Properties

Label 112.10.a.h.1.1
Level $112$
Weight $10$
Character 112.1
Self dual yes
Analytic conductor $57.684$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [112,10,Mod(1,112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("112.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-22.2358\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-163.415 q^{3} +1922.19 q^{5} -2401.00 q^{7} +7021.32 q^{9} +90199.9 q^{11} -3199.89 q^{13} -314114. q^{15} +116494. q^{17} +142449. q^{19} +392358. q^{21} -1.27391e6 q^{23} +1.74168e6 q^{25} +2.06910e6 q^{27} -1.42931e6 q^{29} -9.67494e6 q^{31} -1.47400e7 q^{33} -4.61518e6 q^{35} -8.67744e6 q^{37} +522908. q^{39} +1.32544e7 q^{41} +2.97554e7 q^{43} +1.34963e7 q^{45} +1.07969e7 q^{47} +5.76480e6 q^{49} -1.90369e7 q^{51} +7.07399e7 q^{53} +1.73381e8 q^{55} -2.32783e7 q^{57} -6.40400e6 q^{59} +1.69190e8 q^{61} -1.68582e7 q^{63} -6.15078e6 q^{65} +1.16276e8 q^{67} +2.08176e8 q^{69} -1.44496e8 q^{71} +1.60155e8 q^{73} -2.84617e8 q^{75} -2.16570e8 q^{77} +4.89322e8 q^{79} -4.76322e8 q^{81} +8.31590e7 q^{83} +2.23924e8 q^{85} +2.33569e8 q^{87} +2.08083e6 q^{89} +7.68292e6 q^{91} +1.58103e9 q^{93} +2.73815e8 q^{95} -3.15885e8 q^{97} +6.33322e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 84 q^{3} + 1554 q^{5} - 7203 q^{7} - 26001 q^{9} + 3444 q^{11} - 19782 q^{13} - 200304 q^{15} + 1016694 q^{17} - 222852 q^{19} + 201684 q^{21} - 1885632 q^{23} + 3073221 q^{25} - 551880 q^{27} + 4081818 q^{29}+ \cdots + 1900979172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −163.415 −1.16478 −0.582392 0.812908i \(-0.697883\pi\)
−0.582392 + 0.812908i \(0.697883\pi\)
\(4\) 0 0
\(5\) 1922.19 1.37541 0.687703 0.725992i \(-0.258619\pi\)
0.687703 + 0.725992i \(0.258619\pi\)
\(6\) 0 0
\(7\) −2401.00 −0.377964
\(8\) 0 0
\(9\) 7021.32 0.356720
\(10\) 0 0
\(11\) 90199.9 1.85754 0.928772 0.370652i \(-0.120866\pi\)
0.928772 + 0.370652i \(0.120866\pi\)
\(12\) 0 0
\(13\) −3199.89 −0.0310734 −0.0155367 0.999879i \(-0.504946\pi\)
−0.0155367 + 0.999879i \(0.504946\pi\)
\(14\) 0 0
\(15\) −314114. −1.60205
\(16\) 0 0
\(17\) 116494. 0.338286 0.169143 0.985591i \(-0.445900\pi\)
0.169143 + 0.985591i \(0.445900\pi\)
\(18\) 0 0
\(19\) 142449. 0.250767 0.125383 0.992108i \(-0.459984\pi\)
0.125383 + 0.992108i \(0.459984\pi\)
\(20\) 0 0
\(21\) 392358. 0.440247
\(22\) 0 0
\(23\) −1.27391e6 −0.949213 −0.474606 0.880198i \(-0.657410\pi\)
−0.474606 + 0.880198i \(0.657410\pi\)
\(24\) 0 0
\(25\) 1.74168e6 0.891742
\(26\) 0 0
\(27\) 2.06910e6 0.749282
\(28\) 0 0
\(29\) −1.42931e6 −0.375262 −0.187631 0.982240i \(-0.560081\pi\)
−0.187631 + 0.982240i \(0.560081\pi\)
\(30\) 0 0
\(31\) −9.67494e6 −1.88157 −0.940786 0.339001i \(-0.889911\pi\)
−0.940786 + 0.339001i \(0.889911\pi\)
\(32\) 0 0
\(33\) −1.47400e7 −2.16364
\(34\) 0 0
\(35\) −4.61518e6 −0.519855
\(36\) 0 0
\(37\) −8.67744e6 −0.761174 −0.380587 0.924745i \(-0.624278\pi\)
−0.380587 + 0.924745i \(0.624278\pi\)
\(38\) 0 0
\(39\) 522908. 0.0361938
\(40\) 0 0
\(41\) 1.32544e7 0.732541 0.366271 0.930508i \(-0.380634\pi\)
0.366271 + 0.930508i \(0.380634\pi\)
\(42\) 0 0
\(43\) 2.97554e7 1.32726 0.663632 0.748060i \(-0.269014\pi\)
0.663632 + 0.748060i \(0.269014\pi\)
\(44\) 0 0
\(45\) 1.34963e7 0.490635
\(46\) 0 0
\(47\) 1.07969e7 0.322745 0.161373 0.986894i \(-0.448408\pi\)
0.161373 + 0.986894i \(0.448408\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) −1.90369e7 −0.394030
\(52\) 0 0
\(53\) 7.07399e7 1.23147 0.615734 0.787954i \(-0.288860\pi\)
0.615734 + 0.787954i \(0.288860\pi\)
\(54\) 0 0
\(55\) 1.73381e8 2.55488
\(56\) 0 0
\(57\) −2.32783e7 −0.292089
\(58\) 0 0
\(59\) −6.40400e6 −0.0688046 −0.0344023 0.999408i \(-0.510953\pi\)
−0.0344023 + 0.999408i \(0.510953\pi\)
\(60\) 0 0
\(61\) 1.69190e8 1.56455 0.782275 0.622933i \(-0.214059\pi\)
0.782275 + 0.622933i \(0.214059\pi\)
\(62\) 0 0
\(63\) −1.68582e7 −0.134827
\(64\) 0 0
\(65\) −6.15078e6 −0.0427386
\(66\) 0 0
\(67\) 1.16276e8 0.704943 0.352471 0.935823i \(-0.385341\pi\)
0.352471 + 0.935823i \(0.385341\pi\)
\(68\) 0 0
\(69\) 2.08176e8 1.10563
\(70\) 0 0
\(71\) −1.44496e8 −0.674826 −0.337413 0.941357i \(-0.609552\pi\)
−0.337413 + 0.941357i \(0.609552\pi\)
\(72\) 0 0
\(73\) 1.60155e8 0.660066 0.330033 0.943969i \(-0.392940\pi\)
0.330033 + 0.943969i \(0.392940\pi\)
\(74\) 0 0
\(75\) −2.84617e8 −1.03869
\(76\) 0 0
\(77\) −2.16570e8 −0.702085
