Properties

Label 1110.2.i.e.211.1
Level $1110$
Weight $2$
Character 1110.211
Analytic conductor $8.863$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1110,2,Mod(121,1110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1110.121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1110, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,1,-1,-1,2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 211.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1110.211
Dual form 1110.2.i.e.121.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +1.00000 q^{6} +(1.50000 - 2.59808i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} -1.00000 q^{10} -2.00000 q^{11} +(0.500000 + 0.866025i) q^{12} +(2.50000 - 4.33013i) q^{13} +3.00000 q^{14} +(0.500000 + 0.866025i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{17} +(0.500000 - 0.866025i) q^{18} +(2.50000 - 4.33013i) q^{19} +(-0.500000 - 0.866025i) q^{20} +(-1.50000 - 2.59808i) q^{21} +(-1.00000 - 1.73205i) q^{22} -8.00000 q^{23} +(-0.500000 + 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} +5.00000 q^{26} -1.00000 q^{27} +(1.50000 + 2.59808i) q^{28} +1.00000 q^{29} +(-0.500000 + 0.866025i) q^{30} +8.00000 q^{31} +(0.500000 - 0.866025i) q^{32} +(-1.00000 + 1.73205i) q^{33} +(1.00000 - 1.73205i) q^{34} +(1.50000 + 2.59808i) q^{35} +1.00000 q^{36} +(-0.500000 + 6.06218i) q^{37} +5.00000 q^{38} +(-2.50000 - 4.33013i) q^{39} +(0.500000 - 0.866025i) q^{40} +(4.00000 - 6.92820i) q^{41} +(1.50000 - 2.59808i) q^{42} +(1.00000 - 1.73205i) q^{44} +1.00000 q^{45} +(-4.00000 - 6.92820i) q^{46} +6.00000 q^{47} -1.00000 q^{48} +(-1.00000 - 1.73205i) q^{49} +(0.500000 - 0.866025i) q^{50} -2.00000 q^{51} +(2.50000 + 4.33013i) q^{52} +(-6.00000 - 10.3923i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(1.00000 - 1.73205i) q^{55} +(-1.50000 + 2.59808i) q^{56} +(-2.50000 - 4.33013i) q^{57} +(0.500000 + 0.866025i) q^{58} +(4.00000 + 6.92820i) q^{59} -1.00000 q^{60} +(5.00000 - 8.66025i) q^{61} +(4.00000 + 6.92820i) q^{62} -3.00000 q^{63} +1.00000 q^{64} +(2.50000 + 4.33013i) q^{65} -2.00000 q^{66} +(-1.00000 + 1.73205i) q^{67} +2.00000 q^{68} +(-4.00000 + 6.92820i) q^{69} +(-1.50000 + 2.59808i) q^{70} +(0.500000 - 0.866025i) q^{71} +(0.500000 + 0.866025i) q^{72} +(-5.50000 + 2.59808i) q^{74} -1.00000 q^{75} +(2.50000 + 4.33013i) q^{76} +(-3.00000 + 5.19615i) q^{77} +(2.50000 - 4.33013i) q^{78} +(-2.00000 + 3.46410i) q^{79} +1.00000 q^{80} +(-0.500000 + 0.866025i) q^{81} +8.00000 q^{82} +(0.500000 + 0.866025i) q^{83} +3.00000 q^{84} +2.00000 q^{85} +(0.500000 - 0.866025i) q^{87} +2.00000 q^{88} +(4.00000 + 6.92820i) q^{89} +(0.500000 + 0.866025i) q^{90} +(-7.50000 - 12.9904i) q^{91} +(4.00000 - 6.92820i) q^{92} +(4.00000 - 6.92820i) q^{93} +(3.00000 + 5.19615i) q^{94} +(2.50000 + 4.33013i) q^{95} +(-0.500000 - 0.866025i) q^{96} -8.00000 q^{97} +(1.00000 - 1.73205i) q^{98} +(1.00000 + 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} - q^{4} - q^{5} + 2 q^{6} + 3 q^{7} - 2 q^{8} - q^{9} - 2 q^{10} - 4 q^{11} + q^{12} + 5 q^{13} + 6 q^{14} + q^{15} - q^{16} - 2 q^{17} + q^{18} + 5 q^{19} - q^{20} - 3 q^{21}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 1.00000 0.408248
\(7\) 1.50000 2.59808i 0.566947 0.981981i −0.429919 0.902867i \(-0.641458\pi\)
0.996866 0.0791130i \(-0.0252088\pi\)
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.00000 −0.316228
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 2.50000 4.33013i 0.693375 1.20096i −0.277350 0.960769i \(-0.589456\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 3.00000 0.801784
\(15\) 0.500000 + 0.866025i 0.129099 + 0.223607i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i \(-0.638903\pi\)
0.996199 0.0871106i \(-0.0277634\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) −1.50000 2.59808i −0.327327 0.566947i
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 5.00000 0.980581
\(27\) −1.00000 −0.192450
\(28\) 1.50000 + 2.59808i 0.283473 + 0.490990i
\(29\) 1.00000 0.185695 0.0928477 0.995680i \(-0.470403\pi\)
0.0928477 + 0.995680i \(0.470403\pi\)
\(30\) −0.500000 + 0.866025i −0.0912871 + 0.158114i
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −1.00000 + 1.73205i −0.174078 + 0.301511i
\(34\) 1.00000 1.73205i 0.171499 0.297044i
\(35\) 1.50000 + 2.59808i 0.253546 + 0.439155i
\(36\) 1.00000 0.166667
\(37\) −0.500000 + 6.06218i −0.0821995 + 0.996616i
\(38\) 5.00000 0.811107
\(39\) −2.50000 4.33013i −0.400320 0.693375i
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) 4.00000 6.92820i 0.624695 1.08200i −0.363905 0.931436i \(-0.618557\pi\)
0.988600 0.150567i \(-0.0481100\pi\)
\(42\) 1.50000 2.59808i 0.231455 0.400892i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 1.00000 0.149071
\(46\) −4.00000 6.92820i −0.589768 1.02151i
\(47\) 6.00000 0.875190 0.437595 0.899172i \(-0.355830\pi\)
0.437595 + 0.899172i \(0.355830\pi\)
\(48\) −1.00000 −0.144338
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) −2.00000 −0.280056
\(52\) 2.50000 + 4.33013i 0.346688 + 0.600481i
\(53\) −6.00000 10.3923i −0.824163 1.42749i −0.902557 0.430570i \(-0.858312\pi\)
0.0783936 0.996922i \(-0.475021\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 1.00000 1.73205i 0.134840 0.233550i
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) −2.50000 4.33013i −0.331133 0.573539i
\(58\) 0.500000 + 0.866025i 0.0656532 + 0.113715i
\(59\) 4.00000 + 6.92820i 0.520756 + 0.901975i 0.999709 + 0.0241347i \(0.00768307\pi\)
−0.478953 + 0.877841i \(0.658984\pi\)
\(60\) −1.00000 −0.129099
\(61\) 5.00000 8.66025i 0.640184 1.10883i −0.345207 0.938527i \(-0.612191\pi\)
0.985391 0.170305i \(-0.0544754\pi\)
\(62\) 4.00000 + 6.92820i 0.508001 + 0.879883i
\(63\) −3.00000 −0.377964
\(64\) 1.00000 0.125000
\(65\) 2.50000 + 4.33013i 0.310087 + 0.537086i
\(66\) −2.00000 −0.246183
\(67\) −1.00000 + 1.73205i −0.122169 + 0.211604i −0.920623 0.390453i \(-0.872318\pi\)
0.798454 + 0.602056i \(0.205652\pi\)
\(68\) 2.00000 0.242536
\(69\) −4.00000 + 6.92820i −0.481543 + 0.834058i
\(70\) −1.50000 + 2.59808i −0.179284 + 0.310530i
\(71\) 0.500000 0.866025i 0.0593391 0.102778i −0.834830 0.550508i \(-0.814434\pi\)
0.894169 + 0.447730i \(0.147767\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) −5.50000 + 2.59808i −0.639362 + 0.302020i
\(75\) −1.00000 −0.115470
\(76\) 2.50000 + 4.33013i 0.286770 + 0.496700i
\(77\) −3.00000 + 5.19615i −0.341882 + 0.592157i
\(78\) 2.50000 4.33013i 0.283069 0.490290i
\(79\) −2.00000 + 3.46410i −0.225018 + 0.389742i −0.956325 0.292306i \(-0.905577\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 1.00000 0.111803
