Properties

Label 1110.2.bb.d.1009.10
Level $1110$
Weight $2$
Character 1110.1009
Analytic conductor $8.863$
Analytic rank $0$
Dimension $28$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.bb (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1009.10
Character \(\chi\) \(=\) 1110.1009
Dual form 1110.2.bb.d.1099.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.363043 + 2.20640i) q^{5} +1.00000 q^{6} +(-0.268117 + 0.154798i) q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.363043 + 2.20640i) q^{5} +1.00000 q^{6} +(-0.268117 + 0.154798i) q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.41760 + 1.72928i) q^{10} +4.57198 q^{11} +(0.866025 + 0.500000i) q^{12} +(-3.32139 + 1.91760i) q^{13} -0.309595 q^{14} +(0.788796 + 2.09232i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(2.86619 + 1.65480i) q^{17} +(0.866025 - 0.500000i) q^{18} +(-0.688327 - 1.19222i) q^{19} +(-2.09232 + 0.788796i) q^{20} +(-0.154798 + 0.268117i) q^{21} +(3.95946 + 2.28599i) q^{22} +5.47919i q^{23} +(0.500000 + 0.866025i) q^{24} +(-4.73640 - 1.60203i) q^{25} -3.83521 q^{26} -1.00000i q^{27} +(-0.268117 - 0.154798i) q^{28} -0.690405 q^{29} +(-0.363043 + 2.20640i) q^{30} +2.73678 q^{31} +(-0.866025 + 0.500000i) q^{32} +(3.95946 - 2.28599i) q^{33} +(1.65480 + 2.86619i) q^{34} +(-0.244208 - 0.647772i) q^{35} +1.00000 q^{36} +(6.02425 + 0.841687i) q^{37} -1.37665i q^{38} +(-1.91760 + 3.32139i) q^{39} +(-2.20640 - 0.363043i) q^{40} +(0.175457 + 0.303900i) q^{41} +(-0.268117 + 0.154798i) q^{42} +5.04831i q^{43} +(2.28599 + 3.95946i) q^{44} +(1.72928 + 1.41760i) q^{45} +(-2.73959 + 4.74511i) q^{46} +3.77518i q^{47} +1.00000i q^{48} +(-3.45208 + 5.97917i) q^{49} +(-3.30083 - 3.75560i) q^{50} +3.30960 q^{51} +(-3.32139 - 1.91760i) q^{52} +(-11.8620 - 6.84854i) q^{53} +(0.500000 - 0.866025i) q^{54} +(-1.65982 + 10.0876i) q^{55} +(-0.154798 - 0.268117i) q^{56} +(-1.19222 - 0.688327i) q^{57} +(-0.597908 - 0.345202i) q^{58} +(5.77406 - 10.0010i) q^{59} +(-1.41760 + 1.72928i) q^{60} +(2.37967 + 4.12172i) q^{61} +(2.37012 + 1.36839i) q^{62} +0.309595i q^{63} -1.00000 q^{64} +(-3.02520 - 8.02448i) q^{65} +4.57198 q^{66} +(4.13186 - 2.38553i) q^{67} +3.30960i q^{68} +(2.73959 + 4.74511i) q^{69} +(0.112396 - 0.683091i) q^{70} +(-6.67007 - 11.5529i) q^{71} +(0.866025 + 0.500000i) q^{72} -13.3833i q^{73} +(4.79631 + 3.74105i) q^{74} +(-4.90286 + 0.980798i) q^{75} +(0.688327 - 1.19222i) q^{76} +(-1.22583 + 0.707733i) q^{77} +(-3.32139 + 1.91760i) q^{78} +(7.63359 + 13.2218i) q^{79} +(-1.72928 - 1.41760i) q^{80} +(-0.500000 - 0.866025i) q^{81} +0.350914i q^{82} +(2.66210 + 1.53697i) q^{83} -0.309595 q^{84} +(-4.69170 + 5.72321i) q^{85} +(-2.52416 + 4.37197i) q^{86} +(-0.597908 + 0.345202i) q^{87} +4.57198i q^{88} +(5.47776 - 9.48775i) q^{89} +(0.788796 + 2.09232i) q^{90} +(0.593681 - 1.02829i) q^{91} +(-4.74511 + 2.73959i) q^{92} +(2.37012 - 1.36839i) q^{93} +(-1.88759 + 3.26940i) q^{94} +(2.88040 - 1.08590i) q^{95} +(-0.500000 + 0.866025i) q^{96} +0.990093i q^{97} +(-5.97917 + 3.45208i) q^{98} +(2.28599 - 3.95946i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28q + 14q^{4} + 2q^{5} + 28q^{6} + 14q^{9} + O(q^{10}) \) \( 28q + 14q^{4} + 2q^{5} + 28q^{6} + 14q^{9} + 4q^{10} - 12q^{11} + 8q^{14} + 2q^{15} - 14q^{16} - 20q^{19} - 2q^{20} + 4q^{21} + 14q^{24} - 8q^{25} - 20q^{26} - 36q^{29} + 2q^{30} + 24q^{31} + 38q^{34} - 2q^{35} + 28q^{36} - 10q^{39} + 2q^{40} - 6q^{44} + 4q^{45} + 8q^{46} + 50q^{49} - 4q^{50} + 76q^{51} + 14q^{54} - 28q^{55} + 4q^{56} - 26q^{59} + 4q^{60} - 28q^{61} - 28q^{64} + 60q^{65} - 12q^{66} - 8q^{69} - 10q^{70} - 64q^{71} + 24q^{74} - 8q^{75} + 20q^{76} + 32q^{79} - 4q^{80} - 14q^{81} + 8q^{84} + 16q^{85} - 8q^{86} + 76q^{89} + 2q^{90} - 8q^{91} - 38q^{94} - 70q^{95} - 14q^{96} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.363043 + 2.20640i −0.162358 + 0.986732i
\(6\) 1.00000 0.408248
\(7\) −0.268117 + 0.154798i −0.101339 + 0.0585080i −0.549813 0.835288i \(-0.685301\pi\)
0.448474 + 0.893796i \(0.351968\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.41760 + 1.72928i −0.448286 + 0.546845i
\(11\) 4.57198 1.37851 0.689253 0.724521i \(-0.257939\pi\)
0.689253 + 0.724521i \(0.257939\pi\)
\(12\) 0.866025 + 0.500000i 0.250000 + 0.144338i
