Properties

Label 112.10.a.a.1.1
Level $112$
Weight $10$
Character 112.1
Self dual yes
Analytic conductor $57.684$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 10, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-170,0,544] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6840136504\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-170.000 q^{3} +544.000 q^{5} +2401.00 q^{7} +9217.00 q^{9} -48824.0 q^{11} -15876.0 q^{13} -92480.0 q^{15} -21418.0 q^{17} +716410. q^{19} -408170. q^{21} +2.47000e6 q^{23} -1.65719e6 q^{25} +1.77922e6 q^{27} +5.55683e6 q^{29} -5.79935e6 q^{31} +8.30008e6 q^{33} +1.30614e6 q^{35} -3.89443e6 q^{37} +2.69892e6 q^{39} -6.36086e6 q^{41} +1.87013e7 q^{43} +5.01405e6 q^{45} -5.65391e7 q^{47} +5.76480e6 q^{49} +3.64106e6 q^{51} -5.98947e7 q^{53} -2.65603e7 q^{55} -1.21790e8 q^{57} -1.65630e8 q^{59} +5.14190e7 q^{61} +2.21300e7 q^{63} -8.63654e6 q^{65} -9.35465e7 q^{67} -4.19900e8 q^{69} +9.56335e7 q^{71} +3.06496e8 q^{73} +2.81722e8 q^{75} -1.17226e8 q^{77} -4.96474e8 q^{79} -4.83886e8 q^{81} +3.71487e8 q^{83} -1.16514e7 q^{85} -9.44660e8 q^{87} -1.65483e8 q^{89} -3.81183e7 q^{91} +9.85889e8 q^{93} +3.89727e8 q^{95} +7.58017e8 q^{97} -4.50011e8 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −170.000 −1.21172 −0.605861 0.795570i \(-0.707171\pi\)
−0.605861 + 0.795570i \(0.707171\pi\)
\(4\) 0 0
\(5\) 544.000 0.389255 0.194627 0.980877i \(-0.437650\pi\)
0.194627 + 0.980877i \(0.437650\pi\)
\(6\) 0 0
\(7\) 2401.00 0.377964
\(8\) 0 0
\(9\) 9217.00 0.468272
\(10\) 0 0
\(11\) −48824.0 −1.00546 −0.502732 0.864442i \(-0.667672\pi\)
−0.502732 + 0.864442i \(0.667672\pi\)
\(12\) 0 0
\(13\) −15876.0 −0.154169 −0.0770843 0.997025i \(-0.524561\pi\)
−0.0770843 + 0.997025i \(0.524561\pi\)
\(14\) 0 0
\(15\) −92480.0 −0.471669
\(16\) 0 0
\(17\) −21418.0 −0.0621955 −0.0310977 0.999516i \(-0.509900\pi\)
−0.0310977 + 0.999516i \(0.509900\pi\)
\(18\) 0 0
\(19\) 716410. 1.26116 0.630580 0.776124i \(-0.282817\pi\)
0.630580 + 0.776124i \(0.282817\pi\)
\(20\) 0 0
\(21\) −408170. −0.457988
\(22\) 0 0
\(23\) 2.47000e6 1.84044 0.920220 0.391401i \(-0.128010\pi\)
0.920220 + 0.391401i \(0.128010\pi\)
\(24\) 0 0
\(25\) −1.65719e6 −0.848481
\(26\) 0 0
\(27\) 1.77922e6 0.644307
\(28\) 0 0
\(29\) 5.55683e6 1.45893 0.729467 0.684016i \(-0.239768\pi\)
0.729467 + 0.684016i \(0.239768\pi\)
\(30\) 0 0
\(31\) −5.79935e6 −1.12785 −0.563925 0.825826i \(-0.690709\pi\)
−0.563925 + 0.825826i \(0.690709\pi\)
\(32\) 0 0
\(33\) 8.30008e6 1.21834
\(34\) 0 0
\(35\) 1.30614e6 0.147124
\(36\) 0 0
\(37\) −3.89443e6 −0.341614 −0.170807 0.985304i \(-0.554638\pi\)
−0.170807 + 0.985304i \(0.554638\pi\)
\(38\) 0 0
\(39\) 2.69892e6 0.186810
\(40\) 0 0
\(41\) −6.36086e6 −0.351551 −0.175776 0.984430i \(-0.556243\pi\)
−0.175776 + 0.984430i \(0.556243\pi\)
\(42\) 0 0
\(43\) 1.87013e7 0.834187 0.417094 0.908863i \(-0.363049\pi\)
0.417094 + 0.908863i \(0.363049\pi\)
\(44\) 0 0
\(45\) 5.01405e6 0.182277
\(46\) 0 0
\(47\) −5.65391e7 −1.69008 −0.845042 0.534700i \(-0.820425\pi\)
−0.845042 + 0.534700i \(0.820425\pi\)
\(48\) 0 0
\(49\) 5.76480e6 0.142857
\(50\) 0 0
\(51\) 3.64106e6 0.0753637
\(52\) 0 0
\(53\) −5.98947e7 −1.04267 −0.521335 0.853352i \(-0.674566\pi\)
−0.521335 + 0.853352i \(0.674566\pi\)
\(54\) 0 0
\(55\) −2.65603e7 −0.391381
\(56\) 0 0
\(57\) −1.21790e8 −1.52818
\(58\) 0 0
\(59\) −1.65630e8 −1.77952 −0.889762 0.456424i \(-0.849130\pi\)
−0.889762 + 0.456424i \(0.849130\pi\)
\(60\) 0 0
\(61\) 5.14190e7 0.475488 0.237744 0.971328i \(-0.423592\pi\)
0.237744 + 0.971328i \(0.423592\pi\)
\(62\) 0 0
\(63\) 2.21300e7 0.176990
\(64\) 0 0
\(65\) −8.63654e6 −0.0600109
\(66\) 0 0
\(67\) −9.35465e7 −0.567141 −0.283570 0.958951i \(-0.591519\pi\)
−0.283570 + 0.958951i \(0.591519\pi\)
\(68\) 0 0
\(69\) −4.19900e8 −2.23010
\(70\) 0 0
\(71\) 9.56335e7 0.446630 0.223315 0.974746i \(-0.428312\pi\)
0.223315 + 0.974746i \(0.428312\pi\)
\(72\) 0 0
\(73\) 3.06496e8 1.26320 0.631601 0.775294i \(-0.282398\pi\)
0.631601 + 0.775294i \(0.282398\pi\)
\(74\) 0 0
\(75\) 2.81722e8 1.02812
\(76\) 0 0
\(77\) −1.17226e8 −0.380029
\(78\) 0 0
\(79\) −4.96474e8 −1.43408 −0.717042 0.697030i \(-0.754505\pi\)
−0.717042 + 0.697030i \(0.754505\pi\)
\(80\) 0 0
\(81\) −4.83886e8 −1.24899
\(82\) 0 0
\(83\) 3.71487e8 0.859196 0.429598 0.903020i \(-0.358655\pi\)
0.429598 + 0.903020i \(0.358655\pi\)