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 8.00000 0.883452
\(83\) 0.500000 + 0.866025i 0.0548821 + 0.0950586i 0.892161 0.451717i \(-0.149188\pi\)
−0.837279 + 0.546776i \(0.815855\pi\)
\(84\) 3.00000 0.327327
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 0.500000 0.866025i 0.0536056 0.0928477i
\(88\) 2.00000 0.213201
\(89\) 4.00000 + 6.92820i 0.423999 + 0.734388i 0.996326 0.0856373i \(-0.0272926\pi\)
−0.572327 + 0.820025i \(0.693959\pi\)
\(90\) 0.500000 + 0.866025i 0.0527046 + 0.0912871i
\(91\) −7.50000 12.9904i −0.786214 1.36176i
\(92\) 4.00000 6.92820i 0.417029 0.722315i
\(93\) 4.00000 6.92820i 0.414781 0.718421i
\(94\) 3.00000 + 5.19615i 0.309426 + 0.535942i
\(95\) 2.50000 + 4.33013i 0.256495 + 0.444262i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 1.00000 1.73205i 0.101015 0.174964i
\(99\) 1.00000 + 1.73205i 0.100504 + 0.174078i
\(100\) 1.00000 0.100000
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) −1.00000 1.73205i −0.0990148 0.171499i
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) −2.50000 + 4.33013i −0.245145 + 0.424604i
\(105\) 3.00000 0.292770
\(106\) 6.00000 10.3923i 0.582772 1.00939i
\(107\) 2.00000 3.46410i 0.193347 0.334887i −0.753010 0.658009i \(-0.771399\pi\)
0.946357 + 0.323122i \(0.104732\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) 5.00000 + 8.66025i 0.478913 + 0.829502i 0.999708 0.0241802i \(-0.00769755\pi\)
−0.520794 + 0.853682i \(0.674364\pi\)
\(110\) 2.00000 0.190693
\(111\) 5.00000 + 3.46410i 0.474579 + 0.328798i
\(112\) −3.00000 −0.283473
\(113\) −9.50000 16.4545i −0.893685 1.54791i −0.835424 0.549606i \(-0.814778\pi\)
−0.0582609 0.998301i \(-0.518556\pi\)
\(114\) 2.50000 4.33013i 0.234146 0.405554i
\(115\) 4.00000 6.92820i 0.373002 0.646058i
\(116\) −0.500000 + 0.866025i −0.0464238 + 0.0804084i
\(117\) −5.00000 −0.462250
\(118\) −4.00000 + 6.92820i −0.368230 + 0.637793i
\(119\) −6.00000 −0.550019
\(120\) −0.500000 0.866025i −0.0456435 0.0790569i
\(121\) −7.00000 −0.636364
\(122\) 10.0000 0.905357
\(123\) −4.00000 6.92820i −0.360668 0.624695i
\(124\) −4.00000 + 6.92820i −0.359211 + 0.622171i
\(125\) 1.00000 0.0894427
\(126\) −1.50000 2.59808i −0.133631 0.231455i
\(127\) 2.50000 + 4.33013i 0.221839 + 0.384237i 0.955366 0.295423i \(-0.0954607\pi\)
−0.733527 + 0.679660i \(0.762127\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −2.50000 + 4.33013i −0.219265 + 0.379777i
\(131\) 9.00000 + 15.5885i 0.786334 + 1.36197i 0.928199 + 0.372084i \(0.121357\pi\)
−0.141865 + 0.989886i \(0.545310\pi\)
\(132\) −1.00000 1.73205i −0.0870388 0.150756i
\(133\) −7.50000 12.9904i −0.650332 1.12641i
\(134\) −2.00000 −0.172774
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) 1.00000 + 1.73205i 0.0857493 + 0.148522i
\(137\) 5.00000 0.427179 0.213589 0.976924i \(-0.431485\pi\)
0.213589 + 0.976924i \(0.431485\pi\)
\(138\) −8.00000 −0.681005
\(139\) 6.00000 + 10.3923i 0.508913 + 0.881464i 0.999947 + 0.0103230i \(0.00328598\pi\)
−0.491033 + 0.871141i \(0.663381\pi\)
\(140\) −3.00000 −0.253546
\(141\) 3.00000 5.19615i 0.252646 0.437595i
\(142\) 1.00000 0.0839181
\(143\) −5.00000 + 8.66025i −0.418121 + 0.724207i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −0.500000 + 0.866025i −0.0415227 + 0.0719195i
\(146\) 0 0
\(147\) −2.00000 −0.164957
\(148\) −5.00000 3.46410i −0.410997 0.284747i
\(149\) −15.0000 −1.22885 −0.614424 0.788976i \(-0.710612\pi\)
−0.614424 + 0.788976i \(0.710612\pi\)
\(150\) −0.500000 0.866025i −0.0408248 0.0707107i
\(151\) −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i \(-0.966722\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) −2.50000 + 4.33013i −0.202777 + 0.351220i
\(153\) −1.00000 + 1.73205i −0.0808452 + 0.140028i
\(154\) −6.00000 −0.483494
\(155\) −4.00000 + 6.92820i −0.321288 + 0.556487i
\(156\) 5.00000 0.400320
\(157\) −6.50000 11.2583i −0.518756 0.898513i −0.999762 0.0217953i \(-0.993062\pi\)
0.481006 0.876717i \(-0.340272\pi\)
\(158\) −4.00000 −0.318223
\(159\) −12.0000 −0.951662
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) −12.0000 + 20.7846i −0.945732 + 1.63806i
\(162\) −1.00000 −0.0785674
\(163\) 9.00000 + 15.5885i 0.704934 + 1.22098i 0.966715 + 0.255855i \(0.0823569\pi\)
−0.261781 + 0.965127i \(0.584310\pi\)
\(164\) 4.00000 + 6.92820i 0.312348 + 0.541002i
\(165\) −1.00000 1.73205i −0.0778499 0.134840i
\(166\) −0.500000 + 0.866025i −0.0388075 + 0.0672166i
\(167\) −1.00000 + 1.73205i −0.0773823 + 0.134030i −0.902120 0.431486i \(-0.857990\pi\)
0.824737 + 0.565516i \(0.191323\pi\)
\(168\) 1.50000 + 2.59808i 0.115728 + 0.200446i
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) 1.00000 + 1.73205i 0.0766965 + 0.132842i
\(171\) −5.00000 −0.382360
\(172\) 0 0
\(173\) 10.0000 + 17.3205i 0.760286 + 1.31685i 0.942703 + 0.333633i \(0.108275\pi\)
−0.182417 + 0.983221i \(0.558392\pi\)
\(174\) 1.00000 0.0758098
\(175\) −3.00000 −0.226779
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) 8.00000 0.601317
\(178\) −4.00000 + 6.92820i −0.299813 + 0.519291i
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −0.500000 + 0.866025i −0.0372678 + 0.0645497i
\(181\) 11.0000 19.0526i 0.817624 1.41617i −0.0898051 0.995959i \(-0.528624\pi\)
0.907429 0.420206i \(-0.138042\pi\)
\(182\) 7.50000 12.9904i 0.555937 0.962911i
\(183\) −5.00000 8.66025i −0.369611 0.640184i
\(184\) 8.00000 0.589768
\(185\) −5.00000 3.46410i −0.367607 0.254686i
\(186\) 8.00000 0.586588
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) −3.00000 + 5.19615i −0.218797 + 0.378968i
\(189\) −1.50000 + 2.59808i −0.109109 + 0.188982i
\(190\) −2.50000 + 4.33013i −0.181369 + 0.314140i
\(191\) −4.00000 −0.289430 −0.144715 0.989473i \(-0.546227\pi\)
−0.144715 + 0.989473i \(0.546227\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) −4.00000 6.92820i −0.287183 0.497416i
\(195\) 5.00000 0.358057
\(196\) 2.00000 0.142857
\(197\) 10.0000 + 17.3205i 0.712470 + 1.23404i 0.963927 + 0.266167i \(0.0857571\pi\)
−0.251457 + 0.967869i \(0.580910\pi\)
\(198\) −1.00000 + 1.73205i −0.0710669 + 0.123091i
\(199\) −2.00000 −0.141776 −0.0708881 0.997484i \(-0.522583\pi\)
−0.0708881 + 0.997484i \(0.522583\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 1.00000 + 1.73205i 0.0705346 + 0.122169i
\(202\) −3.00000 5.19615i −0.211079 0.365600i
\(203\) 1.50000 2.59808i 0.105279 0.182349i
\(204\) 1.00000 1.73205i 0.0700140 0.121268i
\(205\) 4.00000 + 6.92820i 0.279372 + 0.483887i
\(206\) 2.50000 + 4.33013i 0.174183 + 0.301694i
\(207\) 4.00000 + 6.92820i 0.278019 + 0.481543i
\(208\) −5.00000 −0.346688
\(209\) −5.00000 + 8.66025i −0.345857 + 0.599042i
\(210\) 1.50000 + 2.59808i 0.103510 + 0.179284i