\(78\) 0 0
\(79\) 4.89322e8 1.41343 0.706713 0.707500i \(-0.250177\pi\)
0.706713 + 0.707500i \(0.250177\pi\)
\(80\) 0 0
\(81\) −4.76322e8 −1.22947
\(82\) 0 0
\(83\) 8.31590e7 0.192335 0.0961674 0.995365i \(-0.469342\pi\)
0.0961674 + 0.995365i \(0.469342\pi\)
\(84\) 0 0
\(85\) 2.23924e8 0.465281
\(86\) 0 0
\(87\) 2.33569e8 0.437098
\(88\) 0 0
\(89\) 2.08083e6 0.00351546 0.00175773 0.999998i \(-0.499440\pi\)
0.00175773 + 0.999998i \(0.499440\pi\)
\(90\) 0 0
\(91\) 7.68292e6 0.0117447
\(92\) 0 0
\(93\) 1.58103e9 2.19162
\(94\) 0 0
\(95\) 2.73815e8 0.344906
\(96\) 0 0
\(97\) −3.15885e8 −0.362290 −0.181145 0.983456i \(-0.557980\pi\)
−0.181145 + 0.983456i \(0.557980\pi\)
\(98\) 0 0
\(99\) 6.33322e8 0.662623
\(100\) 0 0
\(101\) −5.74841e8 −0.549669 −0.274835 0.961492i \(-0.588623\pi\)
−0.274835 + 0.961492i \(0.588623\pi\)
\(102\) 0 0
\(103\) 1.51870e9 1.32955 0.664775 0.747044i \(-0.268527\pi\)
0.664775 + 0.747044i \(0.268527\pi\)
\(104\) 0 0
\(105\) 7.54187e8 0.605518
\(106\) 0 0
\(107\) 2.01863e8 0.148878 0.0744390 0.997226i \(-0.476283\pi\)
0.0744390 + 0.997226i \(0.476283\pi\)
\(108\) 0 0
\(109\) −8.73952e8 −0.593019 −0.296509 0.955030i \(-0.595823\pi\)
−0.296509 + 0.955030i \(0.595823\pi\)
\(110\) 0 0
\(111\) 1.41802e9 0.886603
\(112\) 0 0
\(113\) 1.52955e9 0.882491 0.441245 0.897386i \(-0.354537\pi\)
0.441245 + 0.897386i \(0.354537\pi\)
\(114\) 0 0
\(115\) −2.44870e9 −1.30555
\(116\) 0 0
\(117\) −2.24674e7 −0.0110845
\(118\) 0 0
\(119\) −2.79703e8 −0.127860
\(120\) 0 0
\(121\) 5.77807e9 2.45047
\(122\) 0 0
\(123\) −2.16596e9 −0.853252
\(124\) 0 0
\(125\) −4.06429e8 −0.148898
\(126\) 0 0
\(127\) 8.71958e8 0.297426 0.148713 0.988880i \(-0.452487\pi\)
0.148713 + 0.988880i \(0.452487\pi\)
\(128\) 0 0
\(129\) −4.86246e9 −1.54597
\(130\) 0 0
\(131\) −2.24404e9 −0.665747 −0.332874 0.942971i \(-0.608018\pi\)
−0.332874 + 0.942971i \(0.608018\pi\)
\(132\) 0 0
\(133\) −3.42021e8 −0.0947809
\(134\) 0 0
\(135\) 3.97721e9 1.03057
\(136\) 0 0
\(137\) 4.16141e9 1.00925 0.504624 0.863339i \(-0.331631\pi\)
0.504624 + 0.863339i \(0.331631\pi\)
\(138\) 0 0
\(139\) 6.03383e9 1.37097 0.685483 0.728089i \(-0.259591\pi\)
0.685483 + 0.728089i \(0.259591\pi\)
\(140\) 0 0
\(141\) −1.76438e9 −0.375928
\(142\) 0 0
\(143\) −2.88629e8 −0.0577203
\(144\) 0 0
\(145\) −2.74740e9 −0.516137
\(146\) 0 0
\(147\) −9.42052e8 −0.166398
\(148\) 0 0
\(149\) −4.37832e9 −0.727728 −0.363864 0.931452i \(-0.618543\pi\)
−0.363864 + 0.931452i \(0.618543\pi\)
\(150\) 0 0
\(151\) 2.69365e9 0.421642 0.210821 0.977525i \(-0.432386\pi\)
0.210821 + 0.977525i \(0.432386\pi\)
\(152\) 0 0
\(153\) 8.17943e8 0.120673
\(154\) 0 0
\(155\) −1.85971e10 −2.58793
\(156\) 0 0
\(157\) −1.33044e9 −0.174762 −0.0873810 0.996175i \(-0.527850\pi\)
−0.0873810 + 0.996175i \(0.527850\pi\)
\(158\) 0 0
\(159\) −1.15599e10 −1.43439
\(160\) 0 0
\(161\) 3.05866e9 0.358769
\(162\) 0 0
\(163\) 3.56094e9 0.395112 0.197556 0.980292i \(-0.436699\pi\)
0.197556 + 0.980292i \(0.436699\pi\)
\(164\) 0 0
\(165\) −2.83330e10 −2.97588
\(166\) 0 0
\(167\) 1.04285e10 1.03752 0.518762 0.854919i \(-0.326393\pi\)
0.518762 + 0.854919i \(0.326393\pi\)
\(168\) 0 0
\(169\) −1.05943e10 −0.999034
\(170\) 0 0
\(171\) 1.00018e9 0.0894534
\(172\) 0 0
\(173\) 2.04717e10 1.73759 0.868793 0.495176i \(-0.164896\pi\)
0.868793 + 0.495176i \(0.164896\pi\)
\(174\) 0 0
\(175\) −4.18178e9 −0.337047
\(176\) 0 0
\(177\) 1.04651e9 0.0801424
\(178\) 0 0
\(179\) −5.46705e9 −0.398029 −0.199014 0.979997i \(-0.563774\pi\)
−0.199014 + 0.979997i \(0.563774\pi\)
\(180\) 0 0
\(181\) −2.11628e9 −0.146561 −0.0732807 0.997311i \(-0.523347\pi\)
−0.0732807 + 0.997311i \(0.523347\pi\)
\(182\) 0 0
\(183\) −2.76481e10 −1.82236
\(184\) 0 0
\(185\) −1.66797e10 −1.04692
\(186\) 0 0
\(187\) 1.05078e10 0.628381
\(188\) 0 0
\(189\) −4.96792e9 −0.283202
\(190\) 0 0
\(191\) −1.72421e10 −0.937431 −0.468715 0.883349i \(-0.655283\pi\)
−0.468715 + 0.883349i \(0.655283\pi\)
\(192\) 0 0
\(193\) 2.02030e10 1.04811 0.524055 0.851684i \(-0.324418\pi\)
0.524055 + 0.851684i \(0.324418\pi\)
\(194\) 0 0
\(195\) 1.00513e9 0.0497812
\(196\) 0 0
\(197\) −2.22592e10 −1.05296 −0.526481 0.850187i \(-0.676489\pi\)
−0.526481 + 0.850187i \(0.676489\pi\)
\(198\) 0 0
\(199\) −1.70588e10 −0.771098 −0.385549 0.922687i \(-0.625988\pi\)
−0.385549 + 0.922687i \(0.625988\pi\)
\(200\) 0 0
\(201\) −1.90012e10 −0.821105
\(202\) 0 0
