Properties

Label 1110.2.h.b
Level $1110$
Weight $2$
Character orbit 1110.h
Analytic conductor $8.863$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,2,Mod(961,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{3} - q^{4} + i q^{5} - i q^{6} + 2 q^{7} - i q^{8} + q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} - q^{3} - q^{4} + i q^{5} - i q^{6} + 2 q^{7} - i q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} + 2 i q^{13} + 2 i q^{14} - i q^{15} + q^{16} - 2 i q^{17} + i q^{18} + 6 i q^{19} - i q^{20} - 2 q^{21} - 4 i q^{22} + i q^{24} - q^{25} - 2 q^{26} - q^{27} - 2 q^{28} - 2 i q^{29} + q^{30} + 4 i q^{31} + i q^{32} + 4 q^{33} + 2 q^{34} + 2 i q^{35} - q^{36} + (i - 6) q^{37} - 6 q^{38} - 2 i q^{39} + q^{40} - 2 q^{41} - 2 i q^{42} + 12 i q^{43} + 4 q^{44} + i q^{45} - 6 q^{47} - q^{48} - 3 q^{49} - i q^{50} + 2 i q^{51} - 2 i q^{52} - 4 q^{53} - i q^{54} - 4 i q^{55} - 2 i q^{56} - 6 i q^{57} + 2 q^{58} - 10 i q^{59} + i q^{60} - 2 i q^{61} - 4 q^{62} + 2 q^{63} - q^{64} - 2 q^{65} + 4 i q^{66} - 12 q^{67} + 2 i q^{68} - 2 q^{70} + 12 q^{71} - i q^{72} - 10 q^{73} + ( - 6 i - 1) q^{74} + q^{75} - 6 i q^{76} - 8 q^{77} + 2 q^{78} + 4 i q^{79} + i q^{80} + q^{81} - 2 i q^{82} + 2 q^{84} + 2 q^{85} - 12 q^{86} + 2 i q^{87} + 4 i q^{88} - 12 i q^{89} - q^{90} + 4 i q^{91} - 4 i q^{93} - 6 i q^{94} - 6 q^{95} - i q^{96} - 6 i q^{97} - 3 i q^{98} - 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} + 4 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 2 q^{4} + 4 q^{7} + 2 q^{9} - 2 q^{10} - 8 q^{11} + 2 q^{12} + 2 q^{16} - 4 q^{21} - 2 q^{25} - 4 q^{26} - 2 q^{27} - 4 q^{28} + 2 q^{30} + 8 q^{33} + 4 q^{34} - 2 q^{36} - 12 q^{37} - 12 q^{38} + 2 q^{40} - 4 q^{41} + 8 q^{44} - 12 q^{47} - 2 q^{48} - 6 q^{49} - 8 q^{53} + 4 q^{58} - 8 q^{62} + 4 q^{63} - 2 q^{64} - 4 q^{65} - 24 q^{67} - 4 q^{70} + 24 q^{71} - 20 q^{73} - 2 q^{74} + 2 q^{75} - 16 q^{77} + 4 q^{78} + 2 q^{81} + 4 q^{84} + 4 q^{85} - 24 q^{86} - 2 q^{90} - 12 q^{95} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
961.1
1.00000i
1.00000i
1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000 1.00000i 1.00000 −1.00000
961.2 1.00000i −1.00000 −1.00000 1.00000i 1.00000i 2.00000 1.00000i 1.00000 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1110.2.h.b 2
3.b odd 2 1 3330.2.h.h 2
37.b even 2 1 inner 1110.2.h.b 2
111.d odd 2 1 3330.2.h.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1110.2.h.b 2 1.a even 1 1 trivial
1110.2.h.b 2 37.b even 2 1 inner
3330.2.h.h 2 3.b odd 2 1
3330.2.h.h 2 111.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1110, [\chi])\):

\( T_{7} - 2 \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T - 2)^{2} \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( T^{2} + 36 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 37 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 144 \) Copy content Toggle raw display
$47$ \( (T + 6)^{2} \) Copy content Toggle raw display
$53$ \( (T + 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 100 \) Copy content Toggle raw display
$61$ \( T^{2} + 4 \) Copy content Toggle raw display
$67$ \( (T + 12)^{2} \) Copy content Toggle raw display
$71$ \( (T - 12)^{2} \) Copy content Toggle raw display
$73$ \( (T + 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 16 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 144 \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less