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) 12.0000 0.824163
\(213\) −0.500000 0.866025i −0.0342594 0.0593391i
\(214\) 4.00000 0.273434
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 12.0000 20.7846i 0.814613 1.41095i
\(218\) −5.00000 + 8.66025i −0.338643 + 0.586546i
\(219\) 0 0
\(220\) 1.00000 + 1.73205i 0.0674200 + 0.116775i
\(221\) −10.0000 −0.672673
\(222\) −0.500000 + 6.06218i −0.0335578 + 0.406867i
\(223\) −12.0000 −0.803579 −0.401790 0.915732i \(-0.631612\pi\)
−0.401790 + 0.915732i \(0.631612\pi\)
\(224\) −1.50000 2.59808i −0.100223 0.173591i
\(225\) −0.500000 + 0.866025i −0.0333333 + 0.0577350i
\(226\) 9.50000 16.4545i 0.631931 1.09454i
\(227\) 3.50000 6.06218i 0.232303 0.402361i −0.726182 0.687502i \(-0.758707\pi\)
0.958485 + 0.285141i \(0.0920405\pi\)
\(228\) 5.00000 0.331133
\(229\) −10.0000 + 17.3205i −0.660819 + 1.14457i 0.319582 + 0.947559i \(0.396457\pi\)
−0.980401 + 0.197013i \(0.936876\pi\)
\(230\) 8.00000 0.527504
\(231\) 3.00000 + 5.19615i 0.197386 + 0.341882i
\(232\) −1.00000 −0.0656532
\(233\) 13.0000 0.851658 0.425829 0.904804i \(-0.359982\pi\)
0.425829 + 0.904804i \(0.359982\pi\)
\(234\) −2.50000 4.33013i −0.163430 0.283069i
\(235\) −3.00000 + 5.19615i −0.195698 + 0.338960i
\(236\) −8.00000 −0.520756
\(237\) 2.00000 + 3.46410i 0.129914 + 0.225018i
\(238\) −3.00000 5.19615i −0.194461 0.336817i
\(239\) 6.50000 + 11.2583i 0.420450 + 0.728241i 0.995983 0.0895374i \(-0.0285389\pi\)
−0.575533 + 0.817778i \(0.695206\pi\)
\(240\) 0.500000 0.866025i 0.0322749 0.0559017i
\(241\) 7.00000 12.1244i 0.450910 0.780998i −0.547533 0.836784i \(-0.684433\pi\)
0.998443 + 0.0557856i \(0.0177663\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 5.00000 + 8.66025i 0.320092 + 0.554416i
\(245\) 2.00000 0.127775
\(246\) 4.00000 6.92820i 0.255031 0.441726i
\(247\) −12.5000 21.6506i −0.795356 1.37760i
\(248\) −8.00000 −0.508001
\(249\) 1.00000 0.0633724
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 1.50000 2.59808i 0.0944911 0.163663i
\(253\) 16.0000 1.00591
\(254\) −2.50000 + 4.33013i −0.156864 + 0.271696i
\(255\) 1.00000 1.73205i 0.0626224 0.108465i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.50000 + 11.2583i 0.405459 + 0.702275i 0.994375 0.105919i \(-0.0337784\pi\)
−0.588916 + 0.808194i \(0.700445\pi\)
\(258\) 0 0
\(259\) 15.0000 + 10.3923i 0.932055 + 0.645746i
\(260\) −5.00000 −0.310087
\(261\) −0.500000 0.866025i −0.0309492 0.0536056i
\(262\) −9.00000 + 15.5885i −0.556022 + 0.963058i
\(263\) 2.00000 3.46410i 0.123325 0.213606i −0.797752 0.602986i \(-0.793977\pi\)
0.921077 + 0.389380i \(0.127311\pi\)
\(264\) 1.00000 1.73205i 0.0615457 0.106600i
\(265\) 12.0000 0.737154
\(266\) 7.50000 12.9904i 0.459855 0.796491i
\(267\) 8.00000 0.489592
\(268\) −1.00000 1.73205i −0.0610847 0.105802i
\(269\) 7.00000 0.426798 0.213399 0.976965i \(-0.431547\pi\)
0.213399 + 0.976965i \(0.431547\pi\)
\(270\) 1.00000 0.0608581
\(271\) 8.00000 + 13.8564i 0.485965 + 0.841717i 0.999870 0.0161307i \(-0.00513477\pi\)
−0.513905 + 0.857847i \(0.671801\pi\)
\(272\) −1.00000 + 1.73205i −0.0606339 + 0.105021i
\(273\) −15.0000 −0.907841
\(274\) 2.50000 + 4.33013i 0.151031 + 0.261593i
\(275\) 1.00000 + 1.73205i 0.0603023 + 0.104447i
\(276\) −4.00000 6.92820i −0.240772 0.417029i
\(277\) −0.500000 + 0.866025i −0.0300421 + 0.0520344i −0.880656 0.473757i \(-0.842897\pi\)
0.850613 + 0.525792i \(0.176231\pi\)
\(278\) −6.00000 + 10.3923i −0.359856 + 0.623289i
\(279\) −4.00000 6.92820i −0.239474 0.414781i
\(280\) −1.50000 2.59808i −0.0896421 0.155265i
\(281\) 13.0000 + 22.5167i 0.775515 + 1.34323i 0.934505 + 0.355951i \(0.115843\pi\)
−0.158990 + 0.987280i \(0.550824\pi\)
\(282\) 6.00000 0.357295
\(283\) 9.00000 15.5885i 0.534994 0.926638i −0.464169 0.885747i \(-0.653647\pi\)
0.999164 0.0408910i \(-0.0130196\pi\)
\(284\) 0.500000 + 0.866025i 0.0296695 + 0.0513892i
\(285\) 5.00000 0.296174
\(286\) −10.0000 −0.591312
\(287\) −12.0000 20.7846i −0.708338 1.22688i
\(288\) −1.00000 −0.0589256
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) −1.00000 −0.0587220
\(291\) −4.00000 + 6.92820i −0.234484 + 0.406138i
\(292\) 0 0
\(293\) 12.0000 20.7846i 0.701047 1.21425i −0.267052 0.963682i \(-0.586049\pi\)
0.968099 0.250568i \(-0.0806172\pi\)
\(294\) −1.00000 1.73205i −0.0583212 0.101015i
\(295\) −8.00000 −0.465778
\(296\) 0.500000 6.06218i 0.0290619 0.352357i
\(297\) 2.00000 0.116052
\(298\) −7.50000 12.9904i −0.434463 0.752513i
\(299\) −20.0000 + 34.6410i −1.15663 + 2.00334i
\(300\) 0.500000 0.866025i 0.0288675 0.0500000i
\(301\) 0 0
\(302\) −10.0000 −0.575435
\(303\) −3.00000 + 5.19615i −0.172345 + 0.298511i
\(304\) −5.00000 −0.286770
\(305\) 5.00000 + 8.66025i 0.286299 + 0.495885i
\(306\) −2.00000 −0.114332
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) −3.00000 5.19615i −0.170941 0.296078i
\(309\) 2.50000 4.33013i 0.142220 0.246332i
\(310\) −8.00000 −0.454369
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 2.50000 + 4.33013i 0.141535 + 0.245145i
\(313\) −16.0000 27.7128i −0.904373 1.56642i −0.821756 0.569839i \(-0.807005\pi\)
−0.0826174 0.996581i \(-0.526328\pi\)
\(314\) 6.50000 11.2583i 0.366816 0.635344i
\(315\) 1.50000 2.59808i 0.0845154 0.146385i
\(316\) −2.00000 3.46410i −0.112509 0.194871i
\(317\) 12.0000 + 20.7846i 0.673987 + 1.16738i 0.976764 + 0.214318i \(0.0687530\pi\)
−0.302777 + 0.953062i \(0.597914\pi\)
\(318\) −6.00000 10.3923i −0.336463 0.582772i
\(319\) −2.00000 −0.111979
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) −2.00000 3.46410i −0.111629 0.193347i
\(322\) −24.0000 −1.33747
\(323\) −10.0000 −0.556415
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −5.00000 −0.277350
\(326\) −9.00000 + 15.5885i −0.498464 + 0.863365i
\(327\) 10.0000 0.553001
\(328\) −4.00000 + 6.92820i −0.220863 + 0.382546i
\(329\) 9.00000 15.5885i 0.496186 0.859419i
\(330\) 1.00000 1.73205i 0.0550482 0.0953463i
\(331\) −7.50000 12.9904i −0.412237 0.714016i 0.582897 0.812546i \(-0.301919\pi\)
−0.995134 + 0.0985303i \(0.968586\pi\)
\(332\) −1.00000 −0.0548821
\(333\) 5.50000 2.59808i 0.301398 0.142374i
\(334\) −2.00000 −0.109435
\(335\) −1.00000 1.73205i −0.0546358 0.0946320i
\(336\) −1.50000 + 2.59808i −0.0818317 + 0.141737i
\(337\) −13.0000 + 22.5167i −0.708155 + 1.22656i 0.257386 + 0.966309i \(0.417139\pi\)
−0.965541 + 0.260252i \(0.916194\pi\)
\(338\) 6.00000 10.3923i 0.326357 0.565267i
\(339\) −19.0000 −1.03194
\(340\) −1.00000 + 1.73205i −0.0542326 + 0.0939336i
\(341\) −16.0000 −0.866449
\(342\) −2.50000 4.33013i −0.135185 0.234146i
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) −4.00000 6.92820i −0.215353 0.373002i