\(13\) −3.32139 + 1.91760i −0.921187 + 0.531848i −0.884014 0.467461i \(-0.845169\pi\)
−0.0371735 + 0.999309i \(0.511835\pi\)
\(14\) −0.309595 −0.0827428
\(15\) 0.788796 + 2.09232i 0.203666 + 0.540235i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.86619 + 1.65480i 0.695154 + 0.401347i 0.805540 0.592541i \(-0.201875\pi\)
−0.110386 + 0.993889i \(0.535209\pi\)
\(18\) 0.866025 0.500000i 0.204124 0.117851i
\(19\) −0.688327 1.19222i −0.157913 0.273513i 0.776203 0.630483i \(-0.217143\pi\)
−0.934116 + 0.356970i \(0.883810\pi\)
\(20\) −2.09232 + 0.788796i −0.467857 + 0.176380i
\(21\) −0.154798 + 0.268117i −0.0337796 + 0.0585080i
\(22\) 3.95946 + 2.28599i 0.844159 + 0.487375i
\(23\) 5.47919i 1.14249i 0.820780 + 0.571245i \(0.193539\pi\)
−0.820780 + 0.571245i \(0.806461\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) −4.73640 1.60203i −0.947280 0.320407i
\(26\) −3.83521 −0.752146
\(27\) 1.00000i 0.192450i
\(28\) −0.268117 0.154798i −0.0506694 0.0292540i
\(29\) −0.690405 −0.128205 −0.0641025 0.997943i \(-0.520418\pi\)
−0.0641025 + 0.997943i \(0.520418\pi\)
\(30\) −0.363043 + 2.20640i −0.0662822 + 0.402832i
\(31\) 2.73678 0.491540 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 3.95946 2.28599i 0.689253 0.397940i
\(34\) 1.65480 + 2.86619i 0.283795 + 0.491548i
\(35\) −0.244208 0.647772i −0.0412786 0.109494i
\(36\) 1.00000 0.166667
\(37\) 6.02425 + 0.841687i 0.990380 + 0.138372i
\(38\) 1.37665i 0.223323i
\(39\) −1.91760 + 3.32139i −0.307062 + 0.531848i
\(40\) −2.20640 0.363043i −0.348862 0.0574021i
\(41\) 0.175457 + 0.303900i 0.0274017 + 0.0474612i 0.879401 0.476082i \(-0.157943\pi\)
−0.851999 + 0.523543i \(0.824610\pi\)
\(42\) −0.268117 + 0.154798i −0.0413714 + 0.0238858i
\(43\) 5.04831i 0.769860i 0.922946 + 0.384930i \(0.125774\pi\)
−0.922946 + 0.384930i \(0.874226\pi\)
\(44\) 2.28599 + 3.95946i 0.344626 + 0.596910i
\(45\) 1.72928 + 1.41760i 0.257785 + 0.211324i
\(46\) −2.73959 + 4.74511i −0.403931 + 0.699629i
\(47\) 3.77518i 0.550667i 0.961349 + 0.275333i \(0.0887882\pi\)
−0.961349 + 0.275333i \(0.911212\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −3.45208 + 5.97917i −0.493154 + 0.854167i
\(50\) −3.30083 3.75560i −0.466807 0.531122i
\(51\) 3.30960 0.463436
\(52\) −3.32139 1.91760i −0.460594 0.265924i
\(53\) −11.8620 6.84854i −1.62937 0.940720i −0.984280 0.176617i \(-0.943484\pi\)
−0.645095 0.764102i \(-0.723182\pi\)
\(54\) 0.500000 0.866025i 0.0680414 0.117851i
\(55\) −1.65982 + 10.0876i −0.223811 + 1.36022i
\(56\) −0.154798 0.268117i −0.0206857 0.0358287i
\(57\) −1.19222 0.688327i −0.157913 0.0911711i
\(58\) −0.597908 0.345202i −0.0785092 0.0453273i
\(59\) 5.77406 10.0010i 0.751719 1.30202i −0.195270 0.980750i \(-0.562558\pi\)
0.946989 0.321266i \(-0.104108\pi\)
\(60\) −1.41760 + 1.72928i −0.183012 + 0.223249i
\(61\) 2.37967 + 4.12172i 0.304686 + 0.527732i 0.977191 0.212361i \(-0.0681151\pi\)
−0.672505 + 0.740092i \(0.734782\pi\)
\(62\) 2.37012 + 1.36839i 0.301005 + 0.173786i
\(63\) 0.309595i 0.0390053i
\(64\) −1.00000 −0.125000
\(65\) −3.02520 8.02448i −0.375229 0.995314i
\(66\) 4.57198 0.562772
\(67\) 4.13186 2.38553i 0.504787 0.291439i −0.225901 0.974150i \(-0.572533\pi\)
0.730688 + 0.682711i \(0.239199\pi\)
\(68\) 3.30960i 0.401347i
\(69\) 2.73959 + 4.74511i 0.329808 + 0.571245i
\(70\) 0.112396 0.683091i 0.0134339 0.0816450i
\(71\) −6.67007 11.5529i −0.791591 1.37108i −0.924981 0.380013i \(-0.875920\pi\)
0.133390 0.991064i \(-0.457414\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) 13.3833i 1.56640i −0.621769 0.783201i \(-0.713586\pi\)
0.621769 0.783201i \(-0.286414\pi\)
\(74\) 4.79631 + 3.74105i 0.557560 + 0.434888i
\(75\) −4.90286 + 0.980798i −0.566133 + 0.113253i
\(76\) 0.688327 1.19222i 0.0789565 0.136757i
\(77\) −1.22583 + 0.707733i −0.139696 + 0.0806536i
\(78\) −3.32139 + 1.91760i −0.376073 + 0.217126i
\(79\) 7.63359 + 13.2218i 0.858846 + 1.48757i 0.873030 + 0.487666i \(0.162152\pi\)
−0.0141837 + 0.999899i \(0.504515\pi\)
\(80\) −1.72928 1.41760i −0.193339 0.158493i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.350914i 0.0387519i
\(83\) 2.66210 + 1.53697i 0.292204 + 0.168704i 0.638935 0.769261i \(-0.279375\pi\)
−0.346732 + 0.937964i \(0.612708\pi\)
\(84\) −0.309595 −0.0337796
\(85\) −4.69170 + 5.72321i −0.508886 + 0.620769i
