + 0.964032i \(0.414368\pi\)
\(978\) 0 0
\(979\) −1.13438e13 −0.394673
\(980\) 0 0
\(981\) −7.54753e12 −0.260192
\(982\) 0 0
\(983\) −5.47141e13 −1.86899 −0.934497 0.355970i \(-0.884151\pi\)
−0.934497 + 0.355970i \(0.884151\pi\)
\(984\) 0 0
\(985\) 7.63631e12 0.258476
\(986\) 0 0
\(987\) −1.13595e10 −0.000381007 0
\(988\) 0 0
\(989\) −2.55112e13 −0.847907
\(990\) 0 0
\(991\) −4.86384e13 −1.60195 −0.800974 0.598699i \(-0.795684\pi\)
−0.800974 + 0.598699i \(0.795684\pi\)
\(992\) 0 0
\(993\) −8.52557e10 −0.00278261
\(994\) 0 0
\(995\) 5.66759e13 1.83314
\(996\) 0 0
\(997\) 2.77758e13 0.890304 0.445152 0.895455i \(-0.353150\pi\)
0.445152 + 0.895455i \(0.353150\pi\)
\(998\) 0 0
\(999\) −2.77690e10 −0.000882096 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.a.h.1.2 3
4.3 odd 2 7.10.a.b.1.3 3
12.11 even 2 63.10.a.e.1.1 3
20.3 even 4 175.10.b.d.99.1 6
20.7 even 4 175.10.b.d.99.6 6
20.19 odd 2 175.10.a.d.1.1 3
28.3 even 6 49.10.c.e.30.1 6
28.11 odd 6 49.10.c.d.30.1 6
28.19 even 6 49.10.c.e.18.1 6
28.23 odd 6 49.10.c.d.18.1 6
28.27 even 2 49.10.a.c.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.3 3 4.3 odd 2
49.10.a.c.1.3 3 28.27 even 2
49.10.c.d.18.1 6 28.23 odd 6
49.10.c.d.30.1 6 28.11 odd 6
49.10.c.e.18.1 6 28.19 even 6
49.10.c.e.30.1 6 28.3 even 6
63.10.a.e.1.1 3 12.11 even 2
112.10.a.h.1.2 3 1.1 even 1 trivial
175.10.a.d.1.1 3 20.19 odd 2
175.10.b.d.99.1 6 20.3 even 4
175.10.b.d.99.6 6 20.7 even 4