\(346\) −10.0000 + 17.3205i −0.537603 + 0.931156i
\(347\) −33.0000 −1.77153 −0.885766 0.464131i \(-0.846367\pi\)
−0.885766 + 0.464131i \(0.846367\pi\)
\(348\) 0.500000 + 0.866025i 0.0268028 + 0.0464238i
\(349\) 2.00000 + 3.46410i 0.107058 + 0.185429i 0.914577 0.404412i \(-0.132524\pi\)
−0.807519 + 0.589841i \(0.799190\pi\)
\(350\) −1.50000 2.59808i −0.0801784 0.138873i
\(351\) −2.50000 + 4.33013i −0.133440 + 0.231125i
\(352\) −1.00000 + 1.73205i −0.0533002 + 0.0923186i
\(353\) −14.5000 25.1147i −0.771757 1.33672i −0.936599 0.350403i \(-0.886045\pi\)
0.164842 0.986320i \(-0.447289\pi\)
\(354\) 4.00000 + 6.92820i 0.212598 + 0.368230i
\(355\) 0.500000 + 0.866025i 0.0265372 + 0.0459639i
\(356\) −8.00000 −0.423999
\(357\) −3.00000 + 5.19615i −0.158777 + 0.275010i
\(358\) 0 0
\(359\) 7.00000 0.369446 0.184723 0.982791i \(-0.440861\pi\)
0.184723 + 0.982791i \(0.440861\pi\)
\(360\) −1.00000 −0.0527046
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) 22.0000 1.15629
\(363\) −3.50000 + 6.06218i −0.183702 + 0.318182i
\(364\) 15.0000 0.786214
\(365\) 0 0
\(366\) 5.00000 8.66025i 0.261354 0.452679i
\(367\) −11.5000 + 19.9186i −0.600295 + 1.03974i 0.392481 + 0.919760i \(0.371617\pi\)
−0.992776 + 0.119982i \(0.961716\pi\)
\(368\) 4.00000 + 6.92820i 0.208514 + 0.361158i
\(369\) −8.00000 −0.416463
\(370\) 0.500000 6.06218i 0.0259938 0.315158i
\(371\) −36.0000 −1.86903
\(372\) 4.00000 + 6.92820i 0.207390 + 0.359211i
\(373\) −6.50000 + 11.2583i −0.336557 + 0.582934i −0.983783 0.179364i \(-0.942596\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) −2.00000 + 3.46410i −0.103418 + 0.179124i
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) −6.00000 −0.309426
\(377\) 2.50000 4.33013i 0.128757 0.223013i
\(378\) −3.00000 −0.154303
\(379\) 14.5000 + 25.1147i 0.744815 + 1.29006i 0.950281 + 0.311393i \(0.100796\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) −5.00000 −0.256495
\(381\) 5.00000 0.256158
\(382\) −2.00000 3.46410i −0.102329 0.177239i
\(383\) 13.0000 22.5167i 0.664269 1.15055i −0.315214 0.949021i \(-0.602076\pi\)
0.979483 0.201527i \(-0.0645904\pi\)
\(384\) 1.00000 0.0510310
\(385\) −3.00000 5.19615i −0.152894 0.264820i
\(386\) −2.00000 3.46410i −0.101797 0.176318i
\(387\) 0 0
\(388\) 4.00000 6.92820i 0.203069 0.351726i
\(389\) 9.50000 16.4545i 0.481669 0.834275i −0.518110 0.855314i \(-0.673364\pi\)
0.999779 + 0.0210389i \(0.00669738\pi\)
\(390\) 2.50000 + 4.33013i 0.126592 + 0.219265i
\(391\) 8.00000 + 13.8564i 0.404577 + 0.700749i
\(392\) 1.00000 + 1.73205i 0.0505076 + 0.0874818i
\(393\) 18.0000 0.907980
\(394\) −10.0000 + 17.3205i −0.503793 + 0.872595i
\(395\) −2.00000 3.46410i −0.100631 0.174298i
\(396\) −2.00000 −0.100504
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) −1.00000 1.73205i −0.0501255 0.0868199i
\(399\) −15.0000 −0.750939
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) −1.00000 + 1.73205i −0.0498755 + 0.0863868i
\(403\) 20.0000 34.6410i 0.996271 1.72559i
\(404\) 3.00000 5.19615i 0.149256 0.258518i
\(405\) −0.500000 0.866025i −0.0248452 0.0430331i
\(406\) 3.00000 0.148888
\(407\) 1.00000 12.1244i 0.0495682 0.600982i
\(408\) 2.00000 0.0990148
\(409\) −9.50000 16.4545i −0.469745 0.813622i 0.529657 0.848212i \(-0.322321\pi\)
−0.999402 + 0.0345902i \(0.988987\pi\)
\(410\) −4.00000 + 6.92820i −0.197546 + 0.342160i
\(411\) 2.50000 4.33013i 0.123316 0.213589i
\(412\) −2.50000 + 4.33013i −0.123166 + 0.213330i
\(413\) 24.0000 1.18096
\(414\) −4.00000 + 6.92820i −0.196589 + 0.340503i
\(415\) −1.00000 −0.0490881
\(416\) −2.50000 4.33013i −0.122573 0.212302i
\(417\) 12.0000 0.587643
\(418\) −10.0000 −0.489116
\(419\) 11.0000 + 19.0526i 0.537385 + 0.930778i 0.999044 + 0.0437207i \(0.0139212\pi\)
−0.461659 + 0.887058i \(0.652745\pi\)
\(420\) −1.50000 + 2.59808i −0.0731925 + 0.126773i
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) −12.5000 21.6506i −0.608490 1.05394i
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 6.00000 + 10.3923i 0.291386 + 0.504695i
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0.500000 0.866025i 0.0242251 0.0419591i
\(427\) −15.0000 25.9808i −0.725901 1.25730i
\(428\) 2.00000 + 3.46410i 0.0966736 + 0.167444i
\(429\) 5.00000 + 8.66025i 0.241402 + 0.418121i
\(430\) 0 0
\(431\) 1.50000 2.59808i 0.0722525 0.125145i −0.827636 0.561266i \(-0.810315\pi\)
0.899888 + 0.436121i \(0.143648\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) 38.0000 1.82616 0.913082 0.407777i \(-0.133696\pi\)
0.913082 + 0.407777i \(0.133696\pi\)
\(434\) 24.0000 1.15204
\(435\) 0.500000 + 0.866025i 0.0239732 + 0.0415227i
\(436\) −10.0000 −0.478913
\(437\) −20.0000 + 34.6410i −0.956730 + 1.65710i
\(438\) 0 0
\(439\) 3.00000 5.19615i 0.143182 0.247999i −0.785511 0.618848i \(-0.787600\pi\)
0.928693 + 0.370849i \(0.120933\pi\)
\(440\) −1.00000 + 1.73205i −0.0476731 + 0.0825723i
\(441\) −1.00000 + 1.73205i −0.0476190 + 0.0824786i
\(442\) −5.00000 8.66025i −0.237826 0.411926i
\(443\) 21.0000 0.997740 0.498870 0.866677i \(-0.333748\pi\)
0.498870 + 0.866677i \(0.333748\pi\)
\(444\) −5.50000 + 2.59808i −0.261018 + 0.123299i
\(445\) −8.00000 −0.379236
\(446\) −6.00000 10.3923i −0.284108 0.492090i
\(447\) −7.50000 + 12.9904i −0.354738 + 0.614424i
\(448\) 1.50000 2.59808i 0.0708683 0.122748i
\(449\) 18.0000 31.1769i 0.849473 1.47133i −0.0322072 0.999481i \(-0.510254\pi\)
0.881680 0.471848i \(-0.156413\pi\)
\(450\) −1.00000 −0.0471405
\(451\) −8.00000 + 13.8564i −0.376705 + 0.652473i
\(452\) 19.0000 0.893685
\(453\) 5.00000 + 8.66025i 0.234920 + 0.406894i
\(454\) 7.00000 0.328526
\(455\) 15.0000 0.703211
\(456\) 2.50000 + 4.33013i 0.117073 + 0.202777i
\(457\) 9.00000 15.5885i 0.421002 0.729197i −0.575036 0.818128i \(-0.695012\pi\)
0.996038 + 0.0889312i \(0.0283451\pi\)
\(458\) −20.0000 −0.934539
\(459\) 1.00000 + 1.73205i 0.0466760 + 0.0808452i
\(460\) 4.00000 + 6.92820i 0.186501 + 0.323029i
\(461\) 1.50000 + 2.59808i 0.0698620 + 0.121004i 0.898840 0.438276i \(-0.144411\pi\)
−0.828978 + 0.559281i \(0.811077\pi\)
\(462\) −3.00000 + 5.19615i −0.139573 + 0.241747i
\(463\) 7.50000 12.9904i 0.348555 0.603714i −0.637438 0.770501i \(-0.720006\pi\)
0.985993 + 0.166787i \(0.0533393\pi\)
\(464\) −0.500000 0.866025i −0.0232119 0.0402042i
\(465\) 4.00000 + 6.92820i 0.185496 + 0.321288i
\(466\) 6.50000 + 11.2583i 0.301107 + 0.521532i
\(467\) 39.0000 1.80470 0.902352 0.430999i \(-0.141839\pi\)
0.902352 + 0.430999i \(0.141839\pi\)
\(468\) 2.50000 4.33013i 0.115563 0.200160i
\(469\) 3.00000 + 5.19615i 0.138527 + 0.239936i
\(470\) −6.00000 −0.276759
\(471\) −13.0000 −0.599008
\(472\) −4.00000 6.92820i −0.184115 0.318896i
\(473\) 0 0