\(86\) −2.52416 + 4.37197i −0.272187 + 0.471441i
\(87\) −0.597908 + 0.345202i −0.0641025 + 0.0370096i
\(88\) 4.57198i 0.487375i
\(89\) 5.47776 9.48775i 0.580641 1.00570i −0.414763 0.909930i \(-0.636135\pi\)
0.995403 0.0957700i \(-0.0305313\pi\)
\(90\) 0.788796 + 2.09232i 0.0831464 + 0.220550i
\(91\) 0.593681 1.02829i 0.0622347 0.107794i
\(92\) −4.74511 + 2.73959i −0.494712 + 0.285622i
\(93\) 2.37012 1.36839i 0.245770 0.141895i
\(94\) −1.88759 + 3.26940i −0.194690 + 0.337213i
\(95\) 2.88040 1.08590i 0.295523 0.111411i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 0.990093i 0.100529i 0.998736 + 0.0502644i \(0.0160064\pi\)
−0.998736 + 0.0502644i \(0.983994\pi\)
\(98\) −5.97917 + 3.45208i −0.603987 + 0.348712i
\(99\) 2.28599 3.95946i 0.229751 0.397940i
\(100\) −0.980798 4.90286i −0.0980798 0.490286i
\(101\) 13.4339 1.33672 0.668360 0.743838i \(-0.266997\pi\)
0.668360 + 0.743838i \(0.266997\pi\)
\(102\) 2.86619 + 1.65480i 0.283795 + 0.163849i
\(103\) 5.80947i 0.572424i −0.958166 0.286212i \(-0.907604\pi\)
0.958166 0.286212i \(-0.0923961\pi\)
\(104\) −1.91760 3.32139i −0.188037 0.325689i
\(105\) −0.535376 0.438884i −0.0522474 0.0428307i
\(106\) −6.84854 11.8620i −0.665189 1.15214i
\(107\) −6.31907 + 3.64832i −0.610888 + 0.352696i −0.773313 0.634025i \(-0.781402\pi\)
0.162425 + 0.986721i \(0.448068\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) 6.46495 11.1976i 0.619229 1.07254i −0.370397 0.928873i \(-0.620778\pi\)
0.989627 0.143663i \(-0.0458883\pi\)
\(110\) −6.48126 + 7.90623i −0.617964 + 0.753829i
\(111\) 5.63800 2.28320i 0.535135 0.216712i
\(112\) 0.309595i 0.0292540i
\(113\) −2.12749 1.22831i −0.200138 0.115549i 0.396582 0.917999i \(-0.370196\pi\)
−0.596720 + 0.802450i \(0.703530\pi\)
\(114\) −0.688327 1.19222i −0.0644677 0.111661i
\(115\) −12.0893 1.98918i −1.12733 0.185492i
\(116\) −0.345202 0.597908i −0.0320512 0.0555144i
\(117\) 3.83521i 0.354565i
\(118\) 10.0010 5.77406i 0.920664 0.531546i
\(119\) −1.02464 −0.0939282
\(120\) −2.09232 + 0.788796i −0.191002 + 0.0720069i
\(121\) 9.90305 0.900277
\(122\) 4.75935i 0.430891i
\(123\) 0.303900 + 0.175457i 0.0274017 + 0.0158204i
\(124\) 1.36839 + 2.37012i 0.122885 + 0.212843i
\(125\) 5.25424 9.86879i 0.469954 0.882691i
\(126\) −0.154798 + 0.268117i −0.0137905 + 0.0238858i
\(127\) −1.18210 0.682488i −0.104895 0.0605610i 0.446635 0.894716i \(-0.352622\pi\)
−0.551530 + 0.834155i \(0.685956\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 2.52416 + 4.37197i 0.222239 + 0.384930i
\(130\) 1.39234 8.46200i 0.122117 0.742167i
\(131\) 5.74528 9.95113i 0.501968 0.869434i −0.498030 0.867160i \(-0.665943\pi\)
0.999997 0.00227379i \(-0.000723771\pi\)
\(132\) 3.95946 + 2.28599i 0.344626 + 0.198970i
\(133\) 0.369105 + 0.213103i 0.0320055 + 0.0184784i
\(134\) 4.77106 0.412157
\(135\) 2.20640 + 0.363043i 0.189897 + 0.0312457i
\(136\) −1.65480 + 2.86619i −0.141898 + 0.245774i
\(137\) 9.54995i 0.815908i −0.913003 0.407954i \(-0.866242\pi\)
0.913003 0.407954i \(-0.133758\pi\)
\(138\) 5.47919i 0.466419i
\(139\) −1.30897 + 2.26721i −0.111026 + 0.192302i −0.916184 0.400758i \(-0.868747\pi\)
0.805158 + 0.593060i \(0.202080\pi\)
\(140\) 0.438884 0.535376i 0.0370924 0.0452475i
\(141\) 1.88759 + 3.26940i 0.158964 + 0.275333i
\(142\) 13.3401i 1.11948i
\(143\) −15.1853 + 8.76726i −1.26986 + 0.733155i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 0.250646 1.52331i 0.0208150 0.126504i
\(146\) 6.69167 11.5903i 0.553806 0.959221i
\(147\) 6.90415i 0.569445i
\(148\) 2.28320 + 5.63800i 0.187678 + 0.463440i
\(149\) −6.42401 −0.526276 −0.263138 0.964758i \(-0.584757\pi\)
−0.263138 + 0.964758i \(0.584757\pi\)
\(150\) −4.73640 1.60203i −0.386725 0.130806i
\(151\) −2.44034 4.22679i −0.198592 0.343972i 0.749480 0.662027i \(-0.230304\pi\)
−0.948072 + 0.318055i \(0.896970\pi\)
\(152\) 1.19222 0.688327i 0.0967016 0.0558307i
\(153\) 2.86619 1.65480i 0.231718 0.133782i
\(154\) −1.41547 −0.114061
\(155\) −0.993566 + 6.03842i −0.0798052 + 0.485018i
\(156\) −3.83521 −0.307062
\(157\) 8.03324 + 4.63800i 0.641123 + 0.370152i 0.785047 0.619436i \(-0.212639\pi\)
−0.143924 + 0.989589i \(0.545972\pi\)
\(158\) 15.2672i 1.21459i
\(159\) −13.6971 −1.08625
\(160\) −0.788796 2.09232i −0.0623598 0.165412i
\(161\) −0.848165 1.46907i −0.0668448 0.115779i