\(203\) 3.43176e9 0.141836
\(204\) 0 0
\(205\) 2.54774e10 1.00754
\(206\) 0 0
\(207\) −8.94453e9 −0.338603
\(208\) 0 0
\(209\) 1.28489e10 0.465810
\(210\) 0 0
\(211\) 3.19873e10 1.11098 0.555490 0.831523i \(-0.312531\pi\)
0.555490 + 0.831523i \(0.312531\pi\)
\(212\) 0 0
\(213\) 2.36127e10 0.786026
\(214\) 0 0
\(215\) 5.71954e10 1.82553
\(216\) 0 0
\(217\) 2.32295e10 0.711167
\(218\) 0 0
\(219\) −2.61717e10 −0.768834
\(220\) 0 0
\(221\) −3.72768e8 −0.0105117
\(222\) 0 0
\(223\) 2.30967e10 0.625428 0.312714 0.949847i \(-0.398762\pi\)
0.312714 + 0.949847i \(0.398762\pi\)
\(224\) 0 0
\(225\) 1.22289e10 0.318102
\(226\) 0 0
\(227\) 2.30894e10 0.577160 0.288580 0.957456i \(-0.406817\pi\)
0.288580 + 0.957456i \(0.406817\pi\)
\(228\) 0 0
\(229\) 4.25496e10 1.02244 0.511218 0.859451i \(-0.329195\pi\)
0.511218 + 0.859451i \(0.329195\pi\)
\(230\) 0 0
\(231\) 3.53907e10 0.817777
\(232\) 0 0
\(233\) −1.26679e10 −0.281582 −0.140791 0.990039i \(-0.544964\pi\)
−0.140791 + 0.990039i \(0.544964\pi\)
\(234\) 0 0
\(235\) 2.07537e10 0.443906
\(236\) 0 0
\(237\) −7.99624e10 −1.64633
\(238\) 0 0
\(239\) −6.37875e10 −1.26458 −0.632289 0.774733i \(-0.717884\pi\)
−0.632289 + 0.774733i \(0.717884\pi\)
\(240\) 0 0
\(241\) −2.91604e10 −0.556823 −0.278412 0.960462i \(-0.589808\pi\)
−0.278412 + 0.960462i \(0.589808\pi\)
\(242\) 0 0
\(243\) 3.71118e10 0.682785
\(244\) 0 0
\(245\) 1.10810e10 0.196487
\(246\) 0 0
\(247\) −4.55822e8 −0.00779218
\(248\) 0 0
\(249\) −1.35894e10 −0.224028
\(250\) 0 0
\(251\) −6.28939e10 −1.00018 −0.500088 0.865974i \(-0.666699\pi\)
−0.500088 + 0.865974i \(0.666699\pi\)
\(252\) 0 0
\(253\) −1.14907e11 −1.76320
\(254\) 0 0
\(255\) −3.65924e10 −0.541952
\(256\) 0 0
\(257\) 1.14480e11 1.63694 0.818469 0.574551i \(-0.194823\pi\)
0.818469 + 0.574551i \(0.194823\pi\)
\(258\) 0 0
\(259\) 2.08345e10 0.287697
\(260\) 0 0
\(261\) −1.00356e10 −0.133863
\(262\) 0 0
\(263\) −1.40705e10 −0.181346 −0.0906728 0.995881i \(-0.528902\pi\)
−0.0906728 + 0.995881i \(0.528902\pi\)
\(264\) 0 0
\(265\) 1.35975e11 1.69377
\(266\) 0 0
\(267\) −3.40038e8 −0.00409475
\(268\) 0 0
\(269\) 8.39143e10 0.977127 0.488563 0.872528i \(-0.337521\pi\)
0.488563 + 0.872528i \(0.337521\pi\)
\(270\) 0 0
\(271\) −1.98401e10 −0.223451 −0.111726 0.993739i \(-0.535638\pi\)
−0.111726 + 0.993739i \(0.535638\pi\)
\(272\) 0 0
\(273\) −1.25550e9 −0.0136800
\(274\) 0 0
\(275\) 1.57100e11 1.65645
\(276\) 0 0
\(277\) −7.17911e10 −0.732675 −0.366338 0.930482i \(-0.619389\pi\)
−0.366338 + 0.930482i \(0.619389\pi\)
\(278\) 0 0
\(279\) −6.79308e10 −0.671194
\(280\) 0 0
\(281\) 1.02853e11 0.984101 0.492050 0.870567i \(-0.336248\pi\)
0.492050 + 0.870567i \(0.336248\pi\)
\(282\) 0 0
\(283\) 5.52883e10 0.512382 0.256191 0.966626i \(-0.417532\pi\)
0.256191 + 0.966626i \(0.417532\pi\)
\(284\) 0 0
\(285\) −4.47453e10 −0.401741
\(286\) 0 0
\(287\) −3.18238e10 −0.276875
\(288\) 0 0
\(289\) −1.05017e11 −0.885562
\(290\) 0 0
\(291\) 5.16202e10 0.421989
\(292\) 0 0
\(293\) 1.05721e11 0.838028 0.419014 0.907980i \(-0.362376\pi\)
0.419014 + 0.907980i \(0.362376\pi\)
\(294\) 0 0
\(295\) −1.23097e10 −0.0946343
\(296\) 0 0
\(297\) 1.86633e11 1.39182
\(298\) 0 0
\(299\) 4.07637e9 0.0294953
\(300\) 0 0
\(301\) −7.14426e10 −0.501658
\(302\) 0 0
\(303\) 9.39374e10 0.640246
\(304\) 0 0
\(305\) 3.25214e11 2.15189
\(306\) 0 0
\(307\) 8.10064e10 0.520471 0.260236 0.965545i \(-0.416200\pi\)
0.260236 + 0.965545i \(0.416200\pi\)
\(308\) 0 0
\(309\) −2.48178e11 −1.54864
\(310\) 0 0
\(311\) 3.18435e11 1.93018 0.965091 0.261913i \(-0.0843534\pi\)
0.965091 + 0.261913i \(0.0843534\pi\)
\(312\) 0 0
\(313\) 1.28876e11 0.758965 0.379483 0.925199i \(-0.376102\pi\)
0.379483 + 0.925199i \(0.376102\pi\)
\(314\) 0 0
\(315\) −3.24046e10 −0.185443
\(316\) 0 0
\(317\) −7.44722e10 −0.414217 −0.207108 0.978318i \(-0.566405\pi\)
−0.207108 + 0.978318i \(0.566405\pi\)
\(318\) 0 0
\(319\) −1.28923e11 −0.697065
\(320\) 0 0
\(321\) −3.29874e10 −0.173411
\(322\) 0 0
\(323\) 1.65945e10 0.0848309
\(324\) 0 0
\(325\) −5.57319e9 −0.0277095
\(326\) 0 0
\(327\) 1.42816e11 0.690738
\(328\) 0 0
\(329\) −2.59234e10 −0.121986
\(330\) 0 0
\(331\) −2.83840e11 −1.29971 −0.649857 0.760057i \(-0.725171\pi\)
−0.649857 + 0.760057i \(0.725171\pi\)
\(332\) 0 0
\(333\) −6.09271e10 −0.271526
\(334\) 0 0
\(335\) 2.23505e11 0.969583
\(336\) 0 0
\(337\) −5.61414e9 −0.0237109 −0.0118555 0.999930i \(-0.503774\pi\)