\(474\) −2.00000 + 3.46410i −0.0918630 + 0.159111i
\(475\) −5.00000 −0.229416
\(476\) 3.00000 5.19615i 0.137505 0.238165i
\(477\) −6.00000 + 10.3923i −0.274721 + 0.475831i
\(478\) −6.50000 + 11.2583i −0.297303 + 0.514944i
\(479\) 6.00000 + 10.3923i 0.274147 + 0.474837i 0.969920 0.243426i \(-0.0782712\pi\)
−0.695773 + 0.718262i \(0.744938\pi\)
\(480\) 1.00000 0.0456435
\(481\) 25.0000 + 17.3205i 1.13990 + 0.789747i
\(482\) 14.0000 0.637683
\(483\) 12.0000 + 20.7846i 0.546019 + 0.945732i
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 4.00000 6.92820i 0.181631 0.314594i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −33.0000 −1.49537 −0.747686 0.664052i \(-0.768835\pi\)
−0.747686 + 0.664052i \(0.768835\pi\)
\(488\) −5.00000 + 8.66025i −0.226339 + 0.392031i
\(489\) 18.0000 0.813988
\(490\) 1.00000 + 1.73205i 0.0451754 + 0.0782461i
\(491\) −14.0000 −0.631811 −0.315906 0.948791i \(-0.602308\pi\)
−0.315906 + 0.948791i \(0.602308\pi\)
\(492\) 8.00000 0.360668
\(493\) −1.00000 1.73205i −0.0450377 0.0780076i
\(494\) 12.5000 21.6506i 0.562402 0.974108i
\(495\) −2.00000 −0.0898933
\(496\) −4.00000 6.92820i −0.179605 0.311086i
\(497\) −1.50000 2.59808i −0.0672842 0.116540i
\(498\) 0.500000 + 0.866025i 0.0224055 + 0.0388075i
\(499\) −12.5000 + 21.6506i −0.559577 + 0.969216i 0.437955 + 0.898997i \(0.355703\pi\)
−0.997532 + 0.0702185i \(0.977630\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 1.00000 + 1.73205i 0.0446767 + 0.0773823i
\(502\) −9.00000 15.5885i −0.401690 0.695747i
\(503\) −12.0000 20.7846i −0.535054 0.926740i −0.999161 0.0409609i \(-0.986958\pi\)
0.464107 0.885779i \(-0.346375\pi\)
\(504\) 3.00000 0.133631
\(505\) 3.00000 5.19615i 0.133498 0.231226i
\(506\) 8.00000 + 13.8564i 0.355643 + 0.615992i
\(507\) −12.0000 −0.532939
\(508\) −5.00000 −0.221839
\(509\) 11.5000 + 19.9186i 0.509729 + 0.882876i 0.999936 + 0.0112702i \(0.00358750\pi\)
−0.490208 + 0.871606i \(0.663079\pi\)
\(510\) 2.00000 0.0885615
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −2.50000 + 4.33013i −0.110378 + 0.191180i
\(514\) −6.50000 + 11.2583i −0.286703 + 0.496584i
\(515\) −2.50000 + 4.33013i −0.110163 + 0.190808i
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) −1.50000 + 18.1865i −0.0659062 + 0.799070i
\(519\) 20.0000 0.877903
\(520\) −2.50000 4.33013i −0.109632 0.189889i
\(521\) 21.0000 36.3731i 0.920027 1.59353i 0.120656 0.992694i \(-0.461500\pi\)
0.799370 0.600839i \(-0.205167\pi\)
\(522\) 0.500000 0.866025i 0.0218844 0.0379049i
\(523\) 1.00000 1.73205i 0.0437269 0.0757373i −0.843334 0.537390i \(-0.819410\pi\)
0.887061 + 0.461653i \(0.152744\pi\)
\(524\) −18.0000 −0.786334
\(525\) −1.50000 + 2.59808i −0.0654654 + 0.113389i
\(526\) 4.00000 0.174408
\(527\) −8.00000 13.8564i −0.348485 0.603595i
\(528\) 2.00000 0.0870388
\(529\) 41.0000 1.78261
\(530\) 6.00000 + 10.3923i 0.260623 + 0.451413i
\(531\) 4.00000 6.92820i 0.173585 0.300658i
\(532\) 15.0000 0.650332
\(533\) −20.0000 34.6410i −0.866296 1.50047i
\(534\) 4.00000 + 6.92820i 0.173097 + 0.299813i
\(535\) 2.00000 + 3.46410i 0.0864675 + 0.149766i
\(536\) 1.00000 1.73205i 0.0431934 0.0748132i
\(537\) 0 0
\(538\) 3.50000 + 6.06218i 0.150896 + 0.261359i
\(539\) 2.00000 + 3.46410i 0.0861461 + 0.149209i
\(540\) 0.500000 + 0.866025i 0.0215166 + 0.0372678i
\(541\) −6.00000 −0.257960 −0.128980 0.991647i \(-0.541170\pi\)
−0.128980 + 0.991647i \(0.541170\pi\)
\(542\) −8.00000 + 13.8564i −0.343629 + 0.595184i
\(543\) −11.0000 19.0526i −0.472055 0.817624i
\(544\) −2.00000 −0.0857493
\(545\) −10.0000 −0.428353
\(546\) −7.50000 12.9904i −0.320970 0.555937i
\(547\) 20.0000 0.855138 0.427569 0.903983i \(-0.359370\pi\)
0.427569 + 0.903983i \(0.359370\pi\)
\(548\) −2.50000 + 4.33013i −0.106795 + 0.184974i
\(549\) −10.0000 −0.426790
\(550\) −1.00000 + 1.73205i −0.0426401 + 0.0738549i
\(551\) 2.50000 4.33013i 0.106504 0.184470i
\(552\) 4.00000 6.92820i 0.170251 0.294884i
\(553\) 6.00000 + 10.3923i 0.255146 + 0.441926i
\(554\) −1.00000 −0.0424859
\(555\) −5.50000 + 2.59808i −0.233462 + 0.110282i
\(556\) −12.0000 −0.508913
\(557\) −3.00000 5.19615i −0.127114 0.220168i 0.795443 0.606028i \(-0.207238\pi\)
−0.922557 + 0.385860i \(0.873905\pi\)
\(558\) 4.00000 6.92820i 0.169334 0.293294i
\(559\) 0 0
\(560\) 1.50000 2.59808i 0.0633866 0.109789i
\(561\) 4.00000 0.168880
\(562\) −13.0000 + 22.5167i −0.548372 + 0.949808i
\(563\) 21.0000 0.885044 0.442522 0.896758i \(-0.354084\pi\)
0.442522 + 0.896758i \(0.354084\pi\)
\(564\) 3.00000 + 5.19615i 0.126323 + 0.218797i
\(565\) 19.0000 0.799336
\(566\) 18.0000 0.756596
\(567\) 1.50000 + 2.59808i 0.0629941 + 0.109109i
\(568\) −0.500000 + 0.866025i −0.0209795 + 0.0363376i
\(569\) −4.00000 −0.167689 −0.0838444 0.996479i \(-0.526720\pi\)
−0.0838444 + 0.996479i \(0.526720\pi\)
\(570\) 2.50000 + 4.33013i 0.104713 + 0.181369i
\(571\) 13.5000 + 23.3827i 0.564957 + 0.978535i 0.997054 + 0.0767074i \(0.0244407\pi\)
−0.432096 + 0.901828i \(0.642226\pi\)
\(572\) −5.00000 8.66025i −0.209061 0.362103i
\(573\) −2.00000 + 3.46410i −0.0835512 + 0.144715i
\(574\) 12.0000 20.7846i 0.500870 0.867533i
\(575\) 4.00000 + 6.92820i 0.166812 + 0.288926i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −11.0000 19.0526i −0.457936 0.793168i 0.540916 0.841077i \(-0.318078\pi\)
−0.998852 + 0.0479084i \(0.984744\pi\)
\(578\) 13.0000 0.540729
\(579\) −2.00000 + 3.46410i −0.0831172 + 0.143963i
\(580\) −0.500000 0.866025i −0.0207614 0.0359597i
\(581\) 3.00000 0.124461
\(582\) −8.00000 −0.331611
\(583\) 12.0000 + 20.7846i 0.496989 + 0.860811i
\(584\) 0 0
\(585\) 2.50000 4.33013i 0.103362 0.179029i
\(586\) 24.0000 0.991431
\(587\) 16.5000 28.5788i 0.681028 1.17957i −0.293640 0.955916i \(-0.594867\pi\)
0.974668 0.223659i \(-0.0718001\pi\)
\(588\) 1.00000 1.73205i 0.0412393 0.0714286i
\(589\) 20.0000 34.6410i 0.824086 1.42736i
\(590\) −4.00000 6.92820i −0.164677 0.285230i
\(591\) 20.0000 0.822690
\(592\) 5.50000 2.59808i 0.226049 0.106780i
\(593\) 34.0000 1.39621 0.698106 0.715994i \(-0.254026\pi\)
0.698106 + 0.715994i \(0.254026\pi\)
\(594\) 1.00000 + 1.73205i 0.0410305 + 0.0710669i
\(595\) 3.00000 5.19615i 0.122988 0.213021i
\(596\) 7.50000 12.9904i 0.307212 0.532107i
\(597\) −1.00000 + 1.73205i −0.0409273 + 0.0708881i
\(598\) −40.0000 −1.63572
\(599\) −16.5000 + 28.5788i −0.674172 + 1.16770i 0.302539 + 0.953137i \(0.402166\pi\)
−0.976710 + 0.214563i \(0.931167\pi\)
\(600\) 1.00000 0.0408248
\(601\) −13.0000 22.5167i −0.530281 0.918474i −0.999376 0.0353259i \(-0.988753\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) −5.00000 8.66025i −0.203447 0.352381i
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) −6.00000 −0.243733