\(162\) 1.00000i 0.0785674i
\(163\) −11.3462 6.55071i −0.888700 0.513091i −0.0151830 0.999885i \(-0.504833\pi\)
−0.873517 + 0.486794i \(0.838166\pi\)
\(164\) −0.175457 + 0.303900i −0.0137009 + 0.0237306i
\(165\) 3.60636 + 9.56605i 0.280755 + 0.744716i
\(166\) 1.53697 + 2.66210i 0.119292 + 0.206619i
\(167\) 18.9448 10.9378i 1.46599 0.846392i 0.466717 0.884407i \(-0.345437\pi\)
0.999277 + 0.0380142i \(0.0121032\pi\)
\(168\) −0.268117 0.154798i −0.0206857 0.0119429i
\(169\) 0.854410 1.47988i 0.0657238 0.113837i
\(170\) −6.92473 + 2.61060i −0.531103 + 0.200224i
\(171\) −1.37665 −0.105275
\(172\) −4.37197 + 2.52416i −0.333359 + 0.192465i
\(173\) −3.66596 2.11655i −0.278718 0.160918i 0.354125 0.935198i \(-0.384779\pi\)
−0.632843 + 0.774280i \(0.718112\pi\)
\(174\) −0.690405 −0.0523394
\(175\) 1.51790 0.303651i 0.114743 0.0229538i
\(176\) −2.28599 + 3.95946i −0.172313 + 0.298455i
\(177\) 11.5481i 0.868011i
\(178\) 9.48775 5.47776i 0.711137 0.410575i
\(179\) −18.1757 −1.35852 −0.679260 0.733898i \(-0.737699\pi\)
−0.679260 + 0.733898i \(0.737699\pi\)
\(180\) −0.363043 + 2.20640i −0.0270596 + 0.164455i
\(181\) 3.63216 + 6.29109i 0.269977 + 0.467613i 0.968855 0.247627i \(-0.0796507\pi\)
−0.698879 + 0.715240i \(0.746317\pi\)
\(182\) 1.02829 0.593681i 0.0762216 0.0440066i
\(183\) 4.12172 + 2.37967i 0.304686 + 0.175911i
\(184\) −5.47919 −0.403931
\(185\) −4.04416 + 12.9863i −0.297332 + 0.954774i
\(186\) 2.73678 0.200670
\(187\) 13.1042 + 7.56571i 0.958274 + 0.553260i
\(188\) −3.26940 + 1.88759i −0.238446 + 0.137667i
\(189\) 0.154798 + 0.268117i 0.0112599 + 0.0195027i
\(190\) 3.03745 + 0.499784i 0.220360 + 0.0362581i
\(191\) −3.42110 −0.247542 −0.123771 0.992311i \(-0.539499\pi\)
−0.123771 + 0.992311i \(0.539499\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) 19.2854i 1.38819i −0.719883 0.694096i \(-0.755805\pi\)
0.719883 0.694096i \(-0.244195\pi\)
\(194\) −0.495047 + 0.857446i −0.0355423 + 0.0615610i
\(195\) −6.63214 5.43681i −0.474937 0.389338i
\(196\) −6.90415 −0.493154
\(197\) −7.69610 4.44334i −0.548324 0.316575i 0.200122 0.979771i \(-0.435866\pi\)
−0.748446 + 0.663196i \(0.769200\pi\)
\(198\) 3.95946 2.28599i 0.281386 0.162458i
\(199\) −12.5562 −0.890082 −0.445041 0.895510i \(-0.646811\pi\)
−0.445041 + 0.895510i \(0.646811\pi\)
\(200\) 1.60203 4.73640i 0.113281 0.334914i
\(201\) 2.38553 4.13186i 0.168262 0.291439i
\(202\) 11.6341 + 6.71693i 0.818570 + 0.472602i
\(203\) 0.185110 0.106873i 0.0129921 0.00750102i
\(204\) 1.65480 + 2.86619i 0.115859 + 0.200674i
\(205\) −0.734223 + 0.276799i −0.0512804 + 0.0193325i
\(206\) 2.90473 5.03115i 0.202382 0.350537i
\(207\) 4.74511 + 2.73959i 0.329808 + 0.190415i
\(208\) 3.83521i 0.265924i
\(209\) −3.14702 5.45080i −0.217684 0.377040i
\(210\) −0.244208 0.647772i −0.0168519 0.0447005i
\(211\) −19.5648 −1.34689 −0.673447 0.739235i \(-0.735187\pi\)
−0.673447 + 0.739235i \(0.735187\pi\)
\(212\) 13.6971i 0.940720i
\(213\) −11.5529 6.67007i −0.791591 0.457025i
\(214\) −7.29664 −0.498788
\(215\) −11.1386 1.83275i −0.759646 0.124993i
\(216\) 1.00000 0.0680414
\(217\) −0.733778 + 0.423647i −0.0498121 + 0.0287590i
\(218\) 11.1976 6.46495i 0.758398 0.437861i
\(219\) −6.69167 11.5903i −0.452181 0.783201i
\(220\) −9.56605 + 3.60636i −0.644943 + 0.243141i
\(221\) −12.6930 −0.853823
\(222\) 6.02425 + 0.841687i 0.404321 + 0.0564903i
\(223\) 3.99326i 0.267408i 0.991021 + 0.133704i \(0.0426872\pi\)
−0.991021 + 0.133704i \(0.957313\pi\)
\(224\) 0.154798 0.268117i 0.0103429 0.0179144i
\(225\) −3.75560 + 3.30083i −0.250373 + 0.220055i
\(226\) −1.22831 2.12749i −0.0817058 0.141519i
\(227\) 23.6856 13.6749i 1.57207 0.907633i 0.576150 0.817344i \(-0.304554\pi\)
0.995916 0.0902890i \(-0.0287791\pi\)
\(228\) 1.37665i 0.0911711i
\(229\) 11.8978 + 20.6075i 0.786226 + 1.36178i 0.928264 + 0.371922i \(0.121301\pi\)
−0.142038 + 0.989861i \(0.545365\pi\)
\(230\) −9.47503 7.76732i −0.624765 0.512162i
\(231\) −0.707733 + 1.22583i −0.0465654 + 0.0806536i
\(232\) 0.690405i 0.0453273i
\(233\) 25.6377i 1.67958i −0.542910 0.839791i \(-0.682678\pi\)
0.542910 0.839791i \(-0.317322\pi\)
\(234\) −1.91760 + 3.32139i −0.125358 + 0.217126i
\(235\) −8.32956 1.37055i −0.543360 0.0894049i
\(236\) 11.5481 0.751719
\(237\) 13.2218 + 7.63359i 0.858846 + 0.495855i
