Properties

Label 1110.2.h.a.961.1
Level $1110$
Weight $2$
Character 1110.961
Analytic conductor $8.863$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1110,2,Mod(961,1110)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1110, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1110.961");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1110.961
Dual form 1110.2.h.a.961.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{3} -1.00000 q^{4} -1.00000i q^{5} +1.00000i q^{6} -1.00000 q^{7} +1.00000i q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{2} -1.00000 q^{3} -1.00000 q^{4} -1.00000i q^{5} +1.00000i q^{6} -1.00000 q^{7} +1.00000i q^{8} +1.00000 q^{9} -1.00000 q^{10} -1.00000 q^{11} +1.00000 q^{12} +1.00000i q^{13} +1.00000i q^{14} +1.00000i q^{15} +1.00000 q^{16} +5.00000i q^{17} -1.00000i q^{18} +3.00000i q^{19} +1.00000i q^{20} +1.00000 q^{21} +1.00000i q^{22} +3.00000i q^{23} -1.00000i q^{24} -1.00000 q^{25} +1.00000 q^{26} -1.00000 q^{27} +1.00000 q^{28} -10.0000i q^{29} +1.00000 q^{30} +2.00000i q^{31} -1.00000i q^{32} +1.00000 q^{33} +5.00000 q^{34} +1.00000i q^{35} -1.00000 q^{36} +(6.00000 - 1.00000i) q^{37} +3.00000 q^{38} -1.00000i q^{39} +1.00000 q^{40} -2.00000 q^{41} -1.00000i q^{42} +12.0000i q^{43} +1.00000 q^{44} -1.00000i q^{45} +3.00000 q^{46} +12.0000 q^{47} -1.00000 q^{48} -6.00000 q^{49} +1.00000i q^{50} -5.00000i q^{51} -1.00000i q^{52} +11.0000 q^{53} +1.00000i q^{54} +1.00000i q^{55} -1.00000i q^{56} -3.00000i q^{57} -10.0000 q^{58} +10.0000i q^{59} -1.00000i q^{60} +14.0000i q^{61} +2.00000 q^{62} -1.00000 q^{63} -1.00000 q^{64} +1.00000 q^{65} -1.00000i q^{66} +12.0000 q^{67} -5.00000i q^{68} -3.00000i q^{69} +1.00000 q^{70} +6.00000 q^{71} +1.00000i q^{72} -1.00000 q^{73} +(-1.00000 - 6.00000i) q^{74} +1.00000 q^{75} -3.00000i q^{76} +1.00000 q^{77} -1.00000 q^{78} -10.0000i q^{79} -1.00000i q^{80} +1.00000 q^{81} +2.00000i q^{82} -3.00000 q^{83} -1.00000 q^{84} +5.00000 q^{85} +12.0000 q^{86} +10.0000i q^{87} -1.00000i q^{88} -9.00000i q^{89} -1.00000 q^{90} -1.00000i q^{91} -3.00000i q^{92} -2.00000i q^{93} -12.0000i q^{94} +3.00000 q^{95} +1.00000i q^{96} -12.0000i q^{97} +6.00000i q^{98} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{4} - 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - 2 q^{4} - 2 q^{7} + 2 q^{9} - 2 q^{10} - 2 q^{11} + 2 q^{12} + 2 q^{16} + 2 q^{21} - 2 q^{25} + 2 q^{26} - 2 q^{27} + 2 q^{28} + 2 q^{30} + 2 q^{33} + 10 q^{34} - 2 q^{36} + 12 q^{37} + 6 q^{38} + 2 q^{40} - 4 q^{41} + 2 q^{44} + 6 q^{46} + 24 q^{47} - 2 q^{48} - 12 q^{49} + 22 q^{53} - 20 q^{58} + 4 q^{62} - 2 q^{63} - 2 q^{64} + 2 q^{65} + 24 q^{67} + 2 q^{70} + 12 q^{71} - 2 q^{73} - 2 q^{74} + 2 q^{75} + 2 q^{77} - 2 q^{78} + 2 q^{81} - 6 q^{83} - 2 q^{84} + 10 q^{85} + 24 q^{86} - 2 q^{90} + 6 q^{95} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) 1.00000i 0.447214i
\(6\) 1.00000i 0.408248i
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 1.00000 0.288675
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 1.00000i 0.267261i
\(15\) 1.00000i 0.258199i
\(16\) 1.00000 0.250000
\(17\) 5.00000i 1.21268i 0.795206 + 0.606339i \(0.207363\pi\)
−0.795206 + 0.606339i \(0.792637\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 3.00000i 0.688247i 0.938924 + 0.344124i \(0.111824\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(20\) 1.00000i 0.223607i
\(21\) 1.00000 0.218218
\(22\) 1.00000i 0.213201i
\(23\) 3.00000i 0.625543i 0.949828 + 0.312772i \(0.101257\pi\)
−0.949828 + 0.312772i \(0.898743\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.00000 −0.200000
\(26\) 1.00000 0.196116
\(27\) −1.00000 −0.192450
\(28\) 1.00000 0.188982
\(29\) 10.0000i 1.85695i −0.371391 0.928477i \(-0.621119\pi\)
0.371391 0.928477i \(-0.378881\pi\)
\(30\) 1.00000 0.182574
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 1.00000 0.174078
\(34\) 5.00000 0.857493
\(35\) 1.00000i 0.169031i
\(36\) −1.00000 −0.166667
\(37\) 6.00000 1.00000i 0.986394 0.164399i