\(607\) 11.5000 + 19.9186i 0.466771 + 0.808470i 0.999279 0.0379540i \(-0.0120840\pi\)
−0.532509 + 0.846424i \(0.678751\pi\)
\(608\) −2.50000 4.33013i −0.101388 0.175610i
\(609\) −1.50000 2.59808i −0.0607831 0.105279i
\(610\) −5.00000 + 8.66025i −0.202444 + 0.350643i
\(611\) 15.0000 25.9808i 0.606835 1.05107i
\(612\) −1.00000 1.73205i −0.0404226 0.0700140i
\(613\) 20.5000 + 35.5070i 0.827987 + 1.43412i 0.899615 + 0.436684i \(0.143847\pi\)
−0.0716275 + 0.997431i \(0.522819\pi\)
\(614\) −9.00000 15.5885i −0.363210 0.629099i
\(615\) 8.00000 0.322591
\(616\) 3.00000 5.19615i 0.120873 0.209359i
\(617\) −4.50000 7.79423i −0.181163 0.313784i 0.761114 0.648618i \(-0.224653\pi\)
−0.942277 + 0.334835i \(0.891320\pi\)
\(618\) 5.00000 0.201129
\(619\) 44.0000 1.76851 0.884255 0.467005i \(-0.154667\pi\)
0.884255 + 0.467005i \(0.154667\pi\)
\(620\) −4.00000 6.92820i −0.160644 0.278243i
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 24.0000 0.961540
\(624\) −2.50000 + 4.33013i −0.100080 + 0.173344i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 16.0000 27.7128i 0.639489 1.10763i
\(627\) 5.00000 + 8.66025i 0.199681 + 0.345857i
\(628\) 13.0000 0.518756
\(629\) 11.0000 5.19615i 0.438599 0.207184i
\(630\) 3.00000 0.119523
\(631\) 20.0000 + 34.6410i 0.796187 + 1.37904i 0.922082 + 0.386994i \(0.126486\pi\)
−0.125895 + 0.992044i \(0.540180\pi\)
\(632\) 2.00000 3.46410i 0.0795557 0.137795i
\(633\) −12.5000 + 21.6506i −0.496830 + 0.860535i
\(634\) −12.0000 + 20.7846i −0.476581 + 0.825462i
\(635\) −5.00000 −0.198419
\(636\) 6.00000 10.3923i 0.237915 0.412082i
\(637\) −10.0000 −0.396214
\(638\) −1.00000 1.73205i −0.0395904 0.0685725i
\(639\) −1.00000 −0.0395594
\(640\) −1.00000 −0.0395285
\(641\) 5.00000 + 8.66025i 0.197488 + 0.342059i 0.947713 0.319123i \(-0.103388\pi\)
−0.750225 + 0.661182i \(0.770055\pi\)
\(642\) 2.00000 3.46410i 0.0789337 0.136717i
\(643\) −34.0000 −1.34083 −0.670415 0.741987i \(-0.733884\pi\)
−0.670415 + 0.741987i \(0.733884\pi\)
\(644\) −12.0000 20.7846i −0.472866 0.819028i
\(645\) 0 0
\(646\) −5.00000 8.66025i −0.196722 0.340733i
\(647\) 1.00000 1.73205i 0.0393141 0.0680939i −0.845699 0.533660i \(-0.820816\pi\)
0.885013 + 0.465566i \(0.154149\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −8.00000 13.8564i −0.314027 0.543912i
\(650\) −2.50000 4.33013i −0.0980581 0.169842i
\(651\) −12.0000 20.7846i −0.470317 0.814613i
\(652\) −18.0000 −0.704934
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 5.00000 + 8.66025i 0.195515 + 0.338643i
\(655\) −18.0000 −0.703318
\(656\) −8.00000 −0.312348
\(657\) 0 0
\(658\) 18.0000 0.701713
\(659\) −12.0000 + 20.7846i −0.467454 + 0.809653i −0.999309 0.0371821i \(-0.988162\pi\)
0.531855 + 0.846836i \(0.321495\pi\)
\(660\) 2.00000 0.0778499
\(661\) −14.0000 + 24.2487i −0.544537 + 0.943166i 0.454099 + 0.890951i \(0.349961\pi\)
−0.998636 + 0.0522143i \(0.983372\pi\)
\(662\) 7.50000 12.9904i 0.291496 0.504885i
\(663\) −5.00000 + 8.66025i −0.194184 + 0.336336i
\(664\) −0.500000 0.866025i −0.0194038 0.0336083i
\(665\) 15.0000 0.581675
\(666\) 5.00000 + 3.46410i 0.193746 + 0.134231i
\(667\) −8.00000 −0.309761
\(668\) −1.00000 1.73205i −0.0386912 0.0670151i
\(669\) −6.00000 + 10.3923i −0.231973 + 0.401790i
\(670\) 1.00000 1.73205i 0.0386334 0.0669150i
\(671\) −10.0000 + 17.3205i −0.386046 + 0.668651i
\(672\) −3.00000 −0.115728
\(673\) 10.0000 17.3205i 0.385472 0.667657i −0.606363 0.795188i \(-0.707372\pi\)
0.991835 + 0.127532i \(0.0407054\pi\)
\(674\) −26.0000 −1.00148
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) 12.0000 0.461538
\(677\) 30.0000 1.15299 0.576497 0.817099i \(-0.304419\pi\)
0.576497 + 0.817099i \(0.304419\pi\)
\(678\) −9.50000 16.4545i −0.364845 0.631931i
\(679\) −12.0000 + 20.7846i −0.460518 + 0.797640i
\(680\) −2.00000 −0.0766965
\(681\) −3.50000 6.06218i −0.134120 0.232303i
\(682\) −8.00000 13.8564i −0.306336 0.530589i
\(683\) −14.0000 24.2487i −0.535695 0.927851i −0.999129 0.0417198i \(-0.986716\pi\)
0.463434 0.886131i \(-0.346617\pi\)
\(684\) 2.50000 4.33013i 0.0955899 0.165567i
\(685\) −2.50000 + 4.33013i −0.0955201 + 0.165446i
\(686\) 7.50000 + 12.9904i 0.286351 + 0.495975i
\(687\) 10.0000 + 17.3205i 0.381524 + 0.660819i
\(688\) 0 0
\(689\) −60.0000 −2.28582
\(690\) 4.00000 6.92820i 0.152277 0.263752i
\(691\) 14.5000 + 25.1147i 0.551606 + 0.955410i 0.998159 + 0.0606524i \(0.0193181\pi\)
−0.446553 + 0.894757i \(0.647349\pi\)
\(692\) −20.0000 −0.760286
\(693\) 6.00000 0.227921
\(694\) −16.5000 28.5788i −0.626331 1.08484i
\(695\) −12.0000 −0.455186
\(696\) −0.500000 + 0.866025i −0.0189525 + 0.0328266i
\(697\) −16.0000 −0.606043
\(698\) −2.00000 + 3.46410i −0.0757011 + 0.131118i
\(699\) 6.50000 11.2583i 0.245853 0.425829i
\(700\) 1.50000 2.59808i 0.0566947 0.0981981i
\(701\) −1.00000 1.73205i −0.0377695 0.0654187i 0.846523 0.532353i \(-0.178692\pi\)
−0.884292 + 0.466934i \(0.845359\pi\)
\(702\) −5.00000 −0.188713
\(703\) 25.0000 + 17.3205i 0.942893 + 0.653255i
\(704\) −2.00000 −0.0753778
\(705\) 3.00000 + 5.19615i 0.112987 + 0.195698i
\(706\) 14.5000 25.1147i 0.545715 0.945206i
\(707\) −9.00000 + 15.5885i −0.338480 + 0.586264i
\(708\) −4.00000 + 6.92820i −0.150329 + 0.260378i
\(709\) 42.0000 1.57734 0.788672 0.614815i \(-0.210769\pi\)
0.788672 + 0.614815i \(0.210769\pi\)
\(710\) −0.500000 + 0.866025i −0.0187647 + 0.0325014i
\(711\) 4.00000 0.150012
\(712\) −4.00000 6.92820i −0.149906 0.259645i
\(713\) −64.0000 −2.39682
\(714\) −6.00000 −0.224544
\(715\) −5.00000 8.66025i −0.186989 0.323875i
\(716\) 0 0
\(717\) 13.0000 0.485494
\(718\) 3.50000 + 6.06218i 0.130619 + 0.226238i
\(719\) −9.50000 16.4545i −0.354290 0.613649i 0.632706 0.774392i \(-0.281944\pi\)
−0.986996 + 0.160743i \(0.948611\pi\)
\(720\) −0.500000 0.866025i −0.0186339 0.0322749i
\(721\) 7.50000 12.9904i 0.279315 0.483787i
\(722\) 3.00000 5.19615i 0.111648 0.193381i
\(723\) −7.00000 12.1244i −0.260333 0.450910i
\(724\) 11.0000 + 19.0526i 0.408812 + 0.708083i
\(725\) −0.500000 0.866025i −0.0185695 0.0321634i
\(726\) −7.00000 −0.259794
\(727\) 1.50000 2.59808i 0.0556319 0.0963573i −0.836868 0.547404i \(-0.815616\pi\)
0.892500 + 0.451047i \(0.148949\pi\)
\(728\) 7.50000 + 12.9904i 0.277968 + 0.481456i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 10.0000 0.369611
\(733\) −25.0000 + 43.3013i −0.923396 + 1.59937i −0.129275 + 0.991609i \(0.541265\pi\)
−0.794121 + 0.607760i \(0.792068\pi\)
\(734\) −23.0000 −0.848945
\(735\) 1.00000 1.73205i 0.0368856 0.0638877i
\(736\) −4.00000 + 6.92820i −0.147442 + 0.255377i
\(737\) 2.00000 3.46410i 0.0736709 0.127602i
\(738\) −4.00000 6.92820i −0.147242 0.255031i
