Defining parameters
| Level: | \( N \) | \(=\) | \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1110.h (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(456\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1110, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 236 | 28 | 208 |
| Cusp forms | 220 | 28 | 192 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1110, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1110, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1110, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(74, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(111, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(185, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(222, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(370, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(555, [\chi])\)\(^{\oplus 2}\)