\(84\) 0 0
\(85\) −1.16514e7 −0.0242099
\(86\) 0 0
\(87\) −9.44660e8 −1.76782
\(88\) 0 0
\(89\) −1.65483e8 −0.279574 −0.139787 0.990182i \(-0.544642\pi\)
−0.139787 + 0.990182i \(0.544642\pi\)
\(90\) 0 0
\(91\) −3.81183e7 −0.0582703
\(92\) 0 0
\(93\) 9.85889e8 1.36664
\(94\) 0 0
\(95\) 3.89727e8 0.490913
\(96\) 0 0
\(97\) 7.58017e8 0.869373 0.434686 0.900582i \(-0.356859\pi\)
0.434686 + 0.900582i \(0.356859\pi\)
\(98\) 0 0
\(99\) −4.50011e8 −0.470830
\(100\) 0 0
\(101\) −9.04212e8 −0.864618 −0.432309 0.901726i \(-0.642301\pi\)
−0.432309 + 0.901726i \(0.642301\pi\)
\(102\) 0 0
\(103\) −1.98157e9 −1.73477 −0.867384 0.497639i \(-0.834200\pi\)
−0.867384 + 0.497639i \(0.834200\pi\)
\(104\) 0 0
\(105\) −2.22044e8 −0.178274
\(106\) 0 0
\(107\) −4.16379e8 −0.307087 −0.153544 0.988142i \(-0.549069\pi\)
−0.153544 + 0.988142i \(0.549069\pi\)
\(108\) 0 0
\(109\) −1.26921e9 −0.861220 −0.430610 0.902538i \(-0.641701\pi\)
−0.430610 + 0.902538i \(0.641701\pi\)
\(110\) 0 0
\(111\) 6.62053e8 0.413942
\(112\) 0 0
\(113\) −2.83528e9 −1.63585 −0.817923 0.575328i \(-0.804874\pi\)
−0.817923 + 0.575328i \(0.804874\pi\)
\(114\) 0 0
\(115\) 1.34368e9 0.716400
\(116\) 0 0
\(117\) −1.46329e8 −0.0721929
\(118\) 0 0
\(119\) −5.14246e7 −0.0235077
\(120\) 0 0
\(121\) 2.58353e7 0.0109567
\(122\) 0 0
\(123\) 1.08135e9 0.425982
\(124\) 0 0
\(125\) −1.96401e9 −0.719530
\(126\) 0 0
\(127\) −5.44282e9 −1.85655 −0.928277 0.371889i \(-0.878710\pi\)
−0.928277 + 0.371889i \(0.878710\pi\)
\(128\) 0 0
\(129\) −3.17922e9 −1.01080
\(130\) 0 0
\(131\) 6.44057e8 0.191075 0.0955374 0.995426i \(-0.469543\pi\)
0.0955374 + 0.995426i \(0.469543\pi\)
\(132\) 0 0
\(133\) 1.72010e9 0.476674
\(134\) 0 0
\(135\) 9.67896e8 0.250799
\(136\) 0 0
\(137\) 1.67376e9 0.405928 0.202964 0.979186i \(-0.434942\pi\)
0.202964 + 0.979186i \(0.434942\pi\)
\(138\) 0 0
\(139\) 4.17330e9 0.948229 0.474115 0.880463i \(-0.342768\pi\)
0.474115 + 0.880463i \(0.342768\pi\)
\(140\) 0 0
\(141\) 9.61164e9 2.04791
\(142\) 0 0
\(143\) 7.75130e8 0.155011
\(144\) 0 0
\(145\) 3.02291e9 0.567897
\(146\) 0 0
\(147\) −9.80016e8 −0.173103
\(148\) 0 0
\(149\) −4.64096e8 −0.0771382 −0.0385691 0.999256i \(-0.512280\pi\)
−0.0385691 + 0.999256i \(0.512280\pi\)
\(150\) 0 0
\(151\) −7.31929e9 −1.14571 −0.572853 0.819658i \(-0.694163\pi\)
−0.572853 + 0.819658i \(0.694163\pi\)
\(152\) 0 0
\(153\) −1.97410e8 −0.0291244
\(154\) 0 0
\(155\) −3.15485e9 −0.439021
\(156\) 0 0
\(157\) −4.43050e9 −0.581975 −0.290987 0.956727i \(-0.593984\pi\)
−0.290987 + 0.956727i \(0.593984\pi\)
\(158\) 0 0
\(159\) 1.01821e10 1.26343
\(160\) 0 0
\(161\) 5.93047e9 0.695621
\(162\) 0 0
\(163\) 1.33645e10 1.48289 0.741446 0.671013i \(-0.234140\pi\)
0.741446 + 0.671013i \(0.234140\pi\)
\(164\) 0 0
\(165\) 4.51524e9 0.474246
\(166\) 0 0
\(167\) 1.24456e10 1.23821 0.619103 0.785310i \(-0.287496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(168\) 0 0
\(169\) −1.03525e10 −0.976232
\(170\) 0 0
\(171\) 6.60315e9 0.590566
\(172\) 0 0
\(173\) 1.04544e10 0.887345 0.443672 0.896189i \(-0.353675\pi\)
0.443672 + 0.896189i \(0.353675\pi\)
\(174\) 0 0
\(175\) −3.97891e9 −0.320696
\(176\) 0 0
\(177\) 2.81570e10 2.15629
\(178\) 0 0
\(179\) 4.04391e9 0.294417 0.147208 0.989105i \(-0.452971\pi\)
0.147208 + 0.989105i \(0.452971\pi\)
\(180\) 0 0
\(181\) 1.24735e10 0.863843 0.431922 0.901911i \(-0.357836\pi\)
0.431922 + 0.901911i \(0.357836\pi\)
\(182\) 0 0
\(183\) −8.74123e9 −0.576160
\(184\) 0 0
\(185\) −2.11857e9 −0.132975
\(186\) 0 0
\(187\) 1.04571e9 0.0625353
\(188\) 0 0
\(189\) 4.27191e9 0.243525
\(190\) 0 0
\(191\) 3.81947e9 0.207660 0.103830 0.994595i \(-0.466890\pi\)
0.103830 + 0.994595i \(0.466890\pi\)
\(192\) 0 0
\(193\) −2.41193e10 −1.25129 −0.625644 0.780109i \(-0.715164\pi\)
−0.625644 + 0.780109i \(0.715164\pi\)
\(194\) 0 0
\(195\) 1.46821e9 0.0727165
\(196\) 0 0
\(197\) −1.24798e10 −0.590351 −0.295176 0.955443i \(-0.595378\pi\)
−0.295176 + 0.955443i \(0.595378\pi\)
\(198\) 0 0
\(199\) 2.93127e9 0.132500 0.0662502 0.997803i \(-0.478896\pi\)
0.0662502 + 0.997803i \(0.478896\pi\)
\(200\) 0 0
\(201\) 1.59029e10 0.687218
\(202\) 0 0
\(203\) 1.33419e10 0.551425
\(204\) 0 0
\(205\) −3.46031e9 −0.136843
\(206\) 0 0
\(207\) 2.27660e10 0.861827
\(208\) 0 0
\(209\) −3.49780e10 −1.26805
\(210\) 0 0
\(211\) −3.36978e10 −1.17039 −0.585195 0.810892i \(-0.698982\pi\)