\(739\) 33.0000 1.21392 0.606962 0.794731i \(-0.292388\pi\)
0.606962 + 0.794731i \(0.292388\pi\)
\(740\) 5.50000 2.59808i 0.202184 0.0955072i
\(741\) −25.0000 −0.918398
\(742\) −18.0000 31.1769i −0.660801 1.14454i
\(743\) −4.00000 + 6.92820i −0.146746 + 0.254171i −0.930023 0.367502i \(-0.880213\pi\)
0.783277 + 0.621673i \(0.213547\pi\)
\(744\) −4.00000 + 6.92820i −0.146647 + 0.254000i
\(745\) 7.50000 12.9904i 0.274779 0.475931i
\(746\) −13.0000 −0.475964
\(747\) 0.500000 0.866025i 0.0182940 0.0316862i
\(748\) −4.00000 −0.146254
\(749\) −6.00000 10.3923i −0.219235 0.379727i
\(750\) 1.00000 0.0365148
\(751\) −10.0000 −0.364905 −0.182453 0.983215i \(-0.558404\pi\)
−0.182453 + 0.983215i \(0.558404\pi\)
\(752\) −3.00000 5.19615i −0.109399 0.189484i
\(753\) −9.00000 + 15.5885i −0.327978 + 0.568075i
\(754\) 5.00000 0.182089
\(755\) −5.00000 8.66025i −0.181969 0.315179i
\(756\) −1.50000 2.59808i −0.0545545 0.0944911i
\(757\) −6.50000 11.2583i −0.236247 0.409191i 0.723388 0.690442i \(-0.242584\pi\)
−0.959634 + 0.281251i \(0.909251\pi\)
\(758\) −14.5000 + 25.1147i −0.526664 + 0.912208i
\(759\) 8.00000 13.8564i 0.290382 0.502956i
\(760\) −2.50000 4.33013i −0.0906845 0.157070i
\(761\) −14.0000 24.2487i −0.507500 0.879015i −0.999962 0.00868155i \(-0.997237\pi\)
0.492463 0.870334i \(-0.336097\pi\)
\(762\) 2.50000 + 4.33013i 0.0905654 + 0.156864i
\(763\) 30.0000 1.08607
\(764\) 2.00000 3.46410i 0.0723575 0.125327i
\(765\) −1.00000 1.73205i −0.0361551 0.0626224i
\(766\) 26.0000 0.939418
\(767\) 40.0000 1.44432
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 23.0000 0.829401 0.414701 0.909958i \(-0.363886\pi\)
0.414701 + 0.909958i \(0.363886\pi\)
\(770\) 3.00000 5.19615i 0.108112 0.187256i
\(771\) 13.0000 0.468184
\(772\) 2.00000 3.46410i 0.0719816 0.124676i
\(773\) −24.0000 + 41.5692i −0.863220 + 1.49514i 0.00558380 + 0.999984i \(0.498223\pi\)
−0.868804 + 0.495156i \(0.835111\pi\)
\(774\) 0 0
\(775\) −4.00000 6.92820i −0.143684 0.248868i
\(776\) 8.00000 0.287183
\(777\) 16.5000 7.79423i 0.591934 0.279616i
\(778\) 19.0000 0.681183
\(779\) −20.0000 34.6410i −0.716574 1.24114i
\(780\) −2.50000 + 4.33013i −0.0895144 + 0.155043i
\(781\) −1.00000 + 1.73205i −0.0357828 + 0.0619777i
\(782\) −8.00000 + 13.8564i −0.286079 + 0.495504i
\(783\) −1.00000 −0.0357371
\(784\) −1.00000 + 1.73205i −0.0357143 + 0.0618590i
\(785\) 13.0000 0.463990
\(786\) 9.00000 + 15.5885i 0.321019 + 0.556022i
\(787\) −4.00000 −0.142585 −0.0712923 0.997455i \(-0.522712\pi\)
−0.0712923 + 0.997455i \(0.522712\pi\)
\(788\) −20.0000 −0.712470
\(789\) −2.00000 3.46410i −0.0712019 0.123325i
\(790\) 2.00000 3.46410i 0.0711568 0.123247i
\(791\) −57.0000 −2.02669
\(792\) −1.00000 1.73205i −0.0355335 0.0615457i
\(793\) −25.0000 43.3013i −0.887776 1.53767i
\(794\) 1.00000 + 1.73205i 0.0354887 + 0.0614682i
\(795\) 6.00000 10.3923i 0.212798 0.368577i
\(796\) 1.00000 1.73205i 0.0354441 0.0613909i
\(797\) 14.0000 + 24.2487i 0.495905 + 0.858933i 0.999989 0.00472155i \(-0.00150292\pi\)
−0.504083 + 0.863655i \(0.668170\pi\)
\(798\) −7.50000 12.9904i −0.265497 0.459855i
\(799\) −6.00000 10.3923i −0.212265 0.367653i
\(800\) −1.00000 −0.0353553
\(801\) 4.00000 6.92820i 0.141333 0.244796i
\(802\) 11.0000 + 19.0526i 0.388424 + 0.672769i
\(803\) 0 0
\(804\) −2.00000 −0.0705346
\(805\) −12.0000 20.7846i −0.422944 0.732561i
\(806\) 40.0000 1.40894
\(807\) 3.50000 6.06218i 0.123206 0.213399i
\(808\) 6.00000 0.211079
\(809\) 2.00000 3.46410i 0.0703163 0.121791i −0.828724 0.559658i \(-0.810932\pi\)
0.899040 + 0.437867i \(0.144266\pi\)
\(810\) 0.500000 0.866025i 0.0175682 0.0304290i
\(811\) 20.0000 34.6410i 0.702295 1.21641i −0.265364 0.964148i \(-0.585492\pi\)
0.967659 0.252262i \(-0.0811746\pi\)
\(812\) 1.50000 + 2.59808i 0.0526397 + 0.0911746i
\(813\) 16.0000 0.561144
\(814\) 11.0000 5.19615i 0.385550 0.182125i
\(815\) −18.0000 −0.630512
\(816\) 1.00000 + 1.73205i 0.0350070 + 0.0606339i
\(817\) 0 0
\(818\) 9.50000 16.4545i 0.332160 0.575317i
\(819\) −7.50000 + 12.9904i −0.262071 + 0.453921i
\(820\) −8.00000 −0.279372
\(821\) −22.5000 + 38.9711i −0.785255 + 1.36010i 0.143591 + 0.989637i \(0.454135\pi\)
−0.928846 + 0.370465i \(0.879198\pi\)
\(822\) 5.00000 0.174395
\(823\) 20.5000 + 35.5070i 0.714585 + 1.23770i 0.963119 + 0.269075i \(0.0867178\pi\)
−0.248534 + 0.968623i \(0.579949\pi\)
\(824\) −5.00000 −0.174183
\(825\) 2.00000 0.0696311
\(826\) 12.0000 + 20.7846i 0.417533 + 0.723189i
\(827\) 16.5000 28.5788i 0.573761 0.993784i −0.422414 0.906403i \(-0.638817\pi\)
0.996175 0.0873805i \(-0.0278496\pi\)
\(828\) −8.00000 −0.278019
\(829\) −10.0000 17.3205i −0.347314 0.601566i 0.638457 0.769657i \(-0.279573\pi\)
−0.985771 + 0.168091i \(0.946240\pi\)
\(830\) −0.500000 0.866025i −0.0173553 0.0300602i
\(831\) 0.500000 + 0.866025i 0.0173448 + 0.0300421i
\(832\) 2.50000 4.33013i 0.0866719 0.150120i
\(833\) −2.00000 + 3.46410i −0.0692959 + 0.120024i
\(834\) 6.00000 + 10.3923i 0.207763 + 0.359856i
\(835\) −1.00000 1.73205i −0.0346064 0.0599401i
\(836\) −5.00000 8.66025i −0.172929 0.299521i
\(837\) −8.00000 −0.276520
\(838\) −11.0000 + 19.0526i −0.379989 + 0.658160i
\(839\) −6.00000 10.3923i −0.207143 0.358782i 0.743670 0.668546i \(-0.233083\pi\)
−0.950813 + 0.309764i \(0.899750\pi\)
\(840\) −3.00000 −0.103510
\(841\) −28.0000 −0.965517
\(842\) 8.00000 + 13.8564i 0.275698 + 0.477523i
\(843\) 26.0000 0.895488
\(844\) 12.5000 21.6506i 0.430268 0.745246i
\(845\) 12.0000 0.412813
\(846\) 3.00000 5.19615i 0.103142 0.178647i
\(847\) −10.5000 + 18.1865i −0.360784 + 0.624897i
\(848\) −6.00000 + 10.3923i −0.206041 + 0.356873i
\(849\) −9.00000 15.5885i −0.308879 0.534994i
\(850\) −2.00000 −0.0685994
\(851\) 4.00000 48.4974i 0.137118 1.66247i
\(852\) 1.00000 0.0342594
\(853\) 3.00000 + 5.19615i 0.102718 + 0.177913i 0.912804 0.408399i \(-0.133913\pi\)
−0.810086 + 0.586312i \(0.800579\pi\)
\(854\) 15.0000 25.9808i 0.513289 0.889043i
\(855\) 2.50000 4.33013i 0.0854982 0.148087i
\(856\) −2.00000 + 3.46410i −0.0683586 + 0.118401i
\(857\) −33.0000 −1.12726 −0.563629 0.826028i \(-0.690595\pi\)
−0.563629 + 0.826028i \(0.690595\pi\)
\(858\) −5.00000 + 8.66025i −0.170697 + 0.295656i
\(859\) −39.0000 −1.33066 −0.665331 0.746548i \(-0.731710\pi\)
−0.665331 + 0.746548i \(0.731710\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 3.00000 0.102180
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) −0.500000 + 0.866025i −0.0170103 + 0.0294628i
\(865\) −20.0000 −0.680020
\(866\) 19.0000 + 32.9090i 0.645646 + 1.11829i
\(867\) −6.50000 11.2583i −0.220752 0.382353i
\(868\) 12.0000 + 20.7846i 0.407307 + 0.705476i
\(869\) 4.00000 6.92820i 0.135691 0.235023i