\(38\) 3.00000 0.486664
\(39\) 1.00000i 0.160128i
\(40\) 1.00000 0.158114
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 1.00000i 0.154303i
\(43\) 12.0000i 1.82998i 0.403473 + 0.914991i \(0.367803\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 1.00000 0.150756
\(45\) 1.00000i 0.149071i
\(46\) 3.00000 0.442326
\(47\) 12.0000 1.75038 0.875190 0.483779i \(-0.160736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.00000 −0.857143
\(50\) 1.00000i 0.141421i
\(51\) 5.00000i 0.700140i
\(52\) 1.00000i 0.138675i
\(53\) 11.0000 1.51097 0.755483 0.655168i \(-0.227402\pi\)
0.755483 + 0.655168i \(0.227402\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 1.00000i 0.134840i
\(56\) 1.00000i 0.133631i
\(57\) 3.00000i 0.397360i
\(58\) −10.0000 −1.31306
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 1.00000i 0.129099i
\(61\) 14.0000i 1.79252i 0.443533 + 0.896258i \(0.353725\pi\)
−0.443533 + 0.896258i \(0.646275\pi\)
\(62\) 2.00000 0.254000
\(63\) −1.00000 −0.125988
\(64\) −1.00000 −0.125000
\(65\) 1.00000 0.124035
\(66\) 1.00000i 0.123091i
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 5.00000i 0.606339i
\(69\) 3.00000i 0.361158i
\(70\) 1.00000 0.119523
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 1.00000i 0.117851i
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) −1.00000 6.00000i −0.116248 0.697486i
\(75\) 1.00000 0.115470
\(76\) 3.00000i 0.344124i
\(77\) 1.00000 0.113961
\(78\) −1.00000 −0.113228
\(79\) 10.0000i 1.12509i −0.826767 0.562544i \(-0.809823\pi\)
0.826767 0.562544i \(-0.190177\pi\)
\(80\) 1.00000i 0.111803i
\(81\) 1.00000 0.111111
\(82\) 2.00000i 0.220863i
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) −1.00000 −0.109109
\(85\) 5.00000 0.542326
\(86\) 12.0000 1.29399
\(87\) 10.0000i 1.07211i
\(88\) 1.00000i 0.106600i
\(89\) 9.00000i 0.953998i −0.878904 0.476999i \(-0.841725\pi\)
0.878904 0.476999i \(-0.158275\pi\)
\(90\) −1.00000 −0.105409
\(91\) 1.00000i 0.104828i
\(92\) 3.00000i 0.312772i
\(93\) 2.00000i 0.207390i
\(94\) 12.0000i 1.23771i
\(95\) 3.00000 0.307794
\(96\) 1.00000i 0.102062i
\(97\) 12.0000i 1.21842i −0.793011 0.609208i \(-0.791488\pi\)
0.793011 0.609208i \(-0.208512\pi\)
\(98\) 6.00000i 0.606092i
\(99\) −1.00000 −0.100504
\(100\) 1.00000 0.100000
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) −5.00000 −0.495074
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 1.00000i 0.0975900i
\(106\) 11.0000i 1.06841i
\(107\) −9.00000 −0.870063 −0.435031 0.900415i \(-0.643263\pi\)
−0.435031 + 0.900415i \(0.643263\pi\)
\(108\) 1.00000 0.0962250
\(109\) 11.0000i 1.05361i 0.849987 + 0.526804i \(0.176610\pi\)
−0.849987 + 0.526804i \(0.823390\pi\)
\(110\) 1.00000 0.0953463
\(111\) −6.00000 + 1.00000i −0.569495 + 0.0949158i
\(112\) −1.00000 −0.0944911
\(113\) 6.00000i 0.564433i 0.959351 + 0.282216i \(0.0910696\pi\)
−0.959351 + 0.282216i \(0.908930\pi\)
\(114\) −3.00000 −0.280976
\(115\) 3.00000 0.279751
\(116\) 10.0000i 0.928477i
\(117\) 1.00000i 0.0924500i
\(118\) 10.0000 0.920575
\(119\) 5.00000i 0.458349i
\(120\) −1.00000 −0.0912871
\(121\) −10.0000 −0.909091
\(122\) 14.0000 1.26750
\(123\) 2.00000 0.180334
\(124\) 2.00000i 0.179605i
\(125\) 1.00000i 0.0894427i
\(126\) 1.00000i 0.0890871i
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 12.0000i 1.05654i
\(130\) 1.00000i 0.0877058i
\(131\) 2.00000i 0.174741i 0.996176 + 0.0873704i \(0.0278464\pi\)
−0.996176 + 0.0873704i \(0.972154\pi\)
\(132\) −1.00000 −0.0870388
\(133\) 3.00000i 0.260133i
\(134\) 12.0000i 1.03664i
\(135\) 1.00000i 0.0860663i
\(136\) −5.00000 −0.428746
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) −3.00000 −0.255377
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 1.00000i 0.0845154i
\(141\) −12.0000 −1.01058
\(142\) 6.00000i 0.503509i
\(143\) 1.00000i 0.0836242i
\(144\) 1.00000 0.0833333
\(145\) −10.0000 −0.830455
\(146\) 1.00000i 0.0827606i
\(147\) 6.00000 0.494872
\(148\) −6.00000 + 1.00000i −0.493197 + 0.0821995i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 1.00000i 0.0816497i