−0.585195 + 0.810892i \(0.698982\pi\)
\(212\) 0 0
\(213\) −1.62577e10 −0.541191
\(214\) 0 0
\(215\) 1.01735e10 0.324711
\(216\) 0 0
\(217\) −1.39242e10 −0.426287
\(218\) 0 0
\(219\) −5.21044e10 −1.53065
\(220\) 0 0
\(221\) 3.40032e8 0.00958859
\(222\) 0 0
\(223\) 3.87208e10 1.04851 0.524255 0.851561i \(-0.324344\pi\)
0.524255 + 0.851561i \(0.324344\pi\)
\(224\) 0 0
\(225\) −1.52743e10 −0.397320
\(226\) 0 0
\(227\) −7.69011e10 −1.92228 −0.961139 0.276063i \(-0.910970\pi\)
−0.961139 + 0.276063i \(0.910970\pi\)
\(228\) 0 0
\(229\) 4.35114e10 1.04555 0.522773 0.852472i \(-0.324897\pi\)
0.522773 + 0.852472i \(0.324897\pi\)
\(230\) 0 0
\(231\) 1.99285e10 0.460490
\(232\) 0 0
\(233\) −2.07043e10 −0.460213 −0.230107 0.973165i \(-0.573907\pi\)
−0.230107 + 0.973165i \(0.573907\pi\)
\(234\) 0 0
\(235\) −3.07573e10 −0.657873
\(236\) 0 0
\(237\) 8.44006e10 1.73771
\(238\) 0 0
\(239\) −2.16220e10 −0.428653 −0.214326 0.976762i \(-0.568756\pi\)
−0.214326 + 0.976762i \(0.568756\pi\)
\(240\) 0 0
\(241\) 6.77789e10 1.29425 0.647124 0.762385i \(-0.275971\pi\)
0.647124 + 0.762385i \(0.275971\pi\)
\(242\) 0 0
\(243\) 4.72402e10 0.869127
\(244\) 0 0
\(245\) 3.13605e9 0.0556078
\(246\) 0 0
\(247\) −1.13737e10 −0.194431
\(248\) 0 0
\(249\) −6.31528e10 −1.04111
\(250\) 0 0
\(251\) −4.87895e9 −0.0775881 −0.0387940 0.999247i \(-0.512352\pi\)
−0.0387940 + 0.999247i \(0.512352\pi\)
\(252\) 0 0
\(253\) −1.20595e11 −1.85050
\(254\) 0 0
\(255\) 1.98074e9 0.0293357
\(256\) 0 0
\(257\) −2.75029e10 −0.393259 −0.196630 0.980478i \(-0.563000\pi\)
−0.196630 + 0.980478i \(0.563000\pi\)
\(258\) 0 0
\(259\) −9.35053e9 −0.129118
\(260\) 0 0
\(261\) 5.12173e10 0.683178
\(262\) 0 0
\(263\) 2.22595e10 0.286889 0.143445 0.989658i \(-0.454182\pi\)
0.143445 + 0.989658i \(0.454182\pi\)
\(264\) 0 0
\(265\) −3.25827e10 −0.405864
\(266\) 0 0
\(267\) 2.81320e10 0.338766
\(268\) 0 0
\(269\) 1.73017e10 0.201466 0.100733 0.994913i \(-0.467881\pi\)
0.100733 + 0.994913i \(0.467881\pi\)
\(270\) 0 0
\(271\) −4.81901e10 −0.542745 −0.271372 0.962474i \(-0.587477\pi\)
−0.271372 + 0.962474i \(0.587477\pi\)
\(272\) 0 0
\(273\) 6.48011e9 0.0706074
\(274\) 0 0
\(275\) 8.09106e10 0.853116
\(276\) 0 0
\(277\) 8.03834e10 0.820365 0.410183 0.912003i \(-0.365465\pi\)
0.410183 + 0.912003i \(0.365465\pi\)
\(278\) 0 0
\(279\) −5.34526e10 −0.528141
\(280\) 0 0
\(281\) −1.95595e11 −1.87146 −0.935729 0.352719i \(-0.885257\pi\)
−0.935729 + 0.352719i \(0.885257\pi\)
\(282\) 0 0
\(283\) 6.02802e10 0.558645 0.279322 0.960197i \(-0.409890\pi\)
0.279322 + 0.960197i \(0.409890\pi\)
\(284\) 0 0
\(285\) −6.62536e10 −0.594850
\(286\) 0 0
\(287\) −1.52724e10 −0.132874
\(288\) 0 0
\(289\) −1.18129e11 −0.996132
\(290\) 0 0
\(291\) −1.28863e11 −1.05344
\(292\) 0 0
\(293\) −4.86743e10 −0.385830 −0.192915 0.981216i \(-0.561794\pi\)
−0.192915 + 0.981216i \(0.561794\pi\)
\(294\) 0 0
\(295\) −9.01025e10 −0.692688
\(296\) 0 0
\(297\) −8.68686e10 −0.647827
\(298\) 0 0
\(299\) −3.92137e10 −0.283738
\(300\) 0 0
\(301\) 4.49018e10 0.315293
\(302\) 0 0
\(303\) 1.53716e11 1.04768
\(304\) 0 0
\(305\) 2.79719e10 0.185086
\(306\) 0 0
\(307\) −2.75178e11 −1.76804 −0.884018 0.467453i \(-0.845172\pi\)
−0.884018 + 0.467453i \(0.845172\pi\)
\(308\) 0 0
\(309\) 3.36867e11 2.10206
\(310\) 0 0
\(311\) −1.12322e11 −0.680835 −0.340418 0.940274i \(-0.610568\pi\)
−0.340418 + 0.940274i \(0.610568\pi\)
\(312\) 0 0
\(313\) −1.06140e11 −0.625069 −0.312535 0.949906i \(-0.601178\pi\)
−0.312535 + 0.949906i \(0.601178\pi\)
\(314\) 0 0
\(315\) 1.20387e10 0.0688943
\(316\) 0 0
\(317\) 2.31358e9 0.0128682 0.00643409 0.999979i \(-0.497952\pi\)
0.00643409 + 0.999979i \(0.497952\pi\)
\(318\) 0 0
\(319\) −2.71306e11 −1.46691
\(320\) 0 0
\(321\) 7.07844e10 0.372105
\(322\) 0 0
\(323\) −1.53441e10 −0.0784385
\(324\) 0 0
\(325\) 2.63095e10 0.130809
\(326\) 0 0
\(327\) 2.15766e11 1.04356
\(328\) 0 0
\(329\) −1.35750e11 −0.638792
\(330\) 0 0
\(331\) 2.16185e11 0.989921 0.494960 0.868916i \(-0.335183\pi\)
0.494960 + 0.868916i \(0.335183\pi\)
\(332\) 0 0
\(333\) −3.58950e10 −0.159968
\(334\) 0 0
\(335\) −5.08893e10 −0.220762
\(336\) 0 0
\(337\) 5.00291e10 0.211294 0.105647 0.994404i \(-0.466309\pi\)
0.105647 + 0.994404i \(0.466309\pi\)
\(338\) 0 0
\(339\) 4.81997e11 1.98219
\(340\) 0 0
\(341\) 2.83147e11 1.13401
\(342\) 0 0
\(343\) 1.38413e10 0.0539949
\(344\) 0 0