\(238\) −0.887360 0.512318i −0.0575190 0.0332086i
\(239\) −3.08398 + 5.34161i −0.199486 + 0.345520i −0.948362 0.317190i \(-0.897261\pi\)
0.748876 + 0.662710i \(0.230594\pi\)
\(240\) −2.20640 0.363043i −0.142422 0.0234343i
\(241\) 2.00641 + 3.47521i 0.129244 + 0.223858i 0.923384 0.383878i \(-0.125412\pi\)
−0.794140 + 0.607735i \(0.792078\pi\)
\(242\) 8.57629 + 4.95152i 0.551305 + 0.318296i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −2.37967 + 4.12172i −0.152343 + 0.263866i
\(245\) −11.9392 9.78735i −0.762767 0.625291i
\(246\) 0.175457 + 0.303900i 0.0111867 + 0.0193760i
\(247\) 4.57240 + 2.63988i 0.290935 + 0.167971i
\(248\) 2.73678i 0.173786i
\(249\) 3.07393 0.194803
\(250\) 9.48470 5.91950i 0.599865 0.374382i
\(251\) 16.7469 1.05706 0.528528 0.848916i \(-0.322744\pi\)
0.528528 + 0.848916i \(0.322744\pi\)
\(252\) −0.268117 + 0.154798i −0.0168898 + 0.00975134i
\(253\) 25.0508i 1.57493i
\(254\) −0.682488 1.18210i −0.0428231 0.0741718i
\(255\) −1.20152 + 7.30229i −0.0752423 + 0.457287i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.60041 + 0.923995i 0.0998306 + 0.0576372i 0.549084 0.835767i \(-0.314977\pi\)
−0.449253 + 0.893404i \(0.648310\pi\)
\(258\) 5.04831i 0.314294i
\(259\) −1.74550 + 0.706869i −0.108460 + 0.0439227i
\(260\) 5.43681 6.63214i 0.337176 0.411308i
\(261\) −0.345202 + 0.597908i −0.0213675 + 0.0370096i
\(262\) 9.95113 5.74528i 0.614783 0.354945i
\(263\) −6.35247 + 3.66760i −0.391710 + 0.226154i −0.682901 0.730511i \(-0.739282\pi\)
0.291191 + 0.956665i \(0.405949\pi\)
\(264\) 2.28599 + 3.95946i 0.140693 + 0.243688i
\(265\) 19.4170 23.6861i 1.19278 1.45502i
\(266\) 0.213103 + 0.369105i 0.0130662 + 0.0226313i
\(267\) 10.9555i 0.670466i
\(268\) 4.13186 + 2.38553i 0.252394 + 0.145720i
\(269\) −16.3744 −0.998363 −0.499181 0.866498i \(-0.666366\pi\)
−0.499181 + 0.866498i \(0.666366\pi\)
\(270\) 1.72928 + 1.41760i 0.105240 + 0.0862726i
\(271\) −4.72672 + 8.18692i −0.287128 + 0.497320i −0.973123 0.230286i \(-0.926034\pi\)
0.685995 + 0.727606i \(0.259367\pi\)
\(272\) −2.86619 + 1.65480i −0.173789 + 0.100337i
\(273\) 1.18736i 0.0718625i
\(274\) 4.77498 8.27050i 0.288467 0.499639i
\(275\) −21.6548 7.32447i −1.30583 0.441682i
\(276\) −2.73959 + 4.74511i −0.164904 + 0.285622i
\(277\) 7.62602 4.40289i 0.458203 0.264544i −0.253085 0.967444i \(-0.581445\pi\)
0.711289 + 0.702900i \(0.248112\pi\)
\(278\) −2.26721 + 1.30897i −0.135978 + 0.0785071i
\(279\) 1.36839 2.37012i 0.0819233 0.141895i
\(280\) 0.647772 0.244208i 0.0387118 0.0145942i
\(281\) −1.60303 + 2.77653i −0.0956286 + 0.165634i −0.909871 0.414892i \(-0.863819\pi\)
0.814242 + 0.580525i \(0.197153\pi\)
\(282\) 3.77518i 0.224809i
\(283\) −17.6209 + 10.1734i −1.04745 + 0.604748i −0.921936 0.387343i \(-0.873393\pi\)
−0.125519 + 0.992091i \(0.540059\pi\)
\(284\) 6.67007 11.5529i 0.395796 0.685538i
\(285\) 1.95155 2.38062i 0.115600 0.141016i
\(286\) −17.5345 −1.03684
\(287\) −0.0940861 0.0543206i −0.00555372 0.00320644i
\(288\) 1.00000i 0.0589256i
\(289\) −3.02329 5.23649i −0.177841 0.308029i
\(290\) 0.978720 1.19390i 0.0574724 0.0701083i
\(291\) 0.495047 + 0.857446i 0.0290201 + 0.0502644i
\(292\) 11.5903 6.69167i 0.678272 0.391600i
\(293\) −16.0621 + 9.27344i −0.938357 + 0.541760i −0.889445 0.457043i \(-0.848909\pi\)
−0.0489118 + 0.998803i \(0.515575\pi\)
\(294\) −3.45208 + 5.97917i −0.201329 + 0.348712i
\(295\) 19.9699 + 16.3707i 1.16269 + 0.953137i
\(296\) −0.841687 + 6.02425i −0.0489220 + 0.350152i
\(297\) 4.57198i 0.265293i
\(298\) −5.56336 3.21201i −0.322277 0.186067i
\(299\) −10.5069 18.1985i −0.607630 1.05245i
\(300\) −3.30083 3.75560i −0.190573 0.216830i
\(301\) −0.781467 1.35354i −0.0450430 0.0780168i
\(302\) 4.88068i 0.280852i
\(303\) 11.6341 6.71693i 0.668360 0.385878i
\(304\) 1.37665 0.0789565
\(305\) −9.95808 + 3.75415i −0.570198 + 0.214962i
\(306\) 3.30960 0.189197
\(307\) 2.00272i 0.114301i −0.998366 0.0571506i \(-0.981798\pi\)
0.998366 0.0571506i \(-0.0182015\pi\)
\(308\) −1.22583 0.707733i −0.0698481 0.0403268i
\(309\) −2.90473 5.03115i −0.165245 0.286212i
\(310\) −3.87967 + 4.73265i −0.220350 + 0.268796i
\(311\) 12.6672 21.9402i 0.718290 1.24411i −0.243387 0.969929i \(-0.578259\pi\)
0.961677 0.274185i \(-0.0884082\pi\)
\(312\) −3.32139 1.91760i −0.188037 0.108563i