−0.0118555 + 0.999930i \(0.503774\pi\)
\(338\) 0 0
\(339\) −2.49950e11 −1.02791
\(340\) 0 0
\(341\) −8.72679e11 −3.49510
\(342\) 0 0
\(343\) −1.38413e10 −0.0539949
\(344\) 0 0
\(345\) 4.00153e11 1.52069
\(346\) 0 0
\(347\) −3.39846e11 −1.25834 −0.629171 0.777267i \(-0.716606\pi\)
−0.629171 + 0.777267i \(0.716606\pi\)
\(348\) 0 0
\(349\) 3.46718e10 0.125101 0.0625506 0.998042i \(-0.480077\pi\)
0.0625506 + 0.998042i \(0.480077\pi\)
\(350\) 0 0
\(351\) −6.62089e9 −0.0232828
\(352\) 0 0
\(353\) −3.46900e11 −1.18910 −0.594550 0.804059i \(-0.702670\pi\)
−0.594550 + 0.804059i \(0.702670\pi\)
\(354\) 0 0
\(355\) −2.77748e11 −0.928160
\(356\) 0 0
\(357\) 4.57075e10 0.148929
\(358\) 0 0
\(359\) 2.51011e11 0.797569 0.398785 0.917045i \(-0.369432\pi\)
0.398785 + 0.917045i \(0.369432\pi\)
\(360\) 0 0
\(361\) −3.02396e11 −0.937116
\(362\) 0 0
\(363\) −9.44221e11 −2.85426
\(364\) 0 0
\(365\) 3.07848e11 0.907859
\(366\) 0 0
\(367\) −4.79871e11 −1.38079 −0.690394 0.723433i \(-0.742563\pi\)
−0.690394 + 0.723433i \(0.742563\pi\)
\(368\) 0 0
\(369\) 9.30632e10 0.261312
\(370\) 0 0
\(371\) −1.69847e11 −0.465451
\(372\) 0 0
\(373\) −1.84794e11 −0.494308 −0.247154 0.968976i \(-0.579495\pi\)
−0.247154 + 0.968976i \(0.579495\pi\)
\(374\) 0 0
\(375\) 6.64164e10 0.173434
\(376\) 0 0
\(377\) 4.57361e9 0.0116607
\(378\) 0 0
\(379\) 7.08908e11 1.76487 0.882437 0.470431i \(-0.155902\pi\)
0.882437 + 0.470431i \(0.155902\pi\)
\(380\) 0 0
\(381\) −1.42491e11 −0.346437
\(382\) 0 0
\(383\) −1.23789e11 −0.293959 −0.146980 0.989140i \(-0.546955\pi\)
−0.146980 + 0.989140i \(0.546955\pi\)
\(384\) 0 0
\(385\) −4.16288e11 −0.965653
\(386\) 0 0
\(387\) 2.08922e11 0.473461
\(388\) 0 0
\(389\) −2.97971e11 −0.659782 −0.329891 0.944019i \(-0.607012\pi\)
−0.329891 + 0.944019i \(0.607012\pi\)
\(390\) 0 0
\(391\) −1.48403e11 −0.321106
\(392\) 0 0
\(393\) 3.66708e11 0.775451
\(394\) 0 0
\(395\) 9.40570e11 1.94404
\(396\) 0 0
\(397\) 5.33426e11 1.07775 0.538873 0.842387i \(-0.318850\pi\)
0.538873 + 0.842387i \(0.318850\pi\)
\(398\) 0 0
\(399\) 5.58912e10 0.110399
\(400\) 0 0
\(401\) 4.15640e11 0.802726 0.401363 0.915919i \(-0.368537\pi\)
0.401363 + 0.915919i \(0.368537\pi\)
\(402\) 0 0
\(403\) 3.09587e10 0.0584669
\(404\) 0 0
\(405\) −9.15581e11 −1.69102
\(406\) 0 0
\(407\) −7.82704e11 −1.41391
\(408\) 0 0
\(409\) 1.07978e12 1.90801 0.954006 0.299788i \(-0.0969159\pi\)
0.954006 + 0.299788i \(0.0969159\pi\)
\(410\) 0 0
\(411\) −6.80035e11 −1.17556
\(412\) 0 0
\(413\) 1.53760e10 0.0260057
\(414\) 0 0
\(415\) 1.59847e11 0.264539
\(416\) 0 0
\(417\) −9.86015e11 −1.59688
\(418\) 0 0
\(419\) 2.20998e11 0.350289 0.175144 0.984543i \(-0.443961\pi\)
0.175144 + 0.984543i \(0.443961\pi\)
\(420\) 0 0
\(421\) 3.47478e11 0.539086 0.269543 0.962988i \(-0.413127\pi\)
0.269543 + 0.962988i \(0.413127\pi\)
\(422\) 0 0
\(423\) 7.58087e10 0.115130
\(424\) 0 0
\(425\) 2.02896e11 0.301664
\(426\) 0 0
\(427\) −4.06224e11 −0.591344
\(428\) 0 0
\(429\) 4.71662e10 0.0672316
\(430\) 0 0
\(431\) −1.23574e11 −0.172496 −0.0862479 0.996274i \(-0.527488\pi\)
−0.0862479 + 0.996274i \(0.527488\pi\)
\(432\) 0 0
\(433\) −7.27679e11 −0.994820 −0.497410 0.867516i \(-0.665716\pi\)
−0.497410 + 0.867516i \(0.665716\pi\)
\(434\) 0 0
\(435\) 4.48964e11 0.601188
\(436\) 0 0
\(437\) −1.81468e11 −0.238031
\(438\) 0 0
\(439\) 5.85966e11 0.752977 0.376489 0.926421i \(-0.377131\pi\)
0.376489 + 0.926421i \(0.377131\pi\)
\(440\) 0 0
\(441\) 4.04765e10 0.0509600
\(442\) 0 0
\(443\) 2.11546e11 0.260969 0.130484 0.991450i \(-0.458347\pi\)
0.130484 + 0.991450i \(0.458347\pi\)
\(444\) 0 0
\(445\) 3.99975e9 0.00483519
\(446\) 0 0
\(447\) 7.15480e11 0.847645
\(448\) 0 0
\(449\) −9.21048e11 −1.06948 −0.534741 0.845016i \(-0.679591\pi\)
−0.534741 + 0.845016i \(0.679591\pi\)
\(450\) 0 0
\(451\) 1.19554e12 1.36073
\(452\) 0 0
\(453\) −4.40181e11 −0.491122
\(454\) 0 0
\(455\) 1.47680e10 0.0161537
\(456\) 0 0
\(457\) 8.11185e11 0.869955 0.434977 0.900441i \(-0.356756\pi\)
0.434977 + 0.900441i \(0.356756\pi\)
\(458\) 0 0
\(459\) 2.41039e11 0.253472
\(460\) 0 0
\(461\) −1.90069e11 −0.196001 −0.0980004 0.995186i \(-0.531245\pi\)
−0.0980004 + 0.995186i \(0.531245\pi\)
\(462\) 0 0
\(463\) −4.76945e11 −0.482341 −0.241170 0.970483i \(-0.577531\pi\)
−0.241170 + 0.970483i \(0.577531\pi\)
\(464\) 0 0
\(465\) 3.03903e12 3.01437
\(466\) 0 0