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) −3.00000 −0.243332
\(153\) 5.00000i 0.404226i
\(154\) 1.00000i 0.0805823i
\(155\) 2.00000 0.160644
\(156\) 1.00000i 0.0800641i
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) −10.0000 −0.795557
\(159\) −11.0000 −0.872357
\(160\) −1.00000 −0.0790569
\(161\) 3.00000i 0.236433i
\(162\) 1.00000i 0.0785674i
\(163\) 19.0000i 1.48819i 0.668071 + 0.744097i \(0.267120\pi\)
−0.668071 + 0.744097i \(0.732880\pi\)
\(164\) 2.00000 0.156174
\(165\) 1.00000i 0.0778499i
\(166\) 3.00000i 0.232845i
\(167\) 21.0000i 1.62503i 0.582941 + 0.812514i \(0.301902\pi\)
−0.582941 + 0.812514i \(0.698098\pi\)
\(168\) 1.00000i 0.0771517i
\(169\) 12.0000 0.923077
\(170\) 5.00000i 0.383482i
\(171\) 3.00000i 0.229416i
\(172\) 12.0000i 0.914991i
\(173\) −9.00000 −0.684257 −0.342129 0.939653i \(-0.611148\pi\)
−0.342129 + 0.939653i \(0.611148\pi\)
\(174\) 10.0000 0.758098
\(175\) 1.00000 0.0755929
\(176\) −1.00000 −0.0753778
\(177\) 10.0000i 0.751646i
\(178\) −9.00000 −0.674579
\(179\) 12.0000i 0.896922i −0.893802 0.448461i \(-0.851972\pi\)
0.893802 0.448461i \(-0.148028\pi\)
\(180\) 1.00000i 0.0745356i
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −1.00000 −0.0741249
\(183\) 14.0000i 1.03491i
\(184\) −3.00000 −0.221163
\(185\) −1.00000 6.00000i −0.0735215 0.441129i
\(186\) −2.00000 −0.146647
\(187\) 5.00000i 0.365636i
\(188\) −12.0000 −0.875190
\(189\) 1.00000 0.0727393
\(190\) 3.00000i 0.217643i
\(191\) 3.00000i 0.217072i 0.994092 + 0.108536i \(0.0346163\pi\)
−0.994092 + 0.108536i \(0.965384\pi\)
\(192\) 1.00000 0.0721688
\(193\) 4.00000i 0.287926i 0.989583 + 0.143963i \(0.0459847\pi\)
−0.989583 + 0.143963i \(0.954015\pi\)
\(194\) −12.0000 −0.861550
\(195\) −1.00000 −0.0716115
\(196\) 6.00000 0.428571
\(197\) −23.0000 −1.63868 −0.819341 0.573306i \(-0.805660\pi\)
−0.819341 + 0.573306i \(0.805660\pi\)
\(198\) 1.00000i 0.0710669i
\(199\) 2.00000i 0.141776i −0.997484 0.0708881i \(-0.977417\pi\)
0.997484 0.0708881i \(-0.0225833\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) −12.0000 −0.846415
\(202\) 10.0000i 0.703598i
\(203\) 10.0000i 0.701862i
\(204\) 5.00000i 0.350070i
\(205\) 2.00000i 0.139686i
\(206\) 16.0000 1.11477
\(207\) 3.00000i 0.208514i
\(208\) 1.00000i 0.0693375i
\(209\) 3.00000i 0.207514i
\(210\) −1.00000 −0.0690066
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) −11.0000 −0.755483
\(213\) −6.00000 −0.411113
\(214\) 9.00000i 0.615227i
\(215\) 12.0000 0.818393
\(216\) 1.00000i 0.0680414i
\(217\) 2.00000i 0.135769i
\(218\) 11.0000 0.745014
\(219\) 1.00000 0.0675737
\(220\) 1.00000i 0.0674200i
\(221\) −5.00000 −0.336336
\(222\) 1.00000 + 6.00000i 0.0671156 + 0.402694i
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) −1.00000 −0.0666667
\(226\) 6.00000 0.399114
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 3.00000i 0.198680i
\(229\) −20.0000 −1.32164 −0.660819 0.750546i \(-0.729791\pi\)
−0.660819 + 0.750546i \(0.729791\pi\)
\(230\) 3.00000i 0.197814i
\(231\) −1.00000 −0.0657952
\(232\) 10.0000 0.656532
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 1.00000 0.0653720
\(235\) 12.0000i 0.782794i
\(236\) 10.0000i 0.650945i
\(237\) 10.0000i 0.649570i
\(238\) −5.00000 −0.324102
\(239\) 8.00000i 0.517477i −0.965947 0.258738i \(-0.916693\pi\)
0.965947 0.258738i \(-0.0833068\pi\)
\(240\) 1.00000i 0.0645497i
\(241\) 4.00000i 0.257663i −0.991667 0.128831i \(-0.958877\pi\)
0.991667 0.128831i \(-0.0411226\pi\)
\(242\) 10.0000i 0.642824i
\(243\) −1.00000 −0.0641500
\(244\) 14.0000i 0.896258i
\(245\) 6.00000i 0.383326i
\(246\) 2.00000i 0.127515i
\(247\) −3.00000 −0.190885
\(248\) −2.00000 −0.127000
\(249\) 3.00000 0.190117
\(250\) 1.00000 0.0632456
\(251\) 8.00000i 0.504956i 0.967603 + 0.252478i \(0.0812455\pi\)
−0.967603 + 0.252478i \(0.918755\pi\)
\(252\) 1.00000 0.0629941
\(253\) 3.00000i 0.188608i
\(254\) 19.0000i 1.19217i
\(255\) −5.00000 −0.313112
\(256\) 1.00000 0.0625000