\(313\) 29.0006 + 16.7435i 1.63921 + 0.946398i 0.981106 + 0.193470i \(0.0619742\pi\)
0.658103 + 0.752928i \(0.271359\pi\)
\(314\) 4.63800 + 8.03324i 0.261737 + 0.453342i
\(315\) −0.683091 0.112396i −0.0384878 0.00633281i
\(316\) −7.63359 + 13.2218i −0.429423 + 0.743783i
\(317\) 26.9267 + 15.5461i 1.51235 + 0.873158i 0.999896 + 0.0144452i \(0.00459822\pi\)
0.512458 + 0.858712i \(0.328735\pi\)
\(318\) −11.8620 6.84854i −0.665189 0.384047i
\(319\) −3.15652 −0.176731
\(320\) 0.363043 2.20640i 0.0202947 0.123341i
\(321\) −3.64832 + 6.31907i −0.203629 + 0.352696i
\(322\) 1.69633i 0.0945328i
\(323\) 4.55617i 0.253512i
\(324\) 0.500000 0.866025i 0.0277778 0.0481125i
\(325\) 18.8035 3.76156i 1.04303 0.208654i
\(326\) −6.55071 11.3462i −0.362810 0.628406i
\(327\) 12.9299i 0.715025i
\(328\) −0.303900 + 0.175457i −0.0167801 + 0.00968798i
\(329\) −0.584389 1.01219i −0.0322184 0.0558039i
\(330\) −1.65982 + 10.0876i −0.0913704 + 0.555306i
\(331\) −15.1793 + 26.2913i −0.834328 + 1.44510i 0.0602485 + 0.998183i \(0.480811\pi\)
−0.894576 + 0.446915i \(0.852523\pi\)
\(332\) 3.07393i 0.168704i
\(333\) 3.74105 4.79631i 0.205008 0.262836i
\(334\) 21.8756 1.19698
\(335\) 3.76340 + 9.98259i 0.205616 + 0.545407i
\(336\) −0.154798 0.268117i −0.00844491 0.0146270i
\(337\) 10.2584 5.92268i 0.558809 0.322629i −0.193858 0.981030i \(-0.562100\pi\)
0.752668 + 0.658401i \(0.228767\pi\)
\(338\) 1.47988 0.854410i 0.0804949 0.0464738i
\(339\) −2.45662 −0.133425
\(340\) −7.30229 1.20152i −0.396022 0.0651618i
\(341\) 12.5125 0.677590
\(342\) −1.19222 0.688327i −0.0644677 0.0372205i
\(343\) 4.30466i 0.232430i
\(344\) −5.04831 −0.272187
\(345\) −11.4642 + 4.32196i −0.617212 + 0.232686i
\(346\) −2.11655 3.66596i −0.113786 0.197083i
\(347\) 1.18913i 0.0638360i −0.999490 0.0319180i \(-0.989838\pi\)
0.999490 0.0319180i \(-0.0101615\pi\)
\(348\) −0.597908 0.345202i −0.0320512 0.0185048i
\(349\) −3.71744 + 6.43879i −0.198990 + 0.344660i −0.948201 0.317671i \(-0.897099\pi\)
0.749211 + 0.662331i \(0.230433\pi\)
\(350\) 1.46637 + 0.495982i 0.0783806 + 0.0265114i
\(351\) 1.91760 + 3.32139i 0.102354 + 0.177283i
\(352\) −3.95946 + 2.28599i −0.211040 + 0.121844i
\(353\) 12.2088 + 7.04878i 0.649811 + 0.375169i 0.788384 0.615184i \(-0.210918\pi\)
−0.138573 + 0.990352i \(0.544251\pi\)
\(354\) 5.77406 10.0010i 0.306888 0.531546i
\(355\) 27.9118 10.5226i 1.48141 0.558484i
\(356\) 10.9555 0.580641
\(357\) −0.887360 + 0.512318i −0.0469641 + 0.0271147i
\(358\) −15.7407 9.08787i −0.831920 0.480309i
\(359\) 1.41624 0.0747465 0.0373733 0.999301i \(-0.488101\pi\)
0.0373733 + 0.999301i \(0.488101\pi\)
\(360\) −1.41760 + 1.72928i −0.0747143 + 0.0911409i
\(361\) 8.55241 14.8132i 0.450127 0.779643i
\(362\) 7.26433i 0.381805i
\(363\) 8.57629 4.95152i 0.450138 0.259888i
\(364\) 1.18736 0.0622347
\(365\) 29.5290 + 4.85872i 1.54562 + 0.254317i
\(366\) 2.37967 + 4.12172i 0.124388 + 0.215446i
\(367\) −16.3472 + 9.43807i −0.853318 + 0.492663i −0.861769 0.507301i \(-0.830643\pi\)
0.00845116 + 0.999964i \(0.497310\pi\)
\(368\) −4.74511 2.73959i −0.247356 0.142811i
\(369\) 0.350914 0.0182678
\(370\) −9.99551 + 9.22442i −0.519642 + 0.479555i
\(371\) 4.24055 0.220159
\(372\) 2.37012 + 1.36839i 0.122885 + 0.0709476i
\(373\) 19.4504 11.2297i 1.00710 0.581451i 0.0967600 0.995308i \(-0.469152\pi\)
0.910342 + 0.413857i \(0.135819\pi\)
\(374\) 7.56571 + 13.1042i 0.391214 + 0.677602i
\(375\) −0.384086 11.1737i −0.0198341 0.577009i
\(376\) −3.77518 −0.194690
\(377\) 2.29310 1.32392i 0.118101 0.0681855i
\(378\) 0.309595i 0.0159239i
\(379\) 17.5279 30.3592i 0.900347 1.55945i 0.0733034 0.997310i \(-0.476646\pi\)
0.827044 0.562137i \(-0.190021\pi\)
\(380\) 2.38062 + 1.95155i 0.122123 + 0.100112i
\(381\) −1.36498 −0.0699298
\(382\) −2.96276 1.71055i −0.151588 0.0875193i
\(383\) −10.7629 + 6.21395i −0.549957 + 0.317518i −0.749105 0.662452i \(-0.769516\pi\)
0.199148 + 0.979969i \(0.436183\pi\)
\(384\) −1.00000 −0.0510310
\(385\) −1.11651 2.96161i −0.0569028 0.150937i
\(386\) 9.64268 16.7016i 0.490800 0.850090i
\(387\) 4.37197 + 2.52416i 0.222239 + 0.128310i
\(388\) −0.857446 + 0.495047i −0.0435302 + 0.0251322i
\(389\) −12.6077 21.8372i −0.639235 1.10719i −0.985601 0.169088i \(-0.945918\pi\)
0.346366 0.938100i \(-0.387416\pi\)