\(467\) −1.06392e12 −1.03510 −0.517549 0.855653i \(-0.673156\pi\)
−0.517549 + 0.855653i \(0.673156\pi\)
\(468\) 0 0
\(469\) −2.79179e11 −0.266443
\(470\) 0 0
\(471\) 2.17413e11 0.203560
\(472\) 0 0
\(473\) 2.68393e12 2.46545
\(474\) 0 0
\(475\) 2.48102e11 0.223619
\(476\) 0 0
\(477\) 4.96687e11 0.439289
\(478\) 0 0
\(479\) 8.43415e11 0.732034 0.366017 0.930608i \(-0.380721\pi\)
0.366017 + 0.930608i \(0.380721\pi\)
\(480\) 0 0
\(481\) 2.77668e10 0.0236523
\(482\) 0 0
\(483\) −4.99829e11 −0.417888
\(484\) 0 0
\(485\) −6.07191e11 −0.498296
\(486\) 0 0
\(487\) −1.15202e12 −0.928065 −0.464032 0.885818i \(-0.653598\pi\)
−0.464032 + 0.885818i \(0.653598\pi\)
\(488\) 0 0
\(489\) −5.81910e11 −0.460220
\(490\) 0 0
\(491\) 9.68703e11 0.752184 0.376092 0.926582i \(-0.377268\pi\)
0.376092 + 0.926582i \(0.377268\pi\)
\(492\) 0 0
\(493\) −1.66506e11 −0.126946
\(494\) 0 0
\(495\) 1.21736e12 0.911375
\(496\) 0 0
\(497\) 3.46934e11 0.255060
\(498\) 0 0
\(499\) −2.62821e12 −1.89761 −0.948805 0.315863i \(-0.897706\pi\)
−0.948805 + 0.315863i \(0.897706\pi\)
\(500\) 0 0
\(501\) −1.70417e12 −1.20849
\(502\) 0 0
\(503\) −3.95070e11 −0.275181 −0.137590 0.990489i \(-0.543936\pi\)
−0.137590 + 0.990489i \(0.543936\pi\)
\(504\) 0 0
\(505\) −1.10495e12 −0.756019
\(506\) 0 0
\(507\) 1.73126e12 1.16366
\(508\) 0 0
\(509\) 6.64157e11 0.438572 0.219286 0.975661i \(-0.429627\pi\)
0.219286 + 0.975661i \(0.429627\pi\)
\(510\) 0 0
\(511\) −3.84532e11 −0.249482
\(512\) 0 0
\(513\) 2.94743e11 0.187895
\(514\) 0 0
\(515\) 2.91923e12 1.82867
\(516\) 0 0
\(517\) 9.73882e11 0.599513
\(518\) 0 0
\(519\) −3.34537e12 −2.02391
\(520\) 0 0
\(521\) 5.22766e11 0.310841 0.155420 0.987848i \(-0.450327\pi\)
0.155420 + 0.987848i \(0.450327\pi\)
\(522\) 0 0
\(523\) 3.09135e12 1.80672 0.903360 0.428882i \(-0.141093\pi\)
0.903360 + 0.428882i \(0.141093\pi\)
\(524\) 0 0
\(525\) 6.83364e11 0.392587
\(526\) 0 0
\(527\) −1.12708e12 −0.636510
\(528\) 0 0
\(529\) −1.78305e11 −0.0989947
\(530\) 0 0
\(531\) −4.49645e10 −0.0245440
\(532\) 0 0
\(533\) −4.24125e10 −0.0227626
\(534\) 0 0
\(535\) 3.88019e11 0.204768
\(536\) 0 0
\(537\) 8.93396e11 0.463617
\(538\) 0 0
\(539\) 5.19984e11 0.265363
\(540\) 0 0
\(541\) −1.47490e12 −0.740243 −0.370121 0.928983i \(-0.620684\pi\)
−0.370121 + 0.928983i \(0.620684\pi\)
\(542\) 0 0
\(543\) 3.45831e11 0.170712
\(544\) 0 0
\(545\) −1.67990e12 −0.815642
\(546\) 0 0
\(547\) −2.12294e12 −1.01390 −0.506949 0.861976i \(-0.669227\pi\)
−0.506949 + 0.861976i \(0.669227\pi\)
\(548\) 0 0
\(549\) 1.18793e12 0.558106
\(550\) 0 0
\(551\) −2.03604e11 −0.0941031
\(552\) 0 0
\(553\) −1.17486e12 −0.534225
\(554\) 0 0
\(555\) 2.72570e12 1.21944
\(556\) 0 0
\(557\) −3.52857e12 −1.55328 −0.776641 0.629943i \(-0.783078\pi\)
−0.776641 + 0.629943i \(0.783078\pi\)
\(558\) 0 0
\(559\) −9.52137e10 −0.0412426
\(560\) 0 0
\(561\) −1.71712e12 −0.731928
\(562\) 0 0
\(563\) 3.35280e12 1.40644 0.703218 0.710974i \(-0.251746\pi\)
0.703218 + 0.710974i \(0.251746\pi\)
\(564\) 0 0
\(565\) 2.94008e12 1.21378
\(566\) 0 0
\(567\) 1.14365e12 0.464696
\(568\) 0 0
\(569\) 2.99364e12 1.19727 0.598637 0.801020i \(-0.295709\pi\)
0.598637 + 0.801020i \(0.295709\pi\)
\(570\) 0 0
\(571\) −4.67267e12 −1.83951 −0.919756 0.392490i \(-0.871614\pi\)
−0.919756 + 0.392490i \(0.871614\pi\)
\(572\) 0 0
\(573\) 2.81761e12 1.09190
\(574\) 0 0
\(575\) −2.21875e12 −0.846453
\(576\) 0 0
\(577\) −3.62799e12 −1.36262 −0.681310 0.731995i \(-0.738589\pi\)
−0.681310 + 0.731995i \(0.738589\pi\)
\(578\) 0 0
\(579\) −3.30146e12 −1.22082
\(580\) 0 0
\(581\) −1.99665e11 −0.0726957
\(582\) 0 0
\(583\) 6.38073e12 2.28751
\(584\) 0 0
\(585\) −4.31866e10 −0.0152457
\(586\) 0 0
\(587\) −3.97200e12 −1.38082 −0.690411 0.723417i \(-0.742570\pi\)
−0.690411 + 0.723417i \(0.742570\pi\)
\(588\) 0 0
\(589\) −1.37819e12 −0.471835
\(590\) 0 0
\(591\) 3.63748e12 1.22647
\(592\) 0 0
\(593\) 2.67436e12 0.888123 0.444061 0.895996i \(-0.353537\pi\)
0.444061 + 0.895996i \(0.353537\pi\)
\(594\) 0 0
\(595\) −5.37641e11 −0.175860
\(596\) 0 0
\(597\) 2.78765e12 0.898162
\(598\) 0 0
\(599\) −4.84522e12 −1.53777 −0.768887 0.639384i \(-0.779189\pi\)
−0.768887 + 0.639384i \(0.779189\pi\)
\(600\) 0 0
\(601\) −4.64764e12 −1.45311 −0.726553 0.687110i \(-0.758879\pi\)
−0.726553 + 0.687110i \(0.758879\pi\)
\(602\) 0 0
\(603\) 8.16411e11 0.251467
\(604\) 0 0
\(605\) 1.11065e13 3.37039
\(606\) 0 0