\(257\) 27.0000i 1.68421i −0.539311 0.842107i \(-0.681315\pi\)
0.539311 0.842107i \(-0.318685\pi\)
\(258\) −12.0000 −0.747087
\(259\) −6.00000 + 1.00000i −0.372822 + 0.0621370i
\(260\) −1.00000 −0.0620174
\(261\) 10.0000i 0.618984i
\(262\) 2.00000 0.123560
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 1.00000i 0.0615457i
\(265\) 11.0000i 0.675725i
\(266\) −3.00000 −0.183942
\(267\) 9.00000i 0.550791i
\(268\) −12.0000 −0.733017
\(269\) −11.0000 −0.670682 −0.335341 0.942097i \(-0.608852\pi\)
−0.335341 + 0.942097i \(0.608852\pi\)
\(270\) 1.00000 0.0608581
\(271\) −4.00000 −0.242983 −0.121491 0.992592i \(-0.538768\pi\)
−0.121491 + 0.992592i \(0.538768\pi\)
\(272\) 5.00000i 0.303170i
\(273\) 1.00000i 0.0605228i
\(274\) 12.0000i 0.724947i
\(275\) 1.00000 0.0603023
\(276\) 3.00000i 0.180579i
\(277\) 25.0000i 1.50210i 0.660243 + 0.751052i \(0.270453\pi\)
−0.660243 + 0.751052i \(0.729547\pi\)
\(278\) 12.0000i 0.719712i
\(279\) 2.00000i 0.119737i
\(280\) −1.00000 −0.0597614
\(281\) 1.00000i 0.0596550i 0.999555 + 0.0298275i \(0.00949580\pi\)
−0.999555 + 0.0298275i \(0.990504\pi\)
\(282\) 12.0000i 0.714590i
\(283\) 7.00000i 0.416107i 0.978117 + 0.208053i \(0.0667128\pi\)
−0.978117 + 0.208053i \(0.933287\pi\)
\(284\) −6.00000 −0.356034
\(285\) −3.00000 −0.177705
\(286\) −1.00000 −0.0591312
\(287\) 2.00000 0.118056
\(288\) 1.00000i 0.0589256i
\(289\) −8.00000 −0.470588
\(290\) 10.0000i 0.587220i
\(291\) 12.0000i 0.703452i
\(292\) 1.00000 0.0585206
\(293\) 15.0000 0.876309 0.438155 0.898900i \(-0.355632\pi\)
0.438155 + 0.898900i \(0.355632\pi\)
\(294\) 6.00000i 0.349927i
\(295\) 10.0000 0.582223
\(296\) 1.00000 + 6.00000i 0.0581238 + 0.348743i
\(297\) 1.00000 0.0580259
\(298\) 18.0000i 1.04271i
\(299\) −3.00000 −0.173494
\(300\) −1.00000 −0.0577350
\(301\) 12.0000i 0.691669i
\(302\) 17.0000i 0.978240i
\(303\) −10.0000 −0.574485
\(304\) 3.00000i 0.172062i
\(305\) 14.0000 0.801638
\(306\) 5.00000 0.285831
\(307\) 8.00000 0.456584 0.228292 0.973593i \(-0.426686\pi\)
0.228292 + 0.973593i \(0.426686\pi\)
\(308\) −1.00000 −0.0569803
\(309\) 16.0000i 0.910208i
\(310\) 2.00000i 0.113592i
\(311\) 20.0000i 1.13410i 0.823685 + 0.567048i \(0.191915\pi\)
−0.823685 + 0.567048i \(0.808085\pi\)
\(312\) 1.00000 0.0566139
\(313\) 26.0000i 1.46961i 0.678280 + 0.734803i \(0.262726\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 12.0000i 0.677199i
\(315\) 1.00000i 0.0563436i
\(316\) 10.0000i 0.562544i
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 11.0000i 0.616849i
\(319\) 10.0000i 0.559893i
\(320\) 1.00000i 0.0559017i
\(321\) 9.00000 0.502331
\(322\) −3.00000 −0.167183
\(323\) −15.0000 −0.834622
\(324\) −1.00000 −0.0555556
\(325\) 1.00000i 0.0554700i
\(326\) 19.0000 1.05231
\(327\) 11.0000i 0.608301i
\(328\) 2.00000i 0.110432i
\(329\) −12.0000 −0.661581
\(330\) −1.00000 −0.0550482
\(331\) 4.00000i 0.219860i −0.993939 0.109930i \(-0.964937\pi\)
0.993939 0.109930i \(-0.0350627\pi\)
\(332\) 3.00000 0.164646
\(333\) 6.00000 1.00000i 0.328798 0.0547997i
\(334\) 21.0000 1.14907
\(335\) 12.0000i 0.655630i
\(336\) 1.00000 0.0545545
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 12.0000i 0.652714i
\(339\) 6.00000i 0.325875i
\(340\) −5.00000 −0.271163
\(341\) 2.00000i 0.108306i
\(342\) 3.00000 0.162221
\(343\) 13.0000 0.701934
\(344\) −12.0000 −0.646997
\(345\) −3.00000 −0.161515
\(346\) 9.00000i 0.483843i
\(347\) 2.00000i 0.107366i −0.998558 0.0536828i \(-0.982904\pi\)
0.998558 0.0536828i \(-0.0170960\pi\)
\(348\) 10.0000i 0.536056i
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 1.00000i 0.0534522i
\(351\) 1.00000i 0.0533761i
\(352\) 1.00000i 0.0533002i
\(353\) 14.0000i 0.745145i −0.928003 0.372572i \(-0.878476\pi\)
0.928003 0.372572i \(-0.121524\pi\)
\(354\) −10.0000 −0.531494
\(355\) 6.00000i 0.318447i
\(356\) 9.00000i 0.476999i
\(357\) 5.00000i 0.264628i
\(358\) −12.0000 −0.634220
\(359\) 34.0000 1.79445 0.897226 0.441572i \(-0.145579\pi\)
0.897226 + 0.441572i \(0.145579\pi\)
\(360\) 1.00000 0.0527046