\(390\) −3.02520 8.02448i −0.153187 0.406335i
\(391\) −9.06694 + 15.7044i −0.458535 + 0.794206i
\(392\) −5.97917 3.45208i −0.301994 0.174356i
\(393\) 11.4906i 0.579623i
\(394\) −4.44334 7.69610i −0.223852 0.387724i
\(395\) −31.9438 + 12.0427i −1.60727 + 0.605934i
\(396\) 4.57198 0.229751
\(397\) 6.79635i 0.341099i 0.985349 + 0.170550i \(0.0545543\pi\)
−0.985349 + 0.170550i \(0.945446\pi\)
\(398\) −10.8739 6.27808i −0.545062 0.314692i
\(399\) 0.426206 0.0213370
\(400\) 3.75560 3.30083i 0.187780 0.165041i
\(401\) −4.27501 −0.213484 −0.106742 0.994287i \(-0.534042\pi\)
−0.106742 + 0.994287i \(0.534042\pi\)
\(402\) 4.13186 2.38553i 0.206079 0.118980i
\(403\) −9.08990 + 5.24805i −0.452800 + 0.261424i
\(404\) 6.71693 + 11.6341i 0.334180 + 0.578817i
\(405\) 2.09232 0.788796i 0.103968 0.0391956i
\(406\) 0.213746 0.0106080
\(407\) 27.5428 + 3.84818i 1.36524 + 0.190747i
\(408\) 3.30960i 0.163849i
\(409\) 4.25865 7.37620i 0.210577 0.364730i −0.741318 0.671153i \(-0.765799\pi\)
0.951895 + 0.306424i \(0.0991325\pi\)
\(410\) −0.774256 0.127397i −0.0382378 0.00629167i
\(411\) −4.77498 8.27050i −0.235532 0.407954i
\(412\) 5.03115 2.90473i 0.247867 0.143106i
\(413\) 3.57525i 0.175926i
\(414\) 2.73959 + 4.74511i 0.134644 + 0.233210i
\(415\) −4.35762 + 5.31568i −0.213907 + 0.260936i
\(416\) 1.91760 3.32139i 0.0940183 0.162844i
\(417\) 2.61795i 0.128202i
\(418\) 6.29404i 0.307852i
\(419\) −8.64775 + 14.9783i −0.422470 + 0.731740i −0.996180 0.0873184i \(-0.972170\pi\)
0.573710 + 0.819058i \(0.305504\pi\)
\(420\) 0.112396 0.683091i 0.00548438 0.0333314i
\(421\) −14.3686 −0.700282 −0.350141 0.936697i \(-0.613866\pi\)
−0.350141 + 0.936697i \(0.613866\pi\)
\(422\) −16.9436 9.78239i −0.824801 0.476199i
\(423\) 3.26940 + 1.88759i 0.158964 + 0.0917778i
\(424\) 6.84854 11.8620i 0.332595 0.576071i
\(425\) −10.9244 12.4295i −0.529911 0.602920i
\(426\) −6.67007 11.5529i −0.323166 0.559740i
\(427\) −1.27606 0.736736i −0.0617531 0.0356532i
\(428\) −6.31907 3.64832i −0.305444 0.176348i
\(429\) −8.76726 + 15.1853i −0.423287 + 0.733155i
\(430\) −8.72993 7.15651i −0.420995 0.345117i
\(431\) 11.6582 + 20.1926i 0.561557 + 0.972645i 0.997361 + 0.0726036i \(0.0231308\pi\)
−0.435804 + 0.900042i \(0.643536\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) 30.7382i 1.47718i 0.674154 + 0.738591i \(0.264509\pi\)
−0.674154 + 0.738591i \(0.735491\pi\)
\(434\) −0.847293 −0.0406714
\(435\) −0.544588 1.44455i −0.0261110 0.0692607i
\(436\) 12.9299 0.619229
\(437\) 6.53238 3.77147i 0.312486 0.180414i
\(438\) 13.3833i 0.639481i
\(439\) −18.6368 32.2798i −0.889484 1.54063i −0.840486 0.541833i \(-0.817731\pi\)
−0.0489981 0.998799i \(-0.515603\pi\)
\(440\) −10.0876 1.65982i −0.480909 0.0791290i
\(441\) 3.45208 + 5.97917i 0.164385 + 0.284722i
\(442\) −10.9924 6.34649i −0.522857 0.301872i
\(443\) 15.5587i 0.739218i 0.929187 + 0.369609i \(0.120508\pi\)
−0.929187 + 0.369609i \(0.879492\pi\)
\(444\) 4.79631 + 3.74105i 0.227623 + 0.177542i
\(445\) 18.9451 + 15.5306i 0.898085 + 0.736220i
\(446\) −1.99663 + 3.45826i −0.0945431 + 0.163753i
\(447\) −5.56336 + 3.21201i −0.263138 + 0.151923i
\(448\) 0.268117 0.154798i 0.0126674 0.00731350i
\(449\) 0.541729 + 0.938301i 0.0255658 + 0.0442812i 0.878525 0.477696i \(-0.158528\pi\)
−0.852959 + 0.521977i \(0.825195\pi\)
\(450\) −4.90286 + 0.980798i −0.231123 + 0.0462353i
\(451\) 0.802186 + 1.38943i 0.0377735 + 0.0654255i
\(452\) 2.45662i 0.115549i
\(453\) −4.22679 2.44034i −0.198592 0.114657i
\(454\) 27.3497 1.28359
\(455\) 2.05328 + 1.68321i 0.0962592 + 0.0789101i
\(456\) 0.688327 1.19222i 0.0322339 0.0558307i
\(457\) −21.6972 + 12.5269i −1.01495 + 0.585984i −0.912638 0.408768i \(-0.865958\pi\)
−0.102316 + 0.994752i \(0.532625\pi\)
\(458\) 23.7955i 1.11189i
\(459\) 1.65480 2.86619i 0.0772393 0.133782i
\(460\) −4.32196 11.4642i −0.201512 0.534521i
\(461\) −5.11582 + 8.86086i −0.238267 + 0.412691i −0.960217 0.279254i \(-0.909913\pi\)
0.721950 + 0.691945i \(0.243246\pi\)
\(462\) −1.22583 + 0.707733i −0.0570307 + 0.0329267i
\(463\) −14.3453 + 8.28227i −0.666683 + 0.384910i −0.794819 0.606847i \(-0.792434\pi\)
0.128135 + 0.991757i \(0.459101\pi\)
\(464\) 0.345202 0.597908i 0.0160256 0.0277572i
\(465\) 2.15876 + 5.72621i 0.100110 + 0.265547i
\(466\) 12.8189 22.2029i 0.593822 1.02853i