\(607\) 6.52447e12 1.95073 0.975363 0.220604i \(-0.0708030\pi\)
0.975363 + 0.220604i \(0.0708030\pi\)
\(608\) 0 0
\(609\) −5.60800e11 −0.165208
\(610\) 0 0
\(611\) −3.45489e10 −0.0100288
\(612\) 0 0
\(613\) −9.54536e11 −0.273036 −0.136518 0.990638i \(-0.543591\pi\)
−0.136518 + 0.990638i \(0.543591\pi\)
\(614\) 0 0
\(615\) −4.16338e12 −1.17357
\(616\) 0 0
\(617\) −4.50764e12 −1.25218 −0.626088 0.779752i \(-0.715345\pi\)
−0.626088 + 0.779752i \(0.715345\pi\)
\(618\) 0 0
\(619\) −3.64346e12 −0.997484 −0.498742 0.866750i \(-0.666204\pi\)
−0.498742 + 0.866750i \(0.666204\pi\)
\(620\) 0 0
\(621\) −2.63585e12 −0.711228
\(622\) 0 0
\(623\) −4.99608e9 −0.00132872
\(624\) 0 0
\(625\) −4.18296e12 −1.09654
\(626\) 0 0
\(627\) −2.09970e12 −0.542567
\(628\) 0 0
\(629\) −1.01087e12 −0.257495
\(630\) 0 0
\(631\) −3.61498e12 −0.907766 −0.453883 0.891061i \(-0.649962\pi\)
−0.453883 + 0.891061i \(0.649962\pi\)
\(632\) 0 0
\(633\) −5.22718e12 −1.29405
\(634\) 0 0
\(635\) 1.67607e12 0.409081
\(636\) 0 0
\(637\) −1.84467e10 −0.00443906
\(638\) 0 0
\(639\) −1.01455e12 −0.240724
\(640\) 0 0
\(641\) −2.66304e12 −0.623041 −0.311521 0.950239i \(-0.600838\pi\)
−0.311521 + 0.950239i \(0.600838\pi\)
\(642\) 0 0
\(643\) −4.09899e12 −0.945644 −0.472822 0.881158i \(-0.656765\pi\)
−0.472822 + 0.881158i \(0.656765\pi\)
\(644\) 0 0
\(645\) −9.34656e12 −2.12634
\(646\) 0 0
\(647\) −6.11325e12 −1.37152 −0.685761 0.727827i \(-0.740531\pi\)
−0.685761 + 0.727827i \(0.740531\pi\)
\(648\) 0 0
\(649\) −5.77640e11 −0.127807
\(650\) 0 0
\(651\) −3.79604e12 −0.828356
\(652\) 0 0
\(653\) 7.66270e12 1.64920 0.824598 0.565719i \(-0.191401\pi\)
0.824598 + 0.565719i \(0.191401\pi\)
\(654\) 0 0
\(655\) −4.31346e12 −0.915673
\(656\) 0 0
\(657\) 1.12450e12 0.235459
\(658\) 0 0
\(659\) 8.20110e9 0.00169390 0.000846950 1.00000i \(-0.499730\pi\)
0.000846950 1.00000i \(0.499730\pi\)
\(660\) 0 0
\(661\) 3.20922e12 0.653872 0.326936 0.945046i \(-0.393984\pi\)
0.326936 + 0.945046i \(0.393984\pi\)
\(662\) 0 0
\(663\) 6.09158e10 0.0122439
\(664\) 0 0
\(665\) −6.57429e11 −0.130362
\(666\) 0 0
\(667\) 1.82081e12 0.356203
\(668\) 0 0
\(669\) −3.77433e12 −0.728488
\(670\) 0 0
\(671\) 1.52609e13 2.90622
\(672\) 0 0
\(673\) −4.91229e12 −0.923031 −0.461515 0.887132i \(-0.652694\pi\)
−0.461515 + 0.887132i \(0.652694\pi\)
\(674\) 0 0
\(675\) 3.60372e12 0.668166
\(676\) 0 0
\(677\) −3.11910e12 −0.570664 −0.285332 0.958429i \(-0.592104\pi\)
−0.285332 + 0.958429i \(0.592104\pi\)
\(678\) 0 0
\(679\) 7.58440e11 0.136933
\(680\) 0 0
\(681\) −3.77315e12 −0.672267
\(682\) 0 0
\(683\) −2.91806e12 −0.513099 −0.256550 0.966531i \(-0.582586\pi\)
−0.256550 + 0.966531i \(0.582586\pi\)
\(684\) 0 0
\(685\) 7.99902e12 1.38813
\(686\) 0 0
\(687\) −6.95322e12 −1.19092
\(688\) 0 0
\(689\) −2.26360e11 −0.0382660
\(690\) 0 0
\(691\) −4.74697e12 −0.792073 −0.396037 0.918235i \(-0.629615\pi\)
−0.396037 + 0.918235i \(0.629615\pi\)
\(692\) 0 0
\(693\) −1.52061e12 −0.250448
\(694\) 0 0
\(695\) 1.15982e13 1.88563
\(696\) 0 0
\(697\) 1.54406e12 0.247809
\(698\) 0 0
\(699\) 2.07013e12 0.327981
\(700\) 0 0
\(701\) −2.24423e11 −0.0351023 −0.0175512 0.999846i \(-0.505587\pi\)
−0.0175512 + 0.999846i \(0.505587\pi\)
\(702\) 0 0
\(703\) −1.23610e12 −0.190877
\(704\) 0 0
\(705\) −3.39146e12 −0.517054
\(706\) 0 0
\(707\) 1.38019e12 0.207755
\(708\) 0 0
\(709\) 4.25463e12 0.632344 0.316172 0.948702i \(-0.397602\pi\)
0.316172 + 0.948702i \(0.397602\pi\)
\(710\) 0 0
\(711\) 3.43569e12 0.504197
\(712\) 0 0
\(713\) 1.23250e13 1.78601
\(714\) 0 0
\(715\) −5.54800e11 −0.0793888
\(716\) 0 0
\(717\) 1.04238e13 1.47296
\(718\) 0 0
\(719\) 4.28931e12 0.598559 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(720\) 0 0
\(721\) −3.64640e12 −0.502523
\(722\) 0 0
\(723\) 4.76524e12 0.648578
\(724\) 0 0
\(725\) −2.48940e12 −0.334637
\(726\) 0 0
\(727\) −1.28935e13 −1.71185 −0.855926 0.517098i \(-0.827012\pi\)
−0.855926 + 0.517098i \(0.827012\pi\)
\(728\) 0 0
\(729\) 3.31084e12 0.434174
\(730\) 0 0
\(731\) 3.46633e12 0.448995
\(732\) 0 0
\(733\) 2.71447e12 0.347310 0.173655 0.984807i \(-0.444442\pi\)
0.173655 + 0.984807i \(0.444442\pi\)
\(734\) 0 0
\(735\) −1.81080e12 −0.228864
\(736\) 0 0
\(737\) 1.04881e13 1.30946
\(738\) 0 0
\(739\) 9.62579e12 1.18723 0.593617 0.804747i \(-0.297699\pi\)
0.593617 + 0.804747i \(0.297699\pi\)
\(740\) 0 0
\(741\) 7.44880e10 0.00907620
\(742\) 0 0