\(870\) −0.500000 + 0.866025i −0.0169516 + 0.0293610i
\(871\) 5.00000 + 8.66025i 0.169419 + 0.293442i
\(872\) −5.00000 8.66025i −0.169321 0.293273i
\(873\) 4.00000 + 6.92820i 0.135379 + 0.234484i
\(874\) −40.0000 −1.35302
\(875\) 1.50000 2.59808i 0.0507093 0.0878310i
\(876\) 0 0
\(877\) −27.0000 −0.911725 −0.455863 0.890050i \(-0.650669\pi\)
−0.455863 + 0.890050i \(0.650669\pi\)
\(878\) 6.00000 0.202490
\(879\) −12.0000 20.7846i −0.404750 0.701047i
\(880\) −2.00000 −0.0674200
\(881\) −21.0000 + 36.3731i −0.707508 + 1.22544i 0.258271 + 0.966073i \(0.416847\pi\)
−0.965779 + 0.259367i \(0.916486\pi\)
\(882\) −2.00000 −0.0673435
\(883\) 11.0000 19.0526i 0.370179 0.641170i −0.619413 0.785065i \(-0.712630\pi\)
0.989593 + 0.143895i \(0.0459629\pi\)
\(884\) 5.00000 8.66025i 0.168168 0.291276i
\(885\) −4.00000 + 6.92820i −0.134459 + 0.232889i
\(886\) 10.5000 + 18.1865i 0.352754 + 0.610989i
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) −5.00000 3.46410i −0.167789 0.116248i
\(889\) 15.0000 0.503084
\(890\) −4.00000 6.92820i −0.134080 0.232234i
\(891\) 1.00000 1.73205i 0.0335013 0.0580259i
\(892\) 6.00000 10.3923i 0.200895 0.347960i
\(893\) 15.0000 25.9808i 0.501956 0.869413i
\(894\) −15.0000 −0.501675
\(895\) 0 0
\(896\) 3.00000 0.100223
\(897\) 20.0000 + 34.6410i 0.667781 + 1.15663i
\(898\) 36.0000 1.20134
\(899\) 8.00000 0.266815
\(900\) −0.500000 0.866025i −0.0166667 0.0288675i
\(901\) −12.0000 + 20.7846i −0.399778 + 0.692436i
\(902\) −16.0000 −0.532742
\(903\) 0 0
\(904\) 9.50000 + 16.4545i 0.315965 + 0.547268i
\(905\) 11.0000 + 19.0526i 0.365652 + 0.633328i
\(906\) −5.00000 + 8.66025i −0.166114 + 0.287718i
\(907\) −6.00000 + 10.3923i −0.199227 + 0.345071i −0.948278 0.317441i \(-0.897176\pi\)
0.749051 + 0.662512i \(0.230510\pi\)
\(908\) 3.50000 + 6.06218i 0.116152 + 0.201180i
\(909\) 3.00000 + 5.19615i 0.0995037 + 0.172345i
\(910\) 7.50000 + 12.9904i 0.248623 + 0.430627i
\(911\) −13.0000 −0.430709 −0.215355 0.976536i \(-0.569091\pi\)
−0.215355 + 0.976536i \(0.569091\pi\)
\(912\) −2.50000 + 4.33013i −0.0827833 + 0.143385i
\(913\) −1.00000 1.73205i −0.0330952 0.0573225i
\(914\) 18.0000 0.595387
\(915\) 10.0000 0.330590
\(916\) −10.0000 17.3205i −0.330409 0.572286i
\(917\) 54.0000 1.78324
\(918\) −1.00000 + 1.73205i −0.0330049 + 0.0571662i
\(919\) 12.0000 0.395843 0.197922 0.980218i \(-0.436581\pi\)
0.197922 + 0.980218i \(0.436581\pi\)
\(920\) −4.00000 + 6.92820i −0.131876 + 0.228416i
\(921\) −9.00000 + 15.5885i −0.296560 + 0.513657i
\(922\) −1.50000 + 2.59808i −0.0493999 + 0.0855631i
\(923\) −2.50000 4.33013i −0.0822885 0.142528i
\(924\) −6.00000 −0.197386
\(925\) 5.50000 2.59808i 0.180839 0.0854242i
\(926\) 15.0000 0.492931
\(927\) −2.50000 4.33013i −0.0821108 0.142220i
\(928\) 0.500000 0.866025i 0.0164133 0.0284287i
\(929\) −5.00000 + 8.66025i −0.164045 + 0.284134i −0.936316 0.351160i \(-0.885787\pi\)
0.772271 + 0.635293i \(0.219121\pi\)
\(930\) −4.00000 + 6.92820i −0.131165 + 0.227185i
\(931\) −10.0000 −0.327737
\(932\) −6.50000 + 11.2583i −0.212915 + 0.368779i
\(933\) 0 0
\(934\) 19.5000 + 33.7750i 0.638059 + 1.10515i
\(935\) −4.00000 −0.130814
\(936\) 5.00000 0.163430
\(937\) −16.0000 27.7128i −0.522697 0.905338i −0.999651 0.0264099i \(-0.991593\pi\)
0.476954 0.878928i \(-0.341741\pi\)
\(938\) −3.00000 + 5.19615i −0.0979535 + 0.169660i
\(939\) −32.0000 −1.04428
\(940\) −3.00000 5.19615i −0.0978492 0.169480i
\(941\) −22.5000 38.9711i −0.733479 1.27042i −0.955387 0.295355i \(-0.904562\pi\)
0.221908 0.975068i \(-0.428771\pi\)
\(942\) −6.50000 11.2583i −0.211781 0.366816i
\(943\) −32.0000 + 55.4256i −1.04206 + 1.80491i
\(944\) 4.00000 6.92820i 0.130189 0.225494i
\(945\) −1.50000 2.59808i −0.0487950 0.0845154i
\(946\) 0 0
\(947\) 2.50000 + 4.33013i 0.0812391 + 0.140710i 0.903782 0.427992i \(-0.140779\pi\)
−0.822543 + 0.568702i \(0.807446\pi\)
\(948\) −4.00000 −0.129914
\(949\) 0 0
\(950\) −2.50000 4.33013i −0.0811107 0.140488i
\(951\) 24.0000 0.778253
\(952\) 6.00000 0.194461
\(953\) −14.5000 25.1147i −0.469701 0.813546i 0.529699 0.848186i \(-0.322305\pi\)
−0.999400 + 0.0346397i \(0.988972\pi\)
\(954\) −12.0000 −0.388514
\(955\) 2.00000 3.46410i 0.0647185 0.112096i
\(956\) −13.0000 −0.420450
\(957\) −1.00000 + 1.73205i −0.0323254 + 0.0559893i
\(958\) −6.00000 + 10.3923i −0.193851 + 0.335760i
\(959\) 7.50000 12.9904i 0.242188 0.419481i
\(960\) 0.500000 + 0.866025i 0.0161374 + 0.0279508i
\(961\) 33.0000 1.06452
\(962\) −2.50000 + 30.3109i −0.0806032 + 0.977262i
\(963\) −4.00000 −0.128898
\(964\) 7.00000 + 12.1244i 0.225455 + 0.390499i
\(965\) 2.00000 3.46410i 0.0643823 0.111513i
\(966\) −12.0000 + 20.7846i −0.386094 + 0.668734i
\(967\) −11.5000 + 19.9186i −0.369815 + 0.640538i −0.989536 0.144283i \(-0.953912\pi\)
0.619721 + 0.784822i \(0.287246\pi\)
\(968\) 7.00000 0.224989
\(969\) −5.00000 + 8.66025i −0.160623 + 0.278207i
\(970\) 8.00000 0.256865
\(971\) −28.0000 48.4974i −0.898563 1.55636i −0.829332 0.558756i \(-0.811279\pi\)
−0.0692304 0.997601i \(-0.522054\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 36.0000 1.15411
\(974\) −16.5000 28.5788i −0.528694 0.915725i
\(975\) −2.50000 + 4.33013i −0.0800641 + 0.138675i
\(976\) −10.0000 −0.320092
\(977\) −29.5000 51.0955i −0.943789 1.63469i −0.758159 0.652070i \(-0.773901\pi\)
−0.185630 0.982620i \(-0.559433\pi\)
\(978\) 9.00000 + 15.5885i 0.287788 + 0.498464i
\(979\) −8.00000 13.8564i −0.255681 0.442853i
\(980\) −1.00000 + 1.73205i −0.0319438 + 0.0553283i
\(981\) 5.00000 8.66025i 0.159638 0.276501i
\(982\) −7.00000 12.1244i −0.223379 0.386904i
\(983\) 3.00000 + 5.19615i 0.0956851 + 0.165732i 0.909894 0.414840i \(-0.136162\pi\)
−0.814209 + 0.580572i \(0.802829\pi\)
\(984\) 4.00000 + 6.92820i 0.127515 + 0.220863i
\(985\) −20.0000 −0.637253
\(986\) 1.00000 1.73205i 0.0318465 0.0551597i
\(987\) −9.00000 15.5885i −0.286473 0.496186i
\(988\) 25.0000 0.795356
\(989\) 0 0
\(990\) −1.00000 1.73205i −0.0317821 0.0550482i
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 4.00000 6.92820i 0.127000 0.219971i
\(993\) −15.0000 −0.476011
\(994\) 1.50000 2.59808i 0.0475771 0.0824060i
\(995\) 1.00000 1.73205i 0.0317021 0.0549097i
\(996\) −0.500000 + 0.866025i −0.0158431 + 0.0274411i
\(997\) 13.5000 + 23.3827i 0.427549 + 0.740537i 0.996655 0.0817275i \(-0.0260437\pi\)
−0.569105 + 0.822265i \(0.692710\pi\)
\(998\) −25.0000 −0.791361
\(999\) 0.500000 6.06218i 0.0158193 0.191799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1110.2.i.e.211.1 yes 2
37.10 even 3 inner 1110.2.i.e.121.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.i.e.121.1 2 37.10 even 3 inner
1110.2.i.e.211.1 yes 2 1.1 even 1 trivial