\(361\) 10.0000 0.526316
\(362\) 10.0000i 0.525588i
\(363\) 10.0000 0.524864
\(364\) 1.00000i 0.0524142i
\(365\) 1.00000i 0.0523424i
\(366\) −14.0000 −0.731792
\(367\) 27.0000 1.40939 0.704694 0.709511i \(-0.251084\pi\)
0.704694 + 0.709511i \(0.251084\pi\)
\(368\) 3.00000i 0.156386i
\(369\) −2.00000 −0.104116
\(370\) −6.00000 + 1.00000i −0.311925 + 0.0519875i
\(371\) −11.0000 −0.571092
\(372\) 2.00000i 0.103695i
\(373\) −36.0000 −1.86401 −0.932005 0.362446i \(-0.881942\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) −5.00000 −0.258544
\(375\) 1.00000i 0.0516398i
\(376\) 12.0000i 0.618853i
\(377\) 10.0000 0.515026
\(378\) 1.00000i 0.0514344i
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) −3.00000 −0.153897
\(381\) 19.0000 0.973399
\(382\) 3.00000 0.153493
\(383\) 25.0000i 1.27744i 0.769439 + 0.638720i \(0.220536\pi\)
−0.769439 + 0.638720i \(0.779464\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) 1.00000i 0.0509647i
\(386\) 4.00000 0.203595
\(387\) 12.0000i 0.609994i
\(388\) 12.0000i 0.609208i
\(389\) 20.0000i 1.01404i −0.861934 0.507020i \(-0.830747\pi\)
0.861934 0.507020i \(-0.169253\pi\)
\(390\) 1.00000i 0.0506370i
\(391\) −15.0000 −0.758583
\(392\) 6.00000i 0.303046i
\(393\) 2.00000i 0.100887i
\(394\) 23.0000i 1.15872i
\(395\) −10.0000 −0.503155
\(396\) 1.00000 0.0502519
\(397\) 4.00000 0.200754 0.100377 0.994949i \(-0.467995\pi\)
0.100377 + 0.994949i \(0.467995\pi\)
\(398\) −2.00000 −0.100251
\(399\) 3.00000i 0.150188i
\(400\) −1.00000 −0.0500000
\(401\) 9.00000i 0.449439i −0.974424 0.224719i \(-0.927853\pi\)
0.974424 0.224719i \(-0.0721465\pi\)
\(402\) 12.0000i 0.598506i
\(403\) −2.00000 −0.0996271
\(404\) −10.0000 −0.497519
\(405\) 1.00000i 0.0496904i
\(406\) 10.0000 0.496292
\(407\) −6.00000 + 1.00000i −0.297409 + 0.0495682i
\(408\) 5.00000 0.247537
\(409\) 16.0000i 0.791149i −0.918434 0.395575i \(-0.870545\pi\)
0.918434 0.395575i \(-0.129455\pi\)
\(410\) 2.00000 0.0987730
\(411\) −12.0000 −0.591916
\(412\) 16.0000i 0.788263i
\(413\) 10.0000i 0.492068i
\(414\) 3.00000 0.147442
\(415\) 3.00000i 0.147264i
\(416\) 1.00000 0.0490290
\(417\) 12.0000 0.587643
\(418\) −3.00000 −0.146735
\(419\) 7.00000 0.341972 0.170986 0.985273i \(-0.445305\pi\)
0.170986 + 0.985273i \(0.445305\pi\)
\(420\) 1.00000i 0.0487950i
\(421\) 6.00000i 0.292422i −0.989253 0.146211i \(-0.953292\pi\)
0.989253 0.146211i \(-0.0467079\pi\)
\(422\) 10.0000i 0.486792i
\(423\) 12.0000 0.583460
\(424\) 11.0000i 0.534207i
\(425\) 5.00000i 0.242536i
\(426\) 6.00000i 0.290701i
\(427\) 14.0000i 0.677507i
\(428\) 9.00000 0.435031
\(429\) 1.00000i 0.0482805i
\(430\) 12.0000i 0.578691i
\(431\) 3.00000i 0.144505i 0.997386 + 0.0722525i \(0.0230187\pi\)
−0.997386 + 0.0722525i \(0.976981\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 39.0000 1.87422 0.937110 0.349034i \(-0.113490\pi\)
0.937110 + 0.349034i \(0.113490\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 10.0000 0.479463
\(436\) 11.0000i 0.526804i
\(437\) −9.00000 −0.430528
\(438\) 1.00000i 0.0477818i
\(439\) 10.0000i 0.477274i −0.971109 0.238637i \(-0.923299\pi\)
0.971109 0.238637i \(-0.0767006\pi\)
\(440\) −1.00000 −0.0476731
\(441\) −6.00000 −0.285714
\(442\) 5.00000i 0.237826i
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 6.00000 1.00000i 0.284747 0.0474579i
\(445\) −9.00000 −0.426641
\(446\) 4.00000i 0.189405i
\(447\) −18.0000 −0.851371
\(448\) 1.00000 0.0472456
\(449\) 10.0000i 0.471929i −0.971762 0.235965i \(-0.924175\pi\)
0.971762 0.235965i \(-0.0758249\pi\)
\(450\) 1.00000i 0.0471405i
\(451\) 2.00000 0.0941763
\(452\) 6.00000i 0.282216i
\(453\) 17.0000 0.798730
\(454\) 4.00000 0.187729
\(455\) −1.00000 −0.0468807
\(456\) 3.00000 0.140488
\(457\) 10.0000i 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) 20.0000i 0.934539i
\(459\) 5.00000i 0.233380i
\(460\) −3.00000 −0.139876
\(461\) 16.0000i 0.745194i −0.927993 0.372597i \(-0.878467\pi\)
0.927993 0.372597i \(-0.121533\pi\)
\(462\) 1.00000i 0.0465242i