\(743\) 1.24362e13 1.49706 0.748529 0.663103i \(-0.230761\pi\)
0.748529 + 0.663103i \(0.230761\pi\)
\(744\) 0 0
\(745\) −8.41595e12 −1.00092
\(746\) 0 0
\(747\) 5.83886e11 0.0686097
\(748\) 0 0
\(749\) −4.84674e11 −0.0562706
\(750\) 0 0
\(751\) −4.26959e12 −0.489786 −0.244893 0.969550i \(-0.578753\pi\)
−0.244893 + 0.969550i \(0.578753\pi\)
\(752\) 0 0
\(753\) 1.02778e13 1.16499
\(754\) 0 0
\(755\) 5.17770e12 0.579930
\(756\) 0 0
\(757\) 9.76840e12 1.08116 0.540582 0.841291i \(-0.318204\pi\)
0.540582 + 0.841291i \(0.318204\pi\)
\(758\) 0 0
\(759\) 1.87774e13 2.05375
\(760\) 0 0
\(761\) 1.23336e13 1.33309 0.666543 0.745466i \(-0.267773\pi\)
0.666543 + 0.745466i \(0.267773\pi\)
\(762\) 0 0
\(763\) 2.09836e12 0.224140
\(764\) 0 0
\(765\) 1.57224e12 0.165975
\(766\) 0 0
\(767\) 2.04921e10 0.00213800
\(768\) 0 0
\(769\) −1.68919e13 −1.74185 −0.870926 0.491415i \(-0.836480\pi\)
−0.870926 + 0.491415i \(0.836480\pi\)
\(770\) 0 0
\(771\) −1.87078e13 −1.90668
\(772\) 0 0
\(773\) 1.47186e13 1.48272 0.741359 0.671109i \(-0.234182\pi\)
0.741359 + 0.671109i \(0.234182\pi\)
\(774\) 0 0
\(775\) −1.68507e13 −1.67788
\(776\) 0 0
\(777\) −3.40467e12 −0.335104
\(778\) 0 0
\(779\) 1.88808e12 0.183697
\(780\) 0 0
\(781\) −1.30335e13 −1.25352
\(782\) 0 0
\(783\) −2.95738e12 −0.281177
\(784\) 0 0
\(785\) −2.55736e12 −0.240369
\(786\) 0 0
\(787\) 1.82466e13 1.69549 0.847744 0.530406i \(-0.177960\pi\)
0.847744 + 0.530406i \(0.177960\pi\)
\(788\) 0 0
\(789\) 2.29932e12 0.211228
\(790\) 0 0
\(791\) −3.67245e12 −0.333550
\(792\) 0 0
\(793\) −5.41388e11 −0.0486160
\(794\) 0 0
\(795\) −2.22204e13 −1.97287
\(796\) 0 0
\(797\) −1.21558e13 −1.06714 −0.533568 0.845757i \(-0.679149\pi\)
−0.533568 + 0.845757i \(0.679149\pi\)
\(798\) 0 0
\(799\) 1.25778e12 0.109180
\(800\) 0 0
\(801\) 1.46102e10 0.00125403
\(802\) 0 0
\(803\) 1.44460e13 1.22610
\(804\) 0 0
\(805\) 5.87932e12 0.493453
\(806\) 0 0
\(807\) −1.37128e13 −1.13814
\(808\) 0 0
\(809\) −2.61893e12 −0.214959 −0.107479 0.994207i \(-0.534278\pi\)
−0.107479 + 0.994207i \(0.534278\pi\)
\(810\) 0 0
\(811\) −1.16994e13 −0.949662 −0.474831 0.880077i \(-0.657491\pi\)
−0.474831 + 0.880077i \(0.657491\pi\)
\(812\) 0 0
\(813\) 3.24217e12 0.260272
\(814\) 0 0
\(815\) 6.84480e12 0.543440
\(816\) 0 0
\(817\) 4.23863e12 0.332833
\(818\) 0 0
\(819\) 5.39443e10 0.00418955
\(820\) 0 0
\(821\) 5.17673e12 0.397659 0.198830 0.980034i \(-0.436286\pi\)
0.198830 + 0.980034i \(0.436286\pi\)
\(822\) 0 0
\(823\) 7.84017e12 0.595698 0.297849 0.954613i \(-0.403731\pi\)
0.297849 + 0.954613i \(0.403731\pi\)
\(824\) 0 0
\(825\) −2.56724e13 −1.92941
\(826\) 0 0
\(827\) 1.43263e13 1.06502 0.532512 0.846422i \(-0.321248\pi\)
0.532512 + 0.846422i \(0.321248\pi\)
\(828\) 0 0
\(829\) 4.95546e12 0.364408 0.182204 0.983261i \(-0.441677\pi\)
0.182204 + 0.983261i \(0.441677\pi\)
\(830\) 0 0
\(831\) 1.17317e13 0.853408
\(832\) 0 0
\(833\) 6.71566e11 0.0483266
\(834\) 0 0
\(835\) 2.00456e13 1.42702
\(836\) 0 0
\(837\) −2.00185e13 −1.40983
\(838\) 0 0
\(839\) −7.38235e12 −0.514358 −0.257179 0.966364i \(-0.582793\pi\)
−0.257179 + 0.966364i \(0.582793\pi\)
\(840\) 0 0
\(841\) −1.24642e13 −0.859179
\(842\) 0 0
\(843\) −1.68077e13 −1.14626
\(844\) 0 0
\(845\) −2.03642e13 −1.37408
\(846\) 0 0
\(847\) −1.38732e13 −0.926189
\(848\) 0 0
\(849\) −9.03491e12 −0.596814
\(850\) 0 0
\(851\) 1.10543e13 0.722516
\(852\) 0 0
\(853\) 2.13356e13 1.37985 0.689927 0.723879i \(-0.257643\pi\)
0.689927 + 0.723879i \(0.257643\pi\)
\(854\) 0 0
\(855\) 1.92254e12 0.123035
\(856\) 0 0
\(857\) 1.65008e13 1.04494 0.522468 0.852659i \(-0.325011\pi\)
0.522468 + 0.852659i \(0.325011\pi\)
\(858\) 0 0
\(859\) 1.94817e13 1.22083 0.610417 0.792080i \(-0.291002\pi\)
0.610417 + 0.792080i \(0.291002\pi\)
\(860\) 0 0
\(861\) 5.20047e12 0.322499
\(862\) 0 0
\(863\) −1.61059e13 −0.988411 −0.494205 0.869345i \(-0.664541\pi\)
−0.494205 + 0.869345i \(0.664541\pi\)
\(864\) 0 0
\(865\) 3.93504e13 2.38989
\(866\) 0 0
\(867\) 1.71613e13 1.03149
\(868\) 0 0
\(869\) 4.41368e13 2.62550
\(870\) 0 0
\(871\) −3.72070e11 −0.0219050
\(872\) 0 0
\(873\) −2.21793e12 −0.129236
\(874\) 0 0
\(875\) 9.75836e11 0.0562782
\(876\) 0 0
\(877\) −1.84919e13 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(878\) 0 0
\(879\) −1.72764e13 −0.976121
\(880\) 0 0
\(881\) −2.83078e13 −1.58312 −0.791562 0.611089i \(-0.790732\pi\)
−0.791562 + 0.611089i \(0.790732\pi\)
