Properties

Label 1110.2.i.a
Level $1110$
Weight $2$
Character orbit 1110.i
Analytic conductor $8.863$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} -\zeta_{6} q^{3} -\zeta_{6} q^{4} + \zeta_{6} q^{5} + q^{6} + 4 \zeta_{6} q^{7} + q^{8} + ( -1 + \zeta_{6} ) q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} -\zeta_{6} q^{3} -\zeta_{6} q^{4} + \zeta_{6} q^{5} + q^{6} + 4 \zeta_{6} q^{7} + q^{8} + ( -1 + \zeta_{6} ) q^{9} - q^{10} + 3 q^{11} + ( -1 + \zeta_{6} ) q^{12} + \zeta_{6} q^{13} -4 q^{14} + ( 1 - \zeta_{6} ) q^{15} + ( -1 + \zeta_{6} ) q^{16} + ( -3 + 3 \zeta_{6} ) q^{17} -\zeta_{6} q^{18} -2 \zeta_{6} q^{19} + ( 1 - \zeta_{6} ) q^{20} + ( 4 - 4 \zeta_{6} ) q^{21} + ( -3 + 3 \zeta_{6} ) q^{22} -\zeta_{6} q^{24} + ( -1 + \zeta_{6} ) q^{25} - q^{26} + q^{27} + ( 4 - 4 \zeta_{6} ) q^{28} -3 q^{29} + \zeta_{6} q^{30} -4 q^{31} -\zeta_{6} q^{32} -3 \zeta_{6} q^{33} -3 \zeta_{6} q^{34} + ( -4 + 4 \zeta_{6} ) q^{35} + q^{36} + ( 4 + 3 \zeta_{6} ) q^{37} + 2 q^{38} + ( 1 - \zeta_{6} ) q^{39} + \zeta_{6} q^{40} + 4 \zeta_{6} q^{42} + 8 q^{43} -3 \zeta_{6} q^{44} - q^{45} -9 q^{47} + q^{48} + ( -9 + 9 \zeta_{6} ) q^{49} -\zeta_{6} q^{50} + 3 q^{51} + ( 1 - \zeta_{6} ) q^{52} + ( -1 + \zeta_{6} ) q^{54} + 3 \zeta_{6} q^{55} + 4 \zeta_{6} q^{56} + ( -2 + 2 \zeta_{6} ) q^{57} + ( 3 - 3 \zeta_{6} ) q^{58} + ( -3 + 3 \zeta_{6} ) q^{59} - q^{60} + 10 \zeta_{6} q^{61} + ( 4 - 4 \zeta_{6} ) q^{62} -4 q^{63} + q^{64} + ( -1 + \zeta_{6} ) q^{65} + 3 q^{66} + 13 \zeta_{6} q^{67} + 3 q^{68} -4 \zeta_{6} q^{70} -6 \zeta_{6} q^{71} + ( -1 + \zeta_{6} ) q^{72} -4 q^{73} + ( -7 + 4 \zeta_{6} ) q^{74} + q^{75} + ( -2 + 2 \zeta_{6} ) q^{76} + 12 \zeta_{6} q^{77} + \zeta_{6} q^{78} + 16 \zeta_{6} q^{79} - q^{80} -\zeta_{6} q^{81} + ( -12 + 12 \zeta_{6} ) q^{83} -4 q^{84} -3 q^{85} + ( -8 + 8 \zeta_{6} ) q^{86} + 3 \zeta_{6} q^{87} + 3 q^{88} + ( 6 - 6 \zeta_{6} ) q^{89} + ( 1 - \zeta_{6} ) q^{90} + ( -4 + 4 \zeta_{6} ) q^{91} + 4 \zeta_{6} q^{93} + ( 9 - 9 \zeta_{6} ) q^{94} + ( 2 - 2 \zeta_{6} ) q^{95} + ( -1 + \zeta_{6} ) q^{96} + 2 q^{97} -9 \zeta_{6} q^{98} + ( -3 + 3 \zeta_{6} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} - q^{4} + q^{5} + 2q^{6} + 4q^{7} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} + q^{5} + 2q^{6} + 4q^{7} + 2q^{8} - q^{9} - 2q^{10} + 6q^{11} - q^{12} + q^{13} - 8q^{14} + q^{15} - q^{16} - 3q^{17} - q^{18} - 2q^{19} + q^{20} + 4q^{21} - 3q^{22} - q^{24} - q^{25} - 2q^{26} + 2q^{27} + 4q^{28} - 6q^{29} + q^{30} - 8q^{31} - q^{32} - 3q^{33} - 3q^{34} - 4q^{35} + 2q^{36} + 11q^{37} + 4q^{38} + q^{39} + q^{40} + 4q^{42} + 16q^{43} - 3q^{44} - 2q^{45} - 18q^{47} + 2q^{48} - 9q^{49} - q^{50} + 6q^{51} + q^{52} - q^{54} + 3q^{55} + 4q^{56} - 2q^{57} + 3q^{58} - 3q^{59} - 2q^{60} + 10q^{61} + 4q^{62} - 8q^{63} + 2q^{64} - q^{65} + 6q^{66} + 13q^{67} + 6q^{68} - 4q^{70} - 6q^{71} - q^{72} - 8q^{73} - 10q^{74} + 2q^{75} - 2q^{76} + 12q^{77} + q^{78} + 16q^{79} - 2q^{80} - q^{81} - 12q^{83} - 8q^{84} - 6q^{85} - 8q^{86} + 3q^{87} + 6q^{88} + 6q^{89} + q^{90} - 4q^{91} + 4q^{93} + 9q^{94} + 2q^{95} - q^{96} + 4q^{97} - 9q^{98} - 3q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i −0.500000 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i 1.00000 2.00000 + 3.46410i 1.00000 −0.500000 + 0.866025i −1.00000
211.1 −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i 1.00000 2.00000 3.46410i 1.00000 −0.500000 0.866025i −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.i.a 2
37.c even 3 1 inner 1110.2.i.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.i.a 2 1.a even 1 1 trivial
1110.2.i.a 2 37.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1110, [\chi])\):

\( T_{7}^{2} - 4 T_{7} + 16 \)
\( T_{11} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( 16 - 4 T + T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 1 - T + T^{2} \)
$17$ \( 9 + 3 T + T^{2} \)
$19$ \( 4 + 2 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( ( 3 + T )^{2} \)
$31$ \( ( 4 + T )^{2} \)
$37$ \( 37 - 11 T + T^{2} \)
$41$ \( T^{2} \)
$43$ \( ( -8 + T )^{2} \)
$47$ \( ( 9 + T )^{2} \)
$53$ \( T^{2} \)
$59$ \( 9 + 3 T + T^{2} \)
$61$ \( 100 - 10 T + T^{2} \)
$67$ \( 169 - 13 T + T^{2} \)
$71$ \( 36 + 6 T + T^{2} \)
$73$ \( ( 4 + T )^{2} \)
$79$ \( 256 - 16 T + T^{2} \)
$83$ \( 144 + 12 T + T^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( -2 + T )^{2} \)
show more
show less