\(345\) −2.28426e11 −0.868078
\(346\) 0 0
\(347\) 1.84606e11 0.683541 0.341770 0.939784i \(-0.388974\pi\)
0.341770 + 0.939784i \(0.388974\pi\)
\(348\) 0 0
\(349\) 2.74666e11 0.991039 0.495520 0.868597i \(-0.334978\pi\)
0.495520 + 0.868597i \(0.334978\pi\)
\(350\) 0 0
\(351\) −2.82469e10 −0.0993319
\(352\) 0 0
\(353\) −1.58053e11 −0.541774 −0.270887 0.962611i \(-0.587317\pi\)
−0.270887 + 0.962611i \(0.587317\pi\)
\(354\) 0 0
\(355\) 5.20246e10 0.173853
\(356\) 0 0
\(357\) 8.74219e9 0.0284848
\(358\) 0 0
\(359\) −3.40759e11 −1.08274 −0.541368 0.840786i \(-0.682093\pi\)
−0.541368 + 0.840786i \(0.682093\pi\)
\(360\) 0 0
\(361\) 1.90556e11 0.590526
\(362\) 0 0
\(363\) −4.39200e9 −0.0132765
\(364\) 0 0
\(365\) 1.66734e11 0.491707
\(366\) 0 0
\(367\) 6.10216e11 1.75584 0.877922 0.478803i \(-0.158929\pi\)
0.877922 + 0.478803i \(0.158929\pi\)
\(368\) 0 0
\(369\) −5.86280e10 −0.164622
\(370\) 0 0
\(371\) −1.43807e11 −0.394092
\(372\) 0 0
\(373\) 4.34930e11 1.16340 0.581701 0.813402i \(-0.302387\pi\)
0.581701 + 0.813402i \(0.302387\pi\)
\(374\) 0 0
\(375\) 3.33882e11 0.871871
\(376\) 0 0
\(377\) −8.82202e10 −0.224922
\(378\) 0 0
\(379\) 7.30677e11 1.81907 0.909534 0.415630i \(-0.136439\pi\)
0.909534 + 0.415630i \(0.136439\pi\)
\(380\) 0 0
\(381\) 9.25280e11 2.24963
\(382\) 0 0
\(383\) −2.11074e11 −0.501233 −0.250617 0.968086i \(-0.580633\pi\)
−0.250617 + 0.968086i \(0.580633\pi\)
\(384\) 0 0
\(385\) −6.37712e10 −0.147928
\(386\) 0 0
\(387\) 1.72370e11 0.390627
\(388\) 0 0
\(389\) 7.21857e9 0.0159837 0.00799186 0.999968i \(-0.497456\pi\)
0.00799186 + 0.999968i \(0.497456\pi\)
\(390\) 0 0
\(391\) −5.29025e10 −0.114467
\(392\) 0 0
\(393\) −1.09490e11 −0.231530
\(394\) 0 0
\(395\) −2.70082e11 −0.558224
\(396\) 0 0
\(397\) −6.99387e11 −1.41306 −0.706529 0.707684i \(-0.749740\pi\)
−0.706529 + 0.707684i \(0.749740\pi\)
\(398\) 0 0
\(399\) −2.92417e11 −0.577597
\(400\) 0 0
\(401\) 6.40644e11 1.23728 0.618638 0.785676i \(-0.287685\pi\)
0.618638 + 0.785676i \(0.287685\pi\)
\(402\) 0 0
\(403\) 9.20704e10 0.173879
\(404\) 0 0
\(405\) −2.63234e11 −0.486177
\(406\) 0 0
\(407\) 1.90142e11 0.343481
\(408\) 0 0
\(409\) −1.31500e10 −0.0232365 −0.0116182 0.999933i \(-0.503698\pi\)
−0.0116182 + 0.999933i \(0.503698\pi\)
\(410\) 0 0
\(411\) −2.84538e11 −0.491873
\(412\) 0 0
\(413\) −3.97677e11 −0.672597
\(414\) 0 0
\(415\) 2.02089e11 0.334446
\(416\) 0 0
\(417\) −7.09461e11 −1.14899
\(418\) 0 0
\(419\) 5.79915e11 0.919182 0.459591 0.888131i \(-0.347996\pi\)
0.459591 + 0.888131i \(0.347996\pi\)
\(420\) 0 0
\(421\) 1.66175e11 0.257808 0.128904 0.991657i \(-0.458854\pi\)
0.128904 + 0.991657i \(0.458854\pi\)
\(422\) 0 0
\(423\) −5.21121e11 −0.791419
\(424\) 0 0
\(425\) 3.54937e10 0.0527717
\(426\) 0 0
\(427\) 1.23457e11 0.179718
\(428\) 0 0
\(429\) −1.31772e11 −0.187830
\(430\) 0 0
\(431\) −7.57723e11 −1.05770 −0.528850 0.848715i \(-0.677377\pi\)
−0.528850 + 0.848715i \(0.677377\pi\)
\(432\) 0 0
\(433\) −1.07485e12 −1.46944 −0.734719 0.678371i \(-0.762686\pi\)
−0.734719 + 0.678371i \(0.762686\pi\)
\(434\) 0 0
\(435\) −5.13895e11 −0.688134
\(436\) 0 0
\(437\) 1.76953e12 2.32109
\(438\) 0 0
\(439\) −1.70418e11 −0.218991 −0.109496 0.993987i \(-0.534924\pi\)
−0.109496 + 0.993987i \(0.534924\pi\)
\(440\) 0 0
\(441\) 5.31342e10 0.0668960
\(442\) 0 0
\(443\) −1.22937e12 −1.51658 −0.758290 0.651918i \(-0.773965\pi\)
−0.758290 + 0.651918i \(0.773965\pi\)
\(444\) 0 0
\(445\) −9.00225e10 −0.108826
\(446\) 0 0
\(447\) 7.88963e10 0.0934701
\(448\) 0 0
\(449\) −7.25792e10 −0.0842759 −0.0421380 0.999112i \(-0.513417\pi\)
−0.0421380 + 0.999112i \(0.513417\pi\)
\(450\) 0 0
\(451\) 3.10563e11 0.353472
\(452\) 0 0
\(453\) 1.24428e12 1.38828
\(454\) 0 0
\(455\) −2.07363e10 −0.0226820
\(456\) 0 0
\(457\) −6.64172e11 −0.712291 −0.356146 0.934431i \(-0.615909\pi\)
−0.356146 + 0.934431i \(0.615909\pi\)
\(458\) 0 0
\(459\) −3.81073e10 −0.0400730
\(460\) 0 0
\(461\) −1.21501e12 −1.25293 −0.626463 0.779451i \(-0.715498\pi\)
−0.626463 + 0.779451i \(0.715498\pi\)
\(462\) 0 0
\(463\) −2.93878e11 −0.297202 −0.148601 0.988897i \(-0.547477\pi\)
−0.148601 + 0.988897i \(0.547477\pi\)
\(464\) 0 0
\(465\) 5.36324e11 0.531972
\(466\) 0 0
\(467\) −4.73112e11 −0.460297 −0.230149 0.973155i \(-0.573921\pi\)
−0.230149 + 0.973155i \(0.573921\pi\)
\(468\) 0 0
\(469\) −2.24605e11 −0.214359
\(470\) 0 0
\(471\) 7.53185e11 0.705192