\(882\) 0 0
\(883\) 7.32328e12 0.405399 0.202700 0.979241i \(-0.435029\pi\)
0.202700 + 0.979241i \(0.435029\pi\)
\(884\) 0 0
\(885\) 2.01158e12 0.110228
\(886\) 0 0
\(887\) −1.51372e13 −0.821087 −0.410544 0.911841i \(-0.634661\pi\)
−0.410544 + 0.911841i \(0.634661\pi\)
\(888\) 0 0
\(889\) −2.09357e12 −0.112416
\(890\) 0 0
\(891\) −4.29642e13 −2.28380
\(892\) 0 0
\(893\) 1.53802e12 0.0809337
\(894\) 0 0
\(895\) −1.05087e13 −0.547451
\(896\) 0 0
\(897\) −6.66138e11 −0.0343556
\(898\) 0 0
\(899\) 1.38285e13 0.706082
\(900\) 0 0
\(901\) 8.24080e12 0.416589
\(902\) 0 0
\(903\) 1.16748e13 0.584323
\(904\) 0 0
\(905\) −4.06789e12 −0.201582
\(906\) 0 0
\(907\) 2.24337e13 1.10070 0.550349 0.834935i \(-0.314495\pi\)
0.550349 + 0.834935i \(0.314495\pi\)
\(908\) 0 0
\(909\) −4.03614e12 −0.196078
\(910\) 0 0
\(911\) 6.34178e12 0.305055 0.152528 0.988299i \(-0.451259\pi\)
0.152528 + 0.988299i \(0.451259\pi\)
\(912\) 0 0
\(913\) 7.50094e12 0.357270
\(914\) 0 0
\(915\) −5.31448e13 −2.50649
\(916\) 0 0
\(917\) 5.38793e12 0.251629
\(918\) 0 0
\(919\) −9.04471e12 −0.418288 −0.209144 0.977885i \(-0.567068\pi\)
−0.209144 + 0.977885i \(0.567068\pi\)
\(920\) 0 0
\(921\) −1.32376e13 −0.606236
\(922\) 0 0
\(923\) 4.62369e11 0.0209692
\(924\) 0 0
\(925\) −1.51134e13 −0.678771
\(926\) 0 0
\(927\) 1.06633e13 0.474277
\(928\) 0 0
\(929\) 8.50641e12 0.374693 0.187346 0.982294i \(-0.440011\pi\)
0.187346 + 0.982294i \(0.440011\pi\)
\(930\) 0 0
\(931\) 8.21193e11 0.0358238
\(932\) 0 0
\(933\) −5.20368e13 −2.24824
\(934\) 0 0
\(935\) 2.01979e13 0.864280
\(936\) 0 0
\(937\) −3.00276e13 −1.27260 −0.636300 0.771442i \(-0.719536\pi\)
−0.636300 + 0.771442i \(0.719536\pi\)
\(938\) 0 0
\(939\) −2.10602e13 −0.884030
\(940\) 0 0
\(941\) −3.15982e13 −1.31374 −0.656870 0.754004i \(-0.728120\pi\)
−0.656870 + 0.754004i \(0.728120\pi\)
\(942\) 0 0
\(943\) −1.68849e13 −0.695338
\(944\) 0 0
\(945\) −9.54927e12 −0.389518
\(946\) 0 0
\(947\) 8.84885e12 0.357529 0.178765 0.983892i \(-0.442790\pi\)
0.178765 + 0.983892i \(0.442790\pi\)
\(948\) 0 0
\(949\) −5.12477e11 −0.0205105
\(950\) 0 0
\(951\) 1.21698e13 0.482473
\(952\) 0 0
\(953\) −4.90260e12 −0.192534 −0.0962672 0.995356i \(-0.530690\pi\)
−0.0962672 + 0.995356i \(0.530690\pi\)
\(954\) 0 0
\(955\) −3.31425e13 −1.28935
\(956\) 0 0
\(957\) 2.10679e13 0.811929
\(958\) 0 0
\(959\) −9.99155e12 −0.381460
\(960\) 0 0
\(961\) 6.71649e13 2.54031
\(962\) 0 0
\(963\) 1.41735e12 0.0531077
\(964\) 0 0
\(965\) 3.88339e13 1.44158
\(966\) 0 0
\(967\) −1.55633e13 −0.572378 −0.286189 0.958173i \(-0.592388\pi\)
−0.286189 + 0.958173i \(0.592388\pi\)
\(968\) 0 0
\(969\) −2.71179e12 −0.0988096
\(970\) 0 0
\(971\) 2.49197e13 0.899613 0.449806 0.893126i \(-0.351493\pi\)
0.449806 + 0.893126i \(0.351493\pi\)
\(972\) 0 0
\(973\) −1.44872e13 −0.518176
\(974\) 0 0
\(975\) 9.10740e11 0.0322756
\(976\) 0 0
\(977\) 4.47898e12 0.157273 0.0786364 0.996903i \(-0.474943\pi\)
0.0786364 + 0.996903i \(0.474943\pi\)
\(978\) 0 0
\(979\) 1.87691e11 0.00653012
\(980\) 0 0
\(981\) −6.13629e12 −0.211542
\(982\) 0 0
\(983\) 1.43233e13 0.489275 0.244637 0.969615i \(-0.421331\pi\)
0.244637 + 0.969615i \(0.421331\pi\)
\(984\) 0 0
\(985\) −4.27865e13 −1.44825
\(986\) 0 0
\(987\) 4.23626e12 0.142088
\(988\) 0 0
\(989\) −3.79057e13 −1.25986
\(990\) 0 0
\(991\) 2.28575e13 0.752829 0.376415 0.926451i \(-0.377157\pi\)
0.376415 + 0.926451i \(0.377157\pi\)
\(992\) 0 0
\(993\) 4.63836e13 1.51388
\(994\) 0 0
\(995\) −3.27902e13 −1.06057
\(996\) 0 0
\(997\) −2.67132e13 −0.856243 −0.428121 0.903721i \(-0.640824\pi\)
−0.428121 + 0.903721i \(0.640824\pi\)
\(998\) 0 0
\(999\) −1.79545e13 −0.570334
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.a.h.1.1 3
4.3 odd 2 7.10.a.b.1.2 3
12.11 even 2 63.10.a.e.1.2 3
20.3 even 4 175.10.b.d.99.3 6
20.7 even 4 175.10.b.d.99.4 6
20.19 odd 2 175.10.a.d.1.2 3
28.3 even 6 49.10.c.e.30.2 6
28.11 odd 6 49.10.c.d.30.2 6
28.19 even 6 49.10.c.e.18.2 6
28.23 odd 6 49.10.c.d.18.2 6
28.27 even 2 49.10.a.c.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.10.a.b.1.2 3 4.3 odd 2
49.10.a.c.1.2 3 28.27 even 2
49.10.c.d.18.2 6 28.23 odd 6
49.10.c.d.30.2 6 28.11 odd 6
49.10.c.e.18.2 6 28.19 even 6
49.10.c.e.30.2 6 28.3 even 6
63.10.a.e.1.2 3 12.11 even 2
112.10.a.h.1.1 3 1.1 even 1 trivial
175.10.a.d.1.2 3 20.19 odd 2
175.10.b.d.99.3 6 20.3 even 4
175.10.b.d.99.4 6 20.7 even 4