Properties

Label 1110.2.u
Level $1110$
Weight $2$
Character orbit 1110.u
Rep. character $\chi_{1110}(191,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $96$
Newform subspaces $6$
Sturm bound $456$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.u (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 111 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 6 \)
Sturm bound: \(456\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1110, [\chi])\).

Total New Old
Modular forms 472 96 376
Cusp forms 440 96 344
Eisenstein series 32 0 32

Trace form

\( 96q + O(q^{10}) \) \( 96q - 24q^{13} - 96q^{16} + 24q^{19} - 48q^{31} + 16q^{34} + 24q^{37} + 32q^{39} - 24q^{42} + 56q^{43} - 16q^{45} + 112q^{49} + 8q^{51} + 24q^{52} + 24q^{55} - 48q^{57} - 40q^{61} - 48q^{66} - 16q^{69} - 24q^{76} + 32q^{79} + 32q^{81} - 32q^{82} + 48q^{87} - 88q^{93} + 8q^{94} - 40q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1110, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
1110.2.u.a \(4\) \(8.863\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(-8\) \(q-\zeta_{8}^{3}q^{2}+(-\zeta_{8}+\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+\cdots\)
1110.2.u.b \(4\) \(8.863\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(16\) \(q+\zeta_{8}q^{2}+(-\zeta_{8}-\zeta_{8}^{2}+\zeta_{8}^{3})q^{3}+\cdots\)
1110.2.u.c \(4\) \(8.863\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(-16\) \(q-\zeta_{8}^{3}q^{2}+(\zeta_{8}-\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}-\zeta_{8}^{2}q^{4}+\cdots\)
1110.2.u.d \(4\) \(8.863\) \(\Q(\zeta_{8})\) None \(0\) \(0\) \(0\) \(8\) \(q-\zeta_{8}^{3}q^{2}+(\zeta_{8}+\zeta_{8}^{2}-\zeta_{8}^{3})q^{3}-\zeta_{8}^{2}q^{4}+\cdots\)
1110.2.u.e \(40\) \(8.863\) None \(0\) \(0\) \(0\) \(-24\)
1110.2.u.f \(40\) \(8.863\) None \(0\) \(0\) \(0\) \(24\)

Decomposition of \(S_{2}^{\mathrm{old}}(1110, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1110, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)