\(472\) 0 0
\(473\) −9.13072e11 −0.838745
\(474\) 0 0
\(475\) −1.18723e12 −1.07007
\(476\) 0 0
\(477\) −5.52049e11 −0.488253
\(478\) 0 0
\(479\) 2.05945e12 1.78748 0.893742 0.448582i \(-0.148071\pi\)
0.893742 + 0.448582i \(0.148071\pi\)
\(480\) 0 0
\(481\) 6.18280e10 0.0526662
\(482\) 0 0
\(483\) −1.00818e12 −0.842900
\(484\) 0 0
\(485\) 4.12361e11 0.338407
\(486\) 0 0
\(487\) 1.22247e12 0.984821 0.492411 0.870363i \(-0.336116\pi\)
0.492411 + 0.870363i \(0.336116\pi\)
\(488\) 0 0
\(489\) −2.27197e12 −1.79685
\(490\) 0 0
\(491\) −1.98225e11 −0.153918 −0.0769592 0.997034i \(-0.524521\pi\)
−0.0769592 + 0.997034i \(0.524521\pi\)
\(492\) 0 0
\(493\) −1.19016e11 −0.0907391
\(494\) 0 0
\(495\) −2.44806e11 −0.183273
\(496\) 0 0
\(497\) 2.29616e11 0.168810
\(498\) 0 0
\(499\) 3.00745e11 0.217143 0.108571 0.994089i \(-0.465372\pi\)
0.108571 + 0.994089i \(0.465372\pi\)
\(500\) 0 0
\(501\) −2.11576e12 −1.50036
\(502\) 0 0
\(503\) −3.30194e11 −0.229993 −0.114996 0.993366i \(-0.536686\pi\)
−0.114996 + 0.993366i \(0.536686\pi\)
\(504\) 0 0
\(505\) −4.91891e11 −0.336556
\(506\) 0 0
\(507\) 1.75992e12 1.18292
\(508\) 0 0
\(509\) −6.32399e10 −0.0417600 −0.0208800 0.999782i \(-0.506647\pi\)
−0.0208800 + 0.999782i \(0.506647\pi\)
\(510\) 0 0
\(511\) 7.35898e11 0.477445
\(512\) 0 0
\(513\) 1.27465e12 0.812574
\(514\) 0 0
\(515\) −1.07797e12 −0.675267
\(516\) 0 0
\(517\) 2.76046e12 1.69932
\(518\) 0 0
\(519\) −1.77725e12 −1.07522
\(520\) 0 0
\(521\) −1.88994e12 −1.12377 −0.561886 0.827215i \(-0.689924\pi\)
−0.561886 + 0.827215i \(0.689924\pi\)
\(522\) 0 0
\(523\) −8.95863e11 −0.523581 −0.261791 0.965125i \(-0.584313\pi\)
−0.261791 + 0.965125i \(0.584313\pi\)
\(524\) 0 0
\(525\) 6.76415e11 0.388594
\(526\) 0 0
\(527\) 1.24210e11 0.0701472
\(528\) 0 0
\(529\) 4.29975e12 2.38722
\(530\) 0 0
\(531\) −1.52661e12 −0.833302
\(532\) 0 0
\(533\) 1.00985e11 0.0541981
\(534\) 0 0
\(535\) −2.26510e11 −0.119535
\(536\) 0 0
\(537\) −6.87464e11 −0.356752
\(538\) 0 0
\(539\) −2.81461e11 −0.143638
\(540\) 0 0
\(541\) 1.00221e12 0.503005 0.251502 0.967857i \(-0.419075\pi\)
0.251502 + 0.967857i \(0.419075\pi\)
\(542\) 0 0
\(543\) −2.12050e12 −1.04674
\(544\) 0 0
\(545\) −6.90450e11 −0.335234
\(546\) 0 0
\(547\) −2.73436e12 −1.30591 −0.652955 0.757396i \(-0.726471\pi\)
−0.652955 + 0.757396i \(0.726471\pi\)
\(548\) 0 0
\(549\) 4.73929e11 0.222658
\(550\) 0 0
\(551\) 3.98097e12 1.83995
\(552\) 0 0
\(553\) −1.19203e12 −0.542033
\(554\) 0 0
\(555\) 3.60157e11 0.161129
\(556\) 0 0
\(557\) −4.22359e12 −1.85923 −0.929614 0.368534i \(-0.879860\pi\)
−0.929614 + 0.368534i \(0.879860\pi\)
\(558\) 0 0
\(559\) −2.96902e11 −0.128606
\(560\) 0 0
\(561\) −1.77771e11 −0.0757754
\(562\) 0 0
\(563\) 3.08311e12 1.29330 0.646652 0.762785i \(-0.276169\pi\)
0.646652 + 0.762785i \(0.276169\pi\)
\(564\) 0 0
\(565\) −1.54239e12 −0.636761
\(566\) 0 0
\(567\) −1.16181e12 −0.472075
\(568\) 0 0
\(569\) −2.74669e11 −0.109851 −0.0549256 0.998490i \(-0.517492\pi\)
−0.0549256 + 0.998490i \(0.517492\pi\)
\(570\) 0 0
\(571\) −2.82499e12 −1.11213 −0.556064 0.831140i \(-0.687689\pi\)
−0.556064 + 0.831140i \(0.687689\pi\)
\(572\) 0 0
\(573\) −6.49310e11 −0.251626
\(574\) 0 0
\(575\) −4.09326e12 −1.56158
\(576\) 0 0
\(577\) 3.76585e12 1.41440 0.707199 0.707014i \(-0.249958\pi\)
0.707199 + 0.707014i \(0.249958\pi\)
\(578\) 0 0
\(579\) 4.10028e12 1.51621
\(580\) 0 0
\(581\) 8.91940e11 0.324745
\(582\) 0 0
\(583\) 2.92430e12 1.04837
\(584\) 0 0
\(585\) −7.96030e10 −0.0281014
\(586\) 0 0
\(587\) 3.00831e12 1.04580 0.522902 0.852393i \(-0.324849\pi\)
0.522902 + 0.852393i \(0.324849\pi\)
\(588\) 0 0
\(589\) −4.15471e12 −1.42240
\(590\) 0 0
\(591\) 2.12157e12 0.715342
\(592\) 0 0
\(593\) 3.64775e12 1.21138 0.605688 0.795703i \(-0.292898\pi\)
0.605688 + 0.795703i \(0.292898\pi\)
\(594\) 0 0
\(595\) −2.79750e10 −0.00915047
\(596\) 0 0
\(597\) −4.98316e11 −0.160554
\(598\) 0 0
\(599\) −4.17778e12 −1.32594 −0.662972 0.748644i \(-0.730705\pi\)
−0.662972 + 0.748644i \(0.730705\pi\)
\(600\) 0 0
\(601\) 4.84445e12 1.51464 0.757321 0.653043i \(-0.226508\pi\)
0.757321 + 0.653043i \(0.226508\pi\)
\(602\) 0 0
\(603\) −8.62218e11 −0.265576
\(604\) 0 0
\(605\) 1.40544e10 0.00426494
\(606\) 0 0
\(607\) 1.58444e12 0.473726 0.236863 0.971543i \(-0.423881\pi\)
0.236863 + 0.971543i \(0.423881\pi\)
\(608\) 0 0
\(609\) −2.26813e12 −0.668175