\(463\) 14.0000i 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) 10.0000i 0.464238i
\(465\) −2.00000 −0.0927478
\(466\) 12.0000i 0.555889i
\(467\) 40.0000i 1.85098i 0.378773 + 0.925490i \(0.376346\pi\)
−0.378773 + 0.925490i \(0.623654\pi\)
\(468\) 1.00000i 0.0462250i
\(469\) −12.0000 −0.554109
\(470\) −12.0000 −0.553519
\(471\) −12.0000 −0.552931
\(472\) −10.0000 −0.460287
\(473\) 12.0000i 0.551761i
\(474\) 10.0000 0.459315
\(475\) 3.00000i 0.137649i
\(476\) 5.00000i 0.229175i
\(477\) 11.0000 0.503655
\(478\) −8.00000 −0.365911
\(479\) 15.0000i 0.685367i −0.939451 0.342684i \(-0.888664\pi\)
0.939451 0.342684i \(-0.111336\pi\)
\(480\) 1.00000 0.0456435
\(481\) 1.00000 + 6.00000i 0.0455961 + 0.273576i
\(482\) −4.00000 −0.182195
\(483\) 3.00000i 0.136505i
\(484\) 10.0000 0.454545
\(485\) −12.0000 −0.544892
\(486\) 1.00000i 0.0453609i
\(487\) 28.0000i 1.26880i −0.773004 0.634401i \(-0.781247\pi\)
0.773004 0.634401i \(-0.218753\pi\)
\(488\) −14.0000 −0.633750
\(489\) 19.0000i 0.859210i
\(490\) 6.00000 0.271052
\(491\) −7.00000 −0.315906 −0.157953 0.987447i \(-0.550489\pi\)
−0.157953 + 0.987447i \(0.550489\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 50.0000 2.25189
\(494\) 3.00000i 0.134976i
\(495\) 1.00000i 0.0449467i
\(496\) 2.00000i 0.0898027i
\(497\) −6.00000 −0.269137
\(498\) 3.00000i 0.134433i
\(499\) 19.0000i 0.850557i 0.905063 + 0.425278i \(0.139824\pi\)
−0.905063 + 0.425278i \(0.860176\pi\)
\(500\) 1.00000i 0.0447214i
\(501\) 21.0000i 0.938211i
\(502\) 8.00000 0.357057
\(503\) 32.0000i 1.42681i −0.700752 0.713405i \(-0.747152\pi\)
0.700752 0.713405i \(-0.252848\pi\)
\(504\) 1.00000i 0.0445435i
\(505\) 10.0000i 0.444994i
\(506\) −3.00000 −0.133366
\(507\) −12.0000 −0.532939
\(508\) 19.0000 0.842989
\(509\) 29.0000 1.28540 0.642701 0.766117i \(-0.277814\pi\)
0.642701 + 0.766117i \(0.277814\pi\)
\(510\) 5.00000i 0.221404i
\(511\) 1.00000 0.0442374
\(512\) 1.00000i 0.0441942i
\(513\) 3.00000i 0.132453i
\(514\) −27.0000 −1.19092
\(515\) 16.0000 0.705044
\(516\) 12.0000i 0.528271i
\(517\) −12.0000 −0.527759
\(518\) 1.00000 + 6.00000i 0.0439375 + 0.263625i
\(519\) 9.00000 0.395056
\(520\) 1.00000i 0.0438529i
\(521\) −26.0000 −1.13908 −0.569540 0.821963i \(-0.692879\pi\)
−0.569540 + 0.821963i \(0.692879\pi\)
\(522\) −10.0000 −0.437688
\(523\) 4.00000i 0.174908i 0.996169 + 0.0874539i \(0.0278730\pi\)
−0.996169 + 0.0874539i \(0.972127\pi\)
\(524\) 2.00000i 0.0873704i
\(525\) −1.00000 −0.0436436
\(526\) 4.00000i 0.174408i
\(527\) −10.0000 −0.435607
\(528\) 1.00000 0.0435194
\(529\) 14.0000 0.608696
\(530\) −11.0000 −0.477809
\(531\) 10.0000i 0.433963i
\(532\) 3.00000i 0.130066i
\(533\) 2.00000i 0.0866296i
\(534\) 9.00000 0.389468
\(535\) 9.00000i 0.389104i
\(536\) 12.0000i 0.518321i
\(537\) 12.0000i 0.517838i
\(538\) 11.0000i 0.474244i
\(539\) 6.00000 0.258438
\(540\) 1.00000i 0.0430331i
\(541\) 29.0000i 1.24681i 0.781900 + 0.623404i \(0.214251\pi\)
−0.781900 + 0.623404i \(0.785749\pi\)
\(542\) 4.00000i 0.171815i
\(543\) 10.0000 0.429141
\(544\) 5.00000 0.214373
\(545\) 11.0000 0.471188
\(546\) 1.00000 0.0427960
\(547\) 13.0000i 0.555840i −0.960604 0.277920i \(-0.910355\pi\)
0.960604 0.277920i \(-0.0896450\pi\)
\(548\) −12.0000 −0.512615
\(549\) 14.0000i 0.597505i
\(550\) 1.00000i 0.0426401i
\(551\) 30.0000 1.27804
\(552\) 3.00000 0.127688
\(553\) 10.0000i 0.425243i
\(554\) 25.0000 1.06215
\(555\) 1.00000 + 6.00000i 0.0424476 + 0.254686i
\(556\) 12.0000 0.508913
\(557\) 14.0000i 0.593199i −0.955002 0.296600i \(-0.904147\pi\)
0.955002 0.296600i \(-0.0958526\pi\)
\(558\) 2.00000 0.0846668
\(559\) −12.0000 −0.507546
\(560\) 1.00000i 0.0422577i
\(561\) 5.00000i 0.211100i
\(562\) 1.00000 0.0421825
\(563\) 30.0000i 1.26435i −0.774826 0.632175i \(-0.782163\pi\)
0.774826 0.632175i \(-0.217837\pi\)
\(564\) 12.0000 0.505291
\(565\) 6.00000 0.252422
\(566\) 7.00000 0.294232
\(567\) −1.00000 −0.0419961
\(568\) 6.00000i 0.251754i
\(569\) 27.0000i 1.13190i −0.824440 0.565949i \(-0.808510\pi\)
0.824440 0.565949i \(-0.191490\pi\)
