# Properties

 Label 1110.2.x.b Level $1110$ Weight $2$ Character orbit 1110.x Analytic conductor $8.863$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1110 = 2 \cdot 3 \cdot 5 \cdot 37$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1110.x (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$8.86339462436$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{3} + \zeta_{12}^{2} q^{4} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{5} + \zeta_{12}^{3} q^{6} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{7} + \zeta_{12}^{3} q^{8} + ( -1 + \zeta_{12}^{2} ) q^{9} +O(q^{10})$$ $$q + \zeta_{12} q^{2} + \zeta_{12}^{2} q^{3} + \zeta_{12}^{2} q^{4} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{5} + \zeta_{12}^{3} q^{6} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{7} + \zeta_{12}^{3} q^{8} + ( -1 + \zeta_{12}^{2} ) q^{9} + q^{10} + ( 2 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{11} + ( -1 + \zeta_{12}^{2} ) q^{12} + ( 2 - \zeta_{12}^{2} ) q^{13} + ( 1 - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{14} + \zeta_{12} q^{15} + ( -1 + \zeta_{12}^{2} ) q^{16} + ( 3 + 2 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{17} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{18} + ( 2 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{19} + \zeta_{12} q^{20} + ( -1 + \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{21} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{2} ) q^{22} + 2 \zeta_{12}^{3} q^{23} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{24} + ( 1 - \zeta_{12}^{2} ) q^{25} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{26} - q^{27} + ( -1 + \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{28} + ( 1 - 2 \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{29} + \zeta_{12}^{2} q^{30} + ( -4 + 8 \zeta_{12}^{2} ) q^{31} + ( -\zeta_{12} + \zeta_{12}^{3} ) q^{32} + ( -\zeta_{12} + 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{33} + ( 3 \zeta_{12} + 2 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{34} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{35} - q^{36} + ( -4 + 7 \zeta_{12}^{2} ) q^{37} + 2 q^{38} + ( 1 + \zeta_{12}^{2} ) q^{39} + \zeta_{12}^{2} q^{40} + ( -3 \zeta_{12} - 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{41} + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{42} + ( -2 + 4 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{43} + ( -\zeta_{12} + 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{44} + \zeta_{12}^{3} q^{45} + ( -2 + 2 \zeta_{12}^{2} ) q^{46} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{47} - q^{48} + ( 3 + 2 \zeta_{12} - 3 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{49} + ( \zeta_{12} - \zeta_{12}^{3} ) q^{50} + ( -3 + 6 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{51} + ( 1 + \zeta_{12}^{2} ) q^{52} + ( 3 + 3 \zeta_{12} - 3 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{53} -\zeta_{12} q^{54} + ( -2 + 2 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{55} + ( 2 - \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{56} + 2 \zeta_{12} q^{57} + ( -6 + \zeta_{12} + 6 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{58} + ( -2 + 3 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{59} + \zeta_{12}^{3} q^{60} + ( -2 + 3 \zeta_{12} + \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{61} + ( -4 \zeta_{12} + 8 \zeta_{12}^{3} ) q^{62} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{63} - q^{64} + ( \zeta_{12} - 2 \zeta_{12}^{3} ) q^{65} + ( 1 - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{66} + ( -5 \zeta_{12} - 2 \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{67} + ( -3 + 6 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{68} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{69} + ( -\zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{70} + ( -3 \zeta_{12} - 3 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{71} -\zeta_{12} q^{72} + ( -2 - 12 \zeta_{12} + 6 \zeta_{12}^{3} ) q^{73} + ( -4 \zeta_{12} + 7 \zeta_{12}^{3} ) q^{74} + q^{75} + 2 \zeta_{12} q^{76} + ( -3 \zeta_{12} + 5 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{77} + ( \zeta_{12} + \zeta_{12}^{3} ) q^{78} + ( -8 + 2 \zeta_{12} + 4 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{79} + \zeta_{12}^{3} q^{80} -\zeta_{12}^{2} q^{81} + ( 3 - 6 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{82} + ( 1 + 3 \zeta_{12} - \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{83} + ( -1 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{84} + ( 2 + 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{85} + ( 4 - 2 \zeta_{12} - 4 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{86} + ( 2 - 6 \zeta_{12} - \zeta_{12}^{2} + 6 \zeta_{12}^{3} ) q^{87} + ( 1 - 2 \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{88} + ( 4 + 6 \zeta_{12} + 4 \zeta_{12}^{2} ) q^{89} + ( -1 + \zeta_{12}^{2} ) q^{90} + ( 1 - 3 \zeta_{12} + \zeta_{12}^{2} ) q^{91} + ( -2 \zeta_{12} + 2 \zeta_{12}^{3} ) q^{92} + ( -8 + 4 \zeta_{12}^{2} ) q^{93} + ( -1 - \zeta_{12}^{2} ) q^{94} + ( 2 - 2 \zeta_{12}^{2} ) q^{95} -\zeta_{12} q^{96} + ( -2 + 4 \zeta_{12}^{2} + 8 \zeta_{12}^{3} ) q^{97} + ( 4 + 3 \zeta_{12} - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{98} + ( -2 + \zeta_{12} + 2 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{3} + 2q^{4} + 2q^{7} - 2q^{9} + O(q^{10})$$ $$4q + 2q^{3} + 2q^{4} + 2q^{7} - 2q^{9} + 4q^{10} + 8q^{11} - 2q^{12} + 6q^{13} - 2q^{16} + 18q^{17} - 2q^{21} - 6q^{22} + 2q^{25} - 4q^{27} - 2q^{28} + 2q^{30} + 4q^{33} + 4q^{34} - 6q^{35} - 4q^{36} - 2q^{37} + 8q^{38} + 6q^{39} + 2q^{40} - 6q^{41} + 6q^{42} + 4q^{44} - 4q^{46} - 4q^{48} + 6q^{49} + 6q^{52} + 6q^{53} - 6q^{55} + 6q^{56} - 12q^{58} - 12q^{59} - 6q^{61} - 4q^{63} - 4q^{64} - 4q^{67} + 2q^{70} - 6q^{71} - 8q^{73} + 4q^{75} + 10q^{77} - 24q^{79} - 2q^{81} + 2q^{83} - 4q^{84} + 8q^{85} + 8q^{86} + 6q^{87} + 24q^{89} - 2q^{90} + 6q^{91} - 24q^{93} - 6q^{94} + 4q^{95} + 12q^{98} - 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times$$.

