Newspace parameters
Level: | \( N \) | \(=\) | \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1110.u (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(8.86339462436\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(20\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
191.1 | −0.707107 | − | 0.707107i | −1.73082 | + | 0.0652635i | 1.00000i | −0.707107 | + | 0.707107i | 1.27002 | + | 1.17773i | −5.10391 | 0.707107 | − | 0.707107i | 2.99148 | − | 0.225919i | 1.00000 | ||||||
191.2 | −0.707107 | − | 0.707107i | 0.347239 | + | 1.69689i | 1.00000i | −0.707107 | + | 0.707107i | 0.954345 | − | 1.44542i | −3.94859 | 0.707107 | − | 0.707107i | −2.75885 | + | 1.17845i | 1.00000 | ||||||
191.3 | −0.707107 | − | 0.707107i | 1.64725 | + | 0.535321i | 1.00000i | −0.707107 | + | 0.707107i | −0.786252 | − | 1.54331i | −2.53955 | 0.707107 | − | 0.707107i | 2.42686 | + | 1.76361i | 1.00000 | ||||||
191.4 | −0.707107 | − | 0.707107i | 0.878679 | + | 1.49262i | 1.00000i | −0.707107 | + | 0.707107i | 0.434124 | − | 1.67676i | 2.38487 | 0.707107 | − | 0.707107i | −1.45585 | + | 2.62307i | 1.00000 | ||||||
191.5 | −0.707107 | − | 0.707107i | −1.08352 | − | 1.35129i | 1.00000i | −0.707107 | + | 0.707107i | −0.189341 | + | 1.72167i | −3.77650 | 0.707107 | − | 0.707107i | −0.651967 | + | 2.92830i | 1.00000 | ||||||
191.6 | −0.707107 | − | 0.707107i | −0.912132 | + | 1.47242i | 1.00000i | −0.707107 | + | 0.707107i | 1.68613 | − | 0.396182i | 0.363832 | 0.707107 | − | 0.707107i | −1.33603 | − | 2.68608i | 1.00000 | ||||||
191.7 | −0.707107 | − | 0.707107i | 0.544013 | − | 1.64440i | 1.00000i | −0.707107 | + | 0.707107i | −1.54744 | + | 0.778090i | −1.56844 | 0.707107 | − | 0.707107i | −2.40810 | − | 1.78915i | 1.00000 | ||||||
191.8 | −0.707107 | − | 0.707107i | −1.59695 | + | 0.670623i | 1.00000i | −0.707107 | + | 0.707107i | 1.60342 | + | 0.655016i | 3.28633 | 0.707107 | − | 0.707107i | 2.10053 | − | 2.14191i | 1.00000 | ||||||
191.9 | −0.707107 | − | 0.707107i | 0.349356 | − | 1.69645i | 1.00000i | −0.707107 | + | 0.707107i | −1.44660 | + | 0.952541i | 2.97676 | 0.707107 | − | 0.707107i | −2.75590 | − | 1.18533i | 1.00000 | ||||||
191.10 | −0.707107 | − | 0.707107i | 1.55689 | + | 0.759006i | 1.00000i | −0.707107 | + | 0.707107i | −0.564190 | − | 1.63759i | 1.92521 | 0.707107 | − | 0.707107i | 1.84782 | + | 2.36338i | 1.00000 | ||||||
191.11 | 0.707107 | + | 0.707107i | 1.08352 | − | 1.35129i | 1.00000i | 0.707107 | − | 0.707107i | 1.72167 | − | 0.189341i | −3.77650 | −0.707107 | + | 0.707107i | −0.651967 | − | 2.92830i | 1.00000 | ||||||
191.12 | 0.707107 | + | 0.707107i | −0.347239 | + | 1.69689i | 1.00000i | 0.707107 | − | 0.707107i | −1.44542 | + | 0.954345i | −3.94859 | −0.707107 | + | 0.707107i | −2.75885 | − | 1.17845i | 1.00000 | ||||||
191.13 | 0.707107 | + | 0.707107i | −0.544013 | − | 1.64440i | 1.00000i | 0.707107 | − | 0.707107i | 0.778090 | − | 1.54744i | −1.56844 | −0.707107 | + | 0.707107i | −2.40810 | + | 1.78915i | 1.00000 | ||||||
191.14 | 0.707107 | + | 0.707107i | −1.55689 | + | 0.759006i | 1.00000i | 0.707107 | − | 0.707107i | −1.63759 | − | 0.564190i | 1.92521 | −0.707107 | + | 0.707107i | 1.84782 | − | 2.36338i | 1.00000 | ||||||
191.15 | 0.707107 | + | 0.707107i | 1.73082 | + | 0.0652635i | 1.00000i | 0.707107 | − | 0.707107i | 1.17773 | + | 1.27002i | −5.10391 | −0.707107 | + | 0.707107i | 2.99148 | + | 0.225919i | 1.00000 | ||||||
191.16 | 0.707107 | + | 0.707107i | −1.64725 | + | 0.535321i | 1.00000i | 0.707107 | − | 0.707107i | −1.54331 | − | 0.786252i | −2.53955 | −0.707107 | + | 0.707107i | 2.42686 | − | 1.76361i | 1.00000 | ||||||
191.17 | 0.707107 | + | 0.707107i | 0.912132 | + | 1.47242i | 1.00000i | 0.707107 | − | 0.707107i | −0.396182 | + | 1.68613i | 0.363832 | −0.707107 | + | 0.707107i | −1.33603 | + | 2.68608i | 1.00000 | ||||||
191.18 | 0.707107 | + | 0.707107i | −0.349356 | − | 1.69645i | 1.00000i | 0.707107 | − | 0.707107i | 0.952541 | − | 1.44660i | 2.97676 | −0.707107 | + | 0.707107i | −2.75590 | + | 1.18533i | 1.00000 | ||||||
191.19 | 0.707107 | + | 0.707107i | 1.59695 | + | 0.670623i | 1.00000i | 0.707107 | − | 0.707107i | 0.655016 | + | 1.60342i | 3.28633 | −0.707107 | + | 0.707107i | 2.10053 | + | 2.14191i | 1.00000 | ||||||
191.20 | 0.707107 | + | 0.707107i | −0.878679 | + | 1.49262i | 1.00000i | 0.707107 | − | 0.707107i | −1.67676 | + | 0.434124i | 2.38487 | −0.707107 | + | 0.707107i | −1.45585 | − | 2.62307i | 1.00000 | ||||||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
37.d | odd | 4 | 1 | inner |
111.g | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1110.2.u.e | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 1110.2.u.e | ✓ | 40 |
37.d | odd | 4 | 1 | inner | 1110.2.u.e | ✓ | 40 |
111.g | even | 4 | 1 | inner | 1110.2.u.e | ✓ | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1110.2.u.e | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
1110.2.u.e | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
1110.2.u.e | ✓ | 40 | 37.d | odd | 4 | 1 | inner |
1110.2.u.e | ✓ | 40 | 111.g | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(T_{7}^{10} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(1110, [\chi])\).