\(570\) 3.00000i 0.125656i
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 1.00000i 0.0418121i
\(573\) 3.00000i 0.125327i
\(574\) 2.00000i 0.0834784i
\(575\) 3.00000i 0.125109i
\(576\) −1.00000 −0.0416667
\(577\) 20.0000i 0.832611i −0.909225 0.416305i \(-0.863325\pi\)
0.909225 0.416305i \(-0.136675\pi\)
\(578\) 8.00000i 0.332756i
\(579\) 4.00000i 0.166234i
\(580\) 10.0000 0.415227
\(581\) 3.00000 0.124461
\(582\) 12.0000 0.497416
\(583\) −11.0000 −0.455573
\(584\) 1.00000i 0.0413803i
\(585\) 1.00000 0.0413449
\(586\) 15.0000i 0.619644i
\(587\) 6.00000i 0.247647i −0.992304 0.123823i \(-0.960484\pi\)
0.992304 0.123823i \(-0.0395156\pi\)
\(588\) −6.00000 −0.247436
\(589\) −6.00000 −0.247226
\(590\) 10.0000i 0.411693i
\(591\) 23.0000 0.946094
\(592\) 6.00000 1.00000i 0.246598 0.0410997i
\(593\) −14.0000 −0.574911 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(594\) 1.00000i 0.0410305i
\(595\) −5.00000 −0.204980
\(596\) −18.0000 −0.737309
\(597\) 2.00000i 0.0818546i
\(598\) 3.00000i 0.122679i
\(599\) −38.0000 −1.55264 −0.776319 0.630340i \(-0.782915\pi\)
−0.776319 + 0.630340i \(0.782915\pi\)
\(600\) 1.00000i 0.0408248i
\(601\) 15.0000 0.611863 0.305931 0.952054i \(-0.401032\pi\)
0.305931 + 0.952054i \(0.401032\pi\)
\(602\) −12.0000 −0.489083
\(603\) 12.0000 0.488678
\(604\) 17.0000 0.691720
\(605\) 10.0000i 0.406558i
\(606\) 10.0000i 0.406222i
\(607\) 24.0000i 0.974130i −0.873366 0.487065i \(-0.838067\pi\)
0.873366 0.487065i \(-0.161933\pi\)
\(608\) 3.00000 0.121666
\(609\) 10.0000i 0.405220i
\(610\) 14.0000i 0.566843i
\(611\) 12.0000i 0.485468i
\(612\) 5.00000i 0.202113i
\(613\) 32.0000 1.29247 0.646234 0.763139i \(-0.276343\pi\)
0.646234 + 0.763139i \(0.276343\pi\)
\(614\) 8.00000i 0.322854i
\(615\) 2.00000i 0.0806478i
\(616\) 1.00000i 0.0402911i
\(617\) −46.0000 −1.85189 −0.925945 0.377658i \(-0.876729\pi\)
−0.925945 + 0.377658i \(0.876729\pi\)
\(618\) −16.0000 −0.643614
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) −2.00000 −0.0803219
\(621\) 3.00000i 0.120386i
\(622\) 20.0000 0.801927
\(623\) 9.00000i 0.360577i
\(624\) 1.00000i 0.0400320i
\(625\) 1.00000 0.0400000
\(626\) 26.0000 1.03917
\(627\) 3.00000i 0.119808i
\(628\) −12.0000 −0.478852
\(629\) 5.00000 + 30.0000i 0.199363 + 1.19618i
\(630\) 1.00000 0.0398410
\(631\) 20.0000i 0.796187i 0.917345 + 0.398094i \(0.130328\pi\)
−0.917345 + 0.398094i \(0.869672\pi\)
\(632\) 10.0000 0.397779
\(633\) 10.0000 0.397464
\(634\) 30.0000i 1.19145i
\(635\) 19.0000i 0.753992i
\(636\) 11.0000 0.436178
\(637\) 6.00000i 0.237729i
\(638\) 10.0000 0.395904
\(639\) 6.00000 0.237356
\(640\) 1.00000 0.0395285
\(641\) 20.0000 0.789953 0.394976 0.918691i \(-0.370753\pi\)
0.394976 + 0.918691i \(0.370753\pi\)
\(642\) 9.00000i 0.355202i
\(643\) 31.0000i 1.22252i −0.791430 0.611260i \(-0.790663\pi\)
0.791430 0.611260i \(-0.209337\pi\)
\(644\) 3.00000i 0.118217i
\(645\) −12.0000 −0.472500
\(646\) 15.0000i 0.590167i
\(647\) 9.00000i 0.353827i 0.984226 + 0.176913i \(0.0566112\pi\)
−0.984226 + 0.176913i \(0.943389\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 10.0000i 0.392534i
\(650\) −1.00000 −0.0392232
\(651\) 2.00000i 0.0783862i
\(652\) 19.0000i 0.744097i
\(653\) 38.0000i 1.48705i 0.668705 + 0.743527i \(0.266849\pi\)
−0.668705 + 0.743527i \(0.733151\pi\)
\(654\) −11.0000 −0.430134
\(655\) 2.00000 0.0781465
\(656\) −2.00000 −0.0780869
\(657\) −1.00000 −0.0390137
\(658\) 12.0000i 0.467809i
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 1.00000i 0.0389249i
\(661\) 7.00000i 0.272268i 0.990690 + 0.136134i \(0.0434678\pi\)
−0.990690 + 0.136134i \(0.956532\pi\)
\(662\) −4.00000 −0.155464
\(663\) 5.00000 0.194184
\(664\) 3.00000i 0.116423i
\(665\) −3.00000 −0.116335
\(666\) −1.00000 6.00000i −0.0387492 0.232495i
\(667\) 30.0000 1.16160
\(668\) 21.0000i 0.812514i
\(669\) 4.00000 0.154649
\(670\) −12.0000 −0.463600
\(671\) 14.0000i 0.540464i
\(672\) 1.00000i 0.0385758i
\(673\) 37.0000 1.42625 0.713123 0.701039i \(-0.247280\pi\)
0.713123 + 0.701039i \(0.247280\pi\)