\(610\) 0 0
\(611\) 8.97614e11 0.260558
\(612\) 0 0
\(613\) −2.79203e11 −0.0798635 −0.0399318 0.999202i \(-0.512714\pi\)
−0.0399318 + 0.999202i \(0.512714\pi\)
\(614\) 0 0
\(615\) 5.88252e11 0.165816
\(616\) 0 0
\(617\) −5.55576e12 −1.54333 −0.771667 0.636027i \(-0.780577\pi\)
−0.771667 + 0.636027i \(0.780577\pi\)
\(618\) 0 0
\(619\) 2.70437e12 0.740385 0.370192 0.928955i \(-0.379292\pi\)
0.370192 + 0.928955i \(0.379292\pi\)
\(620\) 0 0
\(621\) 4.39467e12 1.18581
\(622\) 0 0
\(623\) −3.97324e11 −0.105669
\(624\) 0 0
\(625\) 2.16828e12 0.568400
\(626\) 0 0
\(627\) 5.94626e12 1.53653
\(628\) 0 0
\(629\) 8.34109e10 0.0212469
\(630\) 0 0
\(631\) 4.73158e12 1.18816 0.594078 0.804407i \(-0.297517\pi\)
0.594078 + 0.804407i \(0.297517\pi\)
\(632\) 0 0
\(633\) 5.72863e12 1.41819
\(634\) 0 0
\(635\) −2.96090e12 −0.722672
\(636\) 0 0
\(637\) −9.15220e10 −0.0220241
\(638\) 0 0
\(639\) 8.81454e11 0.209144
\(640\) 0 0
\(641\) 1.38865e12 0.324887 0.162444 0.986718i \(-0.448062\pi\)
0.162444 + 0.986718i \(0.448062\pi\)
\(642\) 0 0
\(643\) −3.09398e12 −0.713786 −0.356893 0.934145i \(-0.616164\pi\)
−0.356893 + 0.934145i \(0.616164\pi\)
\(644\) 0 0
\(645\) −1.72950e12 −0.393460
\(646\) 0 0
\(647\) −2.31453e12 −0.519270 −0.259635 0.965707i \(-0.583602\pi\)
−0.259635 + 0.965707i \(0.583602\pi\)
\(648\) 0 0
\(649\) 8.08670e12 1.78925
\(650\) 0 0
\(651\) 2.36712e12 0.516542
\(652\) 0 0
\(653\) −8.10575e11 −0.174455 −0.0872276 0.996188i \(-0.527801\pi\)
−0.0872276 + 0.996188i \(0.527801\pi\)
\(654\) 0 0
\(655\) 3.50367e11 0.0743768
\(656\) 0 0
\(657\) 2.82498e12 0.591522
\(658\) 0 0
\(659\) −4.57355e11 −0.0944645 −0.0472323 0.998884i \(-0.515040\pi\)
−0.0472323 + 0.998884i \(0.515040\pi\)
\(660\) 0 0
\(661\) 7.94557e12 1.61889 0.809447 0.587193i \(-0.199767\pi\)
0.809447 + 0.587193i \(0.199767\pi\)
\(662\) 0 0
\(663\) −5.78055e10 −0.0116187
\(664\) 0 0
\(665\) 9.35735e11 0.185548
\(666\) 0 0
\(667\) 1.37254e13 2.68508
\(668\) 0 0
\(669\) −6.58254e12 −1.27050
\(670\) 0 0
\(671\) −2.51048e12 −0.478086
\(672\) 0 0
\(673\) −8.92805e12 −1.67760 −0.838801 0.544439i \(-0.816743\pi\)
−0.838801 + 0.544439i \(0.816743\pi\)
\(674\) 0 0
\(675\) −2.94850e12 −0.546682
\(676\) 0 0
\(677\) −8.01730e12 −1.46683 −0.733414 0.679782i \(-0.762074\pi\)
−0.733414 + 0.679782i \(0.762074\pi\)
\(678\) 0 0
\(679\) 1.82000e12 0.328592
\(680\) 0 0
\(681\) 1.30732e13 2.32927
\(682\) 0 0
\(683\) −4.14724e12 −0.729233 −0.364617 0.931158i \(-0.618800\pi\)
−0.364617 + 0.931158i \(0.618800\pi\)
\(684\) 0 0
\(685\) 9.10523e11 0.158010
\(686\) 0 0
\(687\) −7.39694e12 −1.26691
\(688\) 0 0
\(689\) 9.50888e11 0.160747
\(690\) 0 0
\(691\) 6.05580e12 1.01046 0.505231 0.862984i \(-0.331407\pi\)
0.505231 + 0.862984i \(0.331407\pi\)
\(692\) 0 0
\(693\) −1.08048e12 −0.177957
\(694\) 0 0
\(695\) 2.27028e12 0.369103
\(696\) 0 0
\(697\) 1.36237e11 0.0218649
\(698\) 0 0
\(699\) 3.51973e12 0.557651
\(700\) 0 0
\(701\) 1.88599e12 0.294990 0.147495 0.989063i \(-0.452879\pi\)
0.147495 + 0.989063i \(0.452879\pi\)
\(702\) 0 0
\(703\) −2.79001e12 −0.430831
\(704\) 0 0
\(705\) 5.22873e12 0.797160
\(706\) 0 0
\(707\) −2.17101e12 −0.326795
\(708\) 0 0
\(709\) −4.76210e12 −0.707767 −0.353884 0.935289i \(-0.615139\pi\)
−0.353884 + 0.935289i \(0.615139\pi\)
\(710\) 0 0
\(711\) −4.57600e12 −0.671542
\(712\) 0 0
\(713\) −1.43244e13 −2.07574
\(714\) 0 0
\(715\) 4.21671e11 0.0603387
\(716\) 0 0
\(717\) 3.67574e12 0.519408
\(718\) 0 0
\(719\) −5.34893e12 −0.746427 −0.373213 0.927746i \(-0.621744\pi\)
−0.373213 + 0.927746i \(0.621744\pi\)
\(720\) 0 0
\(721\) −4.75774e12 −0.655681
\(722\) 0 0
\(723\) −1.15224e13 −1.56827
\(724\) 0 0
\(725\) −9.20871e12 −1.23788
\(726\) 0 0
\(727\) −9.08222e12 −1.20583 −0.602917 0.797804i \(-0.705995\pi\)
−0.602917 + 0.797804i \(0.705995\pi\)
\(728\) 0 0
\(729\) 1.49349e12 0.195852
\(730\) 0 0
\(731\) −4.00544e11 −0.0518827
\(732\) 0 0
\(733\) −1.20547e13 −1.54237 −0.771185 0.636611i \(-0.780336\pi\)
−0.771185 + 0.636611i \(0.780336\pi\)
\(734\) 0 0
\(735\) −5.33129e11 −0.0673813
\(736\) 0 0
\(737\) 4.56731e12 0.570239
\(738\) 0 0
\(739\) −1.08128e13 −1.33364 −0.666822 0.745217i \(-0.732346\pi\)
−0.666822 + 0.745217i \(0.732346\pi\)
\(740\) 0 0
\(741\) 1.93353e12 0.235597
\(742\) 0 0
\(743\) −6.39433e12 −0.769742 −0.384871 0.922970i \(-0.625754\pi\)
−0.384871 + 0.922970i \(0.625754\pi\)
\(744\) 0 0