 $$n$$ $$371$$ $$631$$ $$667$$ $$\chi(n)$$ $$1$$ $$\zeta_{12}^{2}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
751.1
 −0.866025 + 0.500000i 0.866025 − 0.500000i −0.866025 − 0.500000i 0.866025 + 0.500000i
−0.866025 + 0.500000i 0.500000 0.866025i 0.500000 0.866025i −0.866025 0.500000i 1.00000i 1.36603 2.36603i 1.00000i −0.500000 0.866025i 1.00000
751.2 0.866025 0.500000i 0.500000 0.866025i 0.500000 0.866025i 0.866025 + 0.500000i 1.00000i −0.366025 + 0.633975i 1.00000i −0.500000 0.866025i 1.00000
841.1 −0.866025 0.500000i 0.500000 + 0.866025i 0.500000 + 0.866025i −0.866025 + 0.500000i 1.00000i 1.36603 + 2.36603i 1.00000i −0.500000 + 0.866025i 1.00000
841.2 0.866025 + 0.500000i 0.500000 + 0.866025i 0.500000 + 0.866025i 0.866025 0.500000i 1.00000i −0.366025 0.633975i 1.00000i −0.500000 + 0.866025i 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.e even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.x.b 4
37.e even 6 1 inner 1110.2.x.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.x.b 4 1.a even 1 1 trivial
1110.2.x.b 4 37.e even 6 1 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}^{4} - 2 T_{7}^{3} + 6 T_{7}^{2} + 4 T_{7} + 4$$ acting on $$S_{2}^{\mathrm{new}}(1110, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 - T^{2} + T^{4}$$
$3$ $$( 1 - T + T^{2} )^{2}$$
$5$ $$1 - T^{2} + T^{4}$$
$7$ $$4 + 4 T + 6 T^{2} - 2 T^{3} + T^{4}$$
$11$ $$( 1 - 4 T + T^{2} )^{2}$$
$13$ $$( 3 - 3 T + T^{2} )^{2}$$
$17$ $$529 - 414 T + 131 T^{2} - 18 T^{3} + T^{4}$$
$19$ $$16 - 4 T^{2} + T^{4}$$
$23$ $$( 4 + T^{2} )^{2}$$
$29$ $$1089 + 78 T^{2} + T^{4}$$
$31$ $$( 48 + T^{2} )^{2}$$
$37$ $$( 37 + T + T^{2} )^{2}$$
$41$ $$324 - 108 T + 54 T^{2} + 6 T^{3} + T^{4}$$
$43$ $$16 + 56 T^{2} + T^{4}$$
$47$ $$( -3 + T^{2} )^{2}$$
$53$ $$324 + 108 T + 54 T^{2} - 6 T^{3} + T^{4}$$
$59$ $$9 + 36 T + 51 T^{2} + 12 T^{3} + T^{4}$$
$61$ $$36 - 36 T + 6 T^{2} + 6 T^{3} + T^{4}$$
$67$ $$5041 - 284 T + 87 T^{2} + 4 T^{3} + T^{4}$$
$71$ $$324 - 108 T + 54 T^{2} + 6 T^{3} + T^{4}$$
$73$ $$( -104 + 4 T + T^{2} )^{2}$$
$79$ $$1936 + 1056 T + 236 T^{2} + 24 T^{3} + T^{4}$$
$83$ $$676 + 52 T + 30 T^{2} - 2 T^{3} + T^{4}$$
$89$ $$144 - 288 T + 204 T^{2} - 24 T^{3} + T^{4}$$
$97$ $$2704 + 152 T^{2} + T^{4}$$