\(674\) 29.0000i 1.11704i
\(675\) 1.00000 0.0384900
\(676\) −12.0000 −0.461538
\(677\) 31.0000 1.19143 0.595713 0.803197i \(-0.296869\pi\)
0.595713 + 0.803197i \(0.296869\pi\)
\(678\) −6.00000 −0.230429
\(679\) 12.0000i 0.460518i
\(680\) 5.00000i 0.191741i
\(681\) 4.00000i 0.153280i
\(682\) −2.00000 −0.0765840
\(683\) 16.0000i 0.612223i 0.951996 + 0.306111i \(0.0990280\pi\)
−0.951996 + 0.306111i \(0.900972\pi\)
\(684\) 3.00000i 0.114708i
\(685\) 12.0000i 0.458496i
\(686\) 13.0000i 0.496342i
\(687\) 20.0000 0.763048
\(688\) 12.0000i 0.457496i
\(689\) 11.0000i 0.419067i
\(690\) 3.00000i 0.114208i
\(691\) 14.0000 0.532585 0.266293 0.963892i \(-0.414201\pi\)
0.266293 + 0.963892i \(0.414201\pi\)
\(692\) 9.00000 0.342129
\(693\) 1.00000 0.0379869
\(694\) −2.00000 −0.0759190
\(695\) 12.0000i 0.455186i
\(696\) −10.0000 −0.379049
\(697\) 10.0000i 0.378777i
\(698\) 30.0000i 1.13552i
\(699\) −12.0000 −0.453882
\(700\) −1.00000 −0.0377964
\(701\) 24.0000i 0.906467i −0.891392 0.453234i \(-0.850270\pi\)
0.891392 0.453234i \(-0.149730\pi\)
\(702\) −1.00000 −0.0377426
\(703\) 3.00000 + 18.0000i 0.113147 + 0.678883i
\(704\) 1.00000 0.0376889
\(705\) 12.0000i 0.451946i
\(706\) −14.0000 −0.526897
\(707\) −10.0000 −0.376089
\(708\) 10.0000i 0.375823i
\(709\) 33.0000i 1.23934i 0.784862 + 0.619671i \(0.212734\pi\)
−0.784862 + 0.619671i \(0.787266\pi\)
\(710\) −6.00000 −0.225176
\(711\) 10.0000i 0.375029i
\(712\) 9.00000 0.337289
\(713\) −6.00000 −0.224702
\(714\) 5.00000 0.187120
\(715\) −1.00000 −0.0373979
\(716\) 12.0000i 0.448461i
\(717\) 8.00000i 0.298765i
\(718\) 34.0000i 1.26887i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 1.00000i 0.0372678i
\(721\) 16.0000i 0.595871i
\(722\) 10.0000i 0.372161i
\(723\) 4.00000i 0.148762i
\(724\) 10.0000 0.371647
\(725\) 10.0000i 0.371391i
\(726\) 10.0000i 0.371135i
\(727\) 38.0000i 1.40934i 0.709534 + 0.704671i \(0.248905\pi\)
−0.709534 + 0.704671i \(0.751095\pi\)
\(728\) 1.00000 0.0370625
\(729\) 1.00000 0.0370370
\(730\) 1.00000 0.0370117
\(731\) −60.0000 −2.21918
\(732\) 14.0000i 0.517455i
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 27.0000i 0.996588i
\(735\) 6.00000i 0.221313i
\(736\) 3.00000 0.110581
\(737\) −12.0000 −0.442026
\(738\) 2.00000i 0.0736210i
\(739\) 4.00000 0.147142 0.0735712 0.997290i \(-0.476560\pi\)
0.0735712 + 0.997290i \(0.476560\pi\)
\(740\) 1.00000 + 6.00000i 0.0367607 + 0.220564i
\(741\) 3.00000 0.110208
\(742\) 11.0000i 0.403823i
\(743\) −34.0000 −1.24734 −0.623670 0.781688i \(-0.714359\pi\)
−0.623670 + 0.781688i \(0.714359\pi\)
\(744\) 2.00000 0.0733236
\(745\) 18.0000i 0.659469i
\(746\) 36.0000i 1.31805i
\(747\) −3.00000 −0.109764
\(748\) 5.00000i 0.182818i
\(749\) 9.00000 0.328853
\(750\) −1.00000 −0.0365148
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 12.0000 0.437595
\(753\) 8.00000i 0.291536i
\(754\) 10.0000i 0.364179i
\(755\) 17.0000i 0.618693i
\(756\) −1.00000 −0.0363696
\(757\) 7.00000i 0.254419i 0.991876 + 0.127210i \(0.0406021\pi\)
−0.991876 + 0.127210i \(0.959398\pi\)
\(758\) 10.0000i 0.363216i
\(759\) 3.00000i 0.108893i
\(760\) 3.00000i 0.108821i
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 19.0000i 0.688297i
\(763\) 11.0000i 0.398227i
\(764\) 3.00000i 0.108536i
\(765\) 5.00000 0.180775
\(766\) 25.0000 0.903287
\(767\) −10.0000 −0.361079
\(768\) −1.00000 −0.0360844
\(769\) 38.0000i 1.37032i 0.728395 + 0.685158i \(0.240267\pi\)
−0.728395 + 0.685158i \(0.759733\pi\)
\(770\) −1.00000 −0.0360375
\(771\) 27.0000i 0.972381i
\(772\) 4.00000i 0.143963i
\(773\) −7.00000 −0.251773 −0.125886 0.992045i \(-0.540177\pi\)
−0.125886 + 0.992045i \(0.540177\pi\)
\(774\) 12.0000 0.431331
\(775\) 2.00000i 0.0718421i
\(776\) 12.0000 0.430775
\(777\) 6.00000 1.00000i 0.215249 0.0358748i
\(778\) −20.0000 −0.717035
\(779\) 6.00000i 0.214972i
\(780\) 1.00000 0.0358057
\(781\) −6.00000 −0.214697
\(782\) 15.0000i 0.536399i
\(783\) 10.0000i 0.357371i
\(784\) −6.00000 −0.214286
\(785\) 12.0000i 0.428298i
\(786\) −2.00000