\(745\) −2.52468e11 −0.0300264
\(746\) 0 0
\(747\) 3.42400e12 0.402337
\(748\) 0 0
\(749\) −9.99726e11 −0.116068
\(750\) 0 0
\(751\) 2.30580e12 0.264510 0.132255 0.991216i \(-0.457778\pi\)
0.132255 + 0.991216i \(0.457778\pi\)
\(752\) 0 0
\(753\) 8.29422e11 0.0940152
\(754\) 0 0
\(755\) −3.98170e12 −0.445971
\(756\) 0 0
\(757\) −6.85316e12 −0.758507 −0.379253 0.925293i \(-0.623819\pi\)
−0.379253 + 0.925293i \(0.623819\pi\)
\(758\) 0 0
\(759\) 2.05012e13 2.24229
\(760\) 0 0
\(761\) −1.55520e12 −0.168095 −0.0840474 0.996462i \(-0.526785\pi\)
−0.0840474 + 0.996462i \(0.526785\pi\)
\(762\) 0 0
\(763\) −3.04737e12 −0.325510
\(764\) 0 0
\(765\) −1.07391e11 −0.0113368
\(766\) 0 0
\(767\) 2.62954e12 0.274347
\(768\) 0 0
\(769\) −1.31148e12 −0.135236 −0.0676179 0.997711i \(-0.521540\pi\)
−0.0676179 + 0.997711i \(0.521540\pi\)
\(770\) 0 0
\(771\) 4.67549e12 0.476521
\(772\) 0 0
\(773\) −9.82010e12 −0.989255 −0.494627 0.869105i \(-0.664695\pi\)
−0.494627 + 0.869105i \(0.664695\pi\)
\(774\) 0 0
\(775\) 9.61062e12 0.956959
\(776\) 0 0
\(777\) 1.58959e12 0.156455
\(778\) 0 0
\(779\) −4.55698e12 −0.443362
\(780\) 0 0
\(781\) −4.66921e12 −0.449070
\(782\) 0 0
\(783\) 9.88682e12 0.940001
\(784\) 0 0
\(785\) −2.41019e12 −0.226536
\(786\) 0 0
\(787\) 4.81658e12 0.447562 0.223781 0.974639i \(-0.428160\pi\)
0.223781 + 0.974639i \(0.428160\pi\)
\(788\) 0 0
\(789\) −3.78411e12 −0.347630
\(790\) 0 0
\(791\) −6.80750e12 −0.618292
\(792\) 0 0
\(793\) −8.16328e11 −0.0733053
\(794\) 0 0
\(795\) 5.53906e12 0.491795
\(796\) 0 0
\(797\) 7.71344e12 0.677151 0.338575 0.940939i \(-0.390055\pi\)
0.338575 + 0.940939i \(0.390055\pi\)
\(798\) 0 0
\(799\) 1.21095e12 0.105116
\(800\) 0 0
\(801\) −1.52525e12 −0.130917
\(802\) 0 0
\(803\) −1.49644e13 −1.27010
\(804\) 0 0
\(805\) 3.22618e12 0.270774
\(806\) 0 0
\(807\) −2.94128e12 −0.244121
\(808\) 0 0
\(809\) 2.12869e13 1.74721 0.873604 0.486637i \(-0.161777\pi\)
0.873604 + 0.486637i \(0.161777\pi\)
\(810\) 0 0
\(811\) −2.45053e13 −1.98914 −0.994570 0.104067i \(-0.966814\pi\)
−0.994570 + 0.104067i \(0.966814\pi\)
\(812\) 0 0
\(813\) 8.19231e12 0.657656
\(814\) 0 0
\(815\) 7.27030e12 0.577223
\(816\) 0 0
\(817\) 1.33978e13 1.05204
\(818\) 0 0
\(819\) −3.51336e11 −0.0272863
\(820\) 0 0
\(821\) −9.72826e12 −0.747293 −0.373646 0.927571i \(-0.621893\pi\)
−0.373646 + 0.927571i \(0.621893\pi\)
\(822\) 0 0
\(823\) 8.28745e11 0.0629683 0.0314841 0.999504i \(-0.489977\pi\)
0.0314841 + 0.999504i \(0.489977\pi\)
\(824\) 0 0
\(825\) −1.37548e13 −1.03374
\(826\) 0 0
\(827\) −2.42842e13 −1.80530 −0.902649 0.430376i \(-0.858381\pi\)
−0.902649 + 0.430376i \(0.858381\pi\)
\(828\) 0 0
\(829\) 1.95570e13 1.43816 0.719078 0.694929i \(-0.244564\pi\)
0.719078 + 0.694929i \(0.244564\pi\)
\(830\) 0 0
\(831\) −1.36652e13 −0.994055
\(832\) 0 0
\(833\) −1.23471e11 −0.00888507
\(834\) 0 0
\(835\) 6.77043e12 0.481978
\(836\) 0 0
\(837\) −1.03183e13 −0.726682
\(838\) 0 0
\(839\) 7.69577e12 0.536196 0.268098 0.963392i \(-0.413605\pi\)
0.268098 + 0.963392i \(0.413605\pi\)
\(840\) 0 0
\(841\) 1.63712e13 1.12849
\(842\) 0 0
\(843\) 3.32512e13 2.26769
\(844\) 0 0
\(845\) −5.63173e12 −0.380003
\(846\) 0 0
\(847\) 6.20305e10 0.00414124
\(848\) 0 0
\(849\) −1.02476e13 −0.676923
\(850\) 0 0
\(851\) −9.61924e12 −0.628721
\(852\) 0 0
\(853\) −2.79895e12 −0.181019 −0.0905097 0.995896i \(-0.528850\pi\)
−0.0905097 + 0.995896i \(0.528850\pi\)
\(854\) 0 0
\(855\) 3.59211e12 0.229881
\(856\) 0 0
\(857\) −5.56141e12 −0.352185 −0.176093 0.984374i \(-0.556346\pi\)
−0.176093 + 0.984374i \(0.556346\pi\)
\(858\) 0 0
\(859\) −3.51052e12 −0.219989 −0.109995 0.993932i \(-0.535083\pi\)
−0.109995 + 0.993932i \(0.535083\pi\)
\(860\) 0 0
\(861\) 2.59631e12 0.161006
\(862\) 0 0
\(863\) −1.43838e13 −0.882721 −0.441361 0.897330i \(-0.645504\pi\)
−0.441361 + 0.897330i \(0.645504\pi\)
\(864\) 0 0
\(865\) 5.68720e12 0.345403
\(866\) 0 0
\(867\) 2.00820e13 1.20704
\(868\) 0 0
\(869\) 2.42399e13 1.44192
\(870\) 0 0
\(871\) 1.48514e12 0.0874353
\(872\) 0 0
\(873\) 6.98664e12 0.407103
\(874\) 0 0
\(875\) −4.71559e12 −0.271957
\(876\) 0 0
\(877\) −6.34278e12 −0.362061 −0.181030 0.983477i \(-0.557943\pi\)
−0.181030 + 0.983477i \(0.557943\pi\)
\(878\) 0 0
\(879\) 8.27463e12 0.467519
\(880\) 0 0
\(881\) −2.89282e13 −1.61782 −0.808910 0.587933i \(-0.799942\pi\)
−0.808910 + 0.587933i \(0.799942\pi\)
\(882\) 0 0
\(883\) 7.17154e12 0.396999 0.198500 0.980101i \(-0.436393\pi\)
0.198500 + 0.980101i \(0.436393\pi\)
\(884\) 0 0
\(885\) 1.53174e13 0.839346
\(886\) 0 0
\(887\) 1.68020e13 0.911389 0.455695 0.890136i \(-0.349391\pi\)
0.455695 + 0.890136i \(0.349391\pi\)
\(888\) 0 0
\(889\) −1.30682e13 −0.701711
\(890\) 0 0
\(891\) 2.36252e13 1.25582
\(892\) 0 0
\(893\) −4.05052e13 −2.13147
\(894\) 0 0
\(895\) 2.19989e12 0.114603
\(896\) 0 0
\(897\) 6.66633e12 0.343812
\(898\) 0 0
\(899\) −3.22260e13 −1.64546
\(900\) 0 0
\(901\) 1.28282e12 0.0648493
\(902\) 0 0
\(903\) −7.63331e12 −0.382048
\(904\) 0 0
\(905\) 6.78559e12 0.336255
\(906\) 0 0
\(907\) 1.87924e13 0.922038 0.461019 0.887390i \(-0.347484\pi\)
0.461019 + 0.887390i \(0.347484\pi\)
\(908\) 0 0
\(909\) −8.33412e12 −0.404876
\(910\) 0 0
\(911\) 3.39496e13 1.63306 0.816529 0.577304i \(-0.195895\pi\)
0.816529 + 0.577304i \(0.195895\pi\)
\(912\) 0 0
\(913\) −1.81375e13 −0.863890
\(914\) 0 0
\(915\) −4.75523e12 −0.224273
\(916\) 0 0
\(917\) 1.54638e12 0.0722195
\(918\) 0 0
\(919\) −1.03287e13 −0.477667 −0.238833 0.971061i \(-0.576765\pi\)
−0.238833 + 0.971061i \(0.576765\pi\)
\(920\) 0 0
\(921\) 4.67803e13 2.14237
\(922\) 0 0
\(923\) −1.51828e12 −0.0688563
\(924\) 0 0
\(925\) 6.45381e12 0.289853
\(926\) 0 0
\(927\) −1.82641e13 −0.812344
\(928\) 0 0
\(929\) −2.79767e13 −1.23233 −0.616163 0.787619i \(-0.711314\pi\)
−0.616163 + 0.787619i \(0.711314\pi\)
\(930\) 0 0
\(931\) 4.12996e12 0.180166
\(932\) 0 0
\(933\) 1.90947e13 0.824984
\(934\) 0 0
\(935\) 5.68868e11 0.0243421
\(936\) 0 0
\(937\) 3.31649e13 1.40556 0.702782 0.711406i \(-0.251941\pi\)
0.702782 + 0.711406i \(0.251941\pi\)
\(938\) 0 0
\(939\) 1.80437e13 0.757411
\(940\) 0 0
\(941\) 3.19309e13 1.32757 0.663786 0.747923i \(-0.268949\pi\)
0.663786 + 0.747923i \(0.268949\pi\)
\(942\) 0 0
\(943\) −1.57113e13 −0.647009
\(944\) 0 0
\(945\) 2.32392e12 0.0947933
\(946\) 0 0
\(947\) −3.56921e13 −1.44210 −0.721052 0.692881i \(-0.756341\pi\)
−0.721052 + 0.692881i \(0.756341\pi\)
\(948\) 0 0
\(949\) −4.86594e12 −0.194746
\(950\) 0 0
\(951\) −3.93308e11 −0.0155927
\(952\) 0 0
\(953\) −3.04923e13 −1.19749 −0.598745 0.800940i \(-0.704334\pi\)
−0.598745 + 0.800940i \(0.704334\pi\)
\(954\) 0 0
\(955\) 2.07779e12 0.0808327
\(956\) 0 0
\(957\) 4.61221e13 1.77748
\(958\) 0 0
\(959\) 4.01869e12 0.153427
\(960\) 0 0
\(961\) 7.19282e12 0.272047
\(962\) 0 0
\(963\) −3.83776e12 −0.143800
\(964\) 0 0
\(965\) −1.31209e13 −0.487069
\(966\) 0 0
\(967\) 3.45533e13 1.27078 0.635389 0.772192i \(-0.280840\pi\)
0.635389 + 0.772192i \(0.280840\pi\)
\(968\) 0 0
\(969\) 2.60849e12 0.0950457
\(970\) 0 0
\(971\) 2.06708e13 0.746225 0.373112 0.927786i \(-0.378291\pi\)
0.373112 + 0.927786i \(0.378291\pi\)
\(972\) 0 0
\(973\) 1.00201e13 0.358397
\(974\) 0 0
\(975\) −4.47262e12 −0.158504
\(976\) 0 0
\(977\) 1.78789e11 0.00627791 0.00313896 0.999995i \(-0.499001\pi\)
0.00313896 + 0.999995i \(0.499001\pi\)
\(978\) 0 0
\(979\) 8.07952e12 0.281102
\(980\) 0 0
\(981\) −1.16983e13 −0.403285
\(982\) 0 0
\(983\) 1.42657e13 0.487305 0.243652 0.969863i \(-0.421654\pi\)
0.243652 + 0.969863i \(0.421654\pi\)
\(984\) 0 0
\(985\) −6.78902e12 −0.229797
\(986\) 0 0
\(987\) 2.30776e13 0.774038
\(988\) 0 0
\(989\) 4.61922e13 1.53527
\(990\) 0 0
\(991\) 2.71296e13 0.893537 0.446768 0.894650i \(-0.352575\pi\)
0.446768 + 0.894650i \(0.352575\pi\)
\(992\) 0 0
\(993\) −3.67515e13 −1.19951
\(994\) 0 0
\(995\) 1.59461e12 0.0515764
\(996\) 0 0
\(997\) −3.86723e12 −0.123957 −0.0619787 0.998077i \(-0.519741\pi\)
−0.0619787 + 0.998077i \(0.519741\pi\)
\(998\) 0 0
\(999\) −6.92905e12 −0.220104
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.a.a.1.1 1
4.3 odd 2 14.10.a.b.1.1 1
12.11 even 2 126.10.a.a.1.1 1
20.3 even 4 350.10.c.d.99.1 2
20.7 even 4 350.10.c.d.99.2 2
20.19 odd 2 350.10.a.a.1.1 1
28.3 even 6 98.10.c.d.79.1 2
28.11 odd 6 98.10.c.a.79.1 2
28.19 even 6 98.10.c.d.67.1 2
28.23 odd 6 98.10.c.a.67.1 2
28.27 even 2 98.10.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.10.a.b.1.1 1 4.3 odd 2
98.10.a.b.1.1 1 28.27 even 2
98.10.c.a.67.1 2 28.23 odd 6
98.10.c.a.79.1 2 28.11 odd 6
98.10.c.d.67.1 2 28.19 even 6
98.10.c.d.79.1 2 28.3 even 6
112.10.a.a.1.1 1 1.1 even 1 trivial
126.10.a.a.1.1 1 12.11 even 2
350.10.a.a.1.1 1 20.19 odd 2
350.10.c.d.99.1 2 20.3 even 4
350.10.c.d.99.2 2 20.7 even 4