\(467\) 26.1213i 1.20875i −0.796699 0.604376i \(-0.793423\pi\)
0.796699 0.604376i \(-0.206577\pi\)
\(468\) −3.32139 + 1.91760i −0.153531 + 0.0886413i
\(469\) −0.738550 + 1.27921i −0.0341031 + 0.0590682i
\(470\) −6.52833 5.35171i −0.301130 0.246856i
\(471\) 9.27599 0.427415
\(472\) 10.0010 + 5.77406i 0.460332 + 0.265773i
\(473\) 23.0808i 1.06126i
\(474\) 7.63359 + 13.2218i 0.350623 + 0.607296i
\(475\) 1.35022 + 6.74954i 0.0619523 + 0.309690i
\(476\) −0.512318 0.887360i −0.0234820 0.0406721i
\(477\) −11.8620 + 6.84854i −0.543125 + 0.313573i
\(478\) −5.34161 + 3.08398i −0.244319 + 0.141058i
\(479\) 2.17164 3.76140i 0.0992250 0.171863i −0.812139 0.583464i \(-0.801697\pi\)
0.911364 + 0.411601i \(0.135030\pi\)
\(480\) −1.72928 1.41760i −0.0789303 0.0647045i
\(481\) −21.6229 + 8.75655i −0.985919 + 0.399265i
\(482\) 4.01282i 0.182779i
\(483\) −1.46907 0.848165i −0.0668448 0.0385929i
\(484\) 4.95152 + 8.57629i 0.225069 + 0.389831i
\(485\) −2.18454 0.359446i −0.0991949 0.0163216i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) 13.9410i 0.631728i 0.948804 + 0.315864i \(0.102294\pi\)
−0.948804 + 0.315864i \(0.897706\pi\)
\(488\) −4.12172 + 2.37967i −0.186581 + 0.107723i
\(489\) −13.1014 −0.592467
\(490\) −5.44597 14.4457i −0.246024 0.652590i
\(491\) −28.8479 −1.30189 −0.650943 0.759127i \(-0.725626\pi\)
−0.650943 + 0.759127i \(0.725626\pi\)
\(492\) 0.350914i 0.0158204i
\(493\) −1.97883 1.14248i −0.0891222 0.0514547i
\(494\) 2.63988 + 4.57240i 0.118774 + 0.205722i
\(495\) 7.90623 + 6.48126i 0.355359 + 0.291311i
\(496\) −1.36839 + 2.37012i −0.0614425 + 0.106421i
\(497\) 3.57672 + 2.06502i 0.160438 + 0.0926289i
\(498\) 2.66210 + 1.53697i 0.119292 + 0.0688731i
\(499\) 16.1947 + 28.0501i 0.724976 + 1.25570i 0.958984 + 0.283461i \(0.0914827\pi\)
−0.234007 + 0.972235i \(0.575184\pi\)
\(500\) 11.1737 0.384086i 0.499705 0.0171768i
\(501\) 10.9378 18.9448i 0.488665 0.846392i
\(502\) 14.5033 + 8.37346i 0.647312 + 0.373726i
\(503\) −6.88500 3.97506i −0.306987 0.177239i 0.338590 0.940934i \(-0.390050\pi\)
−0.645577 + 0.763695i \(0.723383\pi\)
\(504\) −0.309595 −0.0137905
\(505\) −4.87706 + 29.6405i −0.217027 + 1.31898i
\(506\) −12.5254 + 21.6946i −0.556821 + 0.964442i
\(507\) 1.70882i 0.0758913i
\(508\) 1.36498i 0.0605610i
\(509\) −18.3769 + 31.8297i −0.814541 + 1.41083i 0.0951156 + 0.995466i \(0.469678\pi\)
−0.909657 + 0.415361i \(0.863655\pi\)
\(510\) −4.69170 + 5.72321i −0.207752 + 0.253428i
\(511\) 2.07171 + 3.58831i 0.0916470 + 0.158737i
\(512\) 1.00000i 0.0441942i
\(513\) −1.19222 + 0.688327i −0.0526377 + 0.0303904i
\(514\) 0.923995 + 1.60041i 0.0407557 + 0.0705909i
\(515\) 12.8180 + 2.10908i 0.564829 + 0.0929373i
\(516\) −2.52416 + 4.37197i −0.111120 + 0.192465i
\(517\) 17.2601i 0.759097i
\(518\) −1.86508 0.260582i −0.0819469 0.0114493i
\(519\) −4.23309 −0.185812
\(520\) 8.02448 3.02520i 0.351897 0.132664i
\(521\) 10.8737 + 18.8338i 0.476386 + 0.825125i 0.999634 0.0270553i \(-0.00861303\pi\)
−0.523248 + 0.852181i \(0.675280\pi\)
\(522\) −0.597908 + 0.345202i −0.0261697 + 0.0151091i
\(523\) 28.0959 16.2211i 1.22855 0.709301i 0.261820 0.965117i \(-0.415677\pi\)
0.966726 + 0.255815i \(0.0823439\pi\)
\(524\) 11.4906 0.501968
\(525\) 1.16272 1.02192i 0.0507451 0.0446003i
\(526\) −7.33520 −0.319830
\(527\) 7.84413 + 4.52881i 0.341696 + 0.197278i
\(528\) 4.57198i 0.198970i
\(529\) −7.02148 −0.305282
\(530\) 28.6587 10.8042i 1.24485 0.469305i
\(531\) −5.77406 10.0010i −0.250573 0.434005i
\(532\) 0.426206i 0.0184784i
\(533\) −1.16552 0.672913i −0.0504843 0.0291471i
\(534\) 5.47776 9.48775i 0.237046 0.410575i
\(535\) −5.75556 15.2669i −0.248834 0.660046i
\(536\) 2.38553 + 4.13186i 0.103039 + 0.178469i
\(537\) −15.7407 + 9.08787i −0.679260 + 0.392171i
\(538\) −14.1806 8.18718i −0.611370 0.352975i
\(539\) −15.7828 + 27.3367i −0.679815 + 1.17747i
\(540\) 0.788796 + 2.09232i 0.0339444 + 0.0900391i
\(541\) 1.49631 0.0643316 0.0321658 0.999483i \(-0.489760\pi\)
0.0321658 + 0.999483i \(0.489760\pi\)
\(542\) −8.18692 + 4.72672i −0.351659 + 0.203030i
\(543\) 6.29109 + 3.63216i 0.269977 + 0.155871i
\(544\) −3.30960 −0.141898
\(545\) 22.3594 + 18.3295i 0.957770 + 0.785148i
\(546\) 0.593681 1.02829i 0.0254072 0.0440066i
\(547\) 18.3785i 0.785806i 0.919580 + 0.392903i \(0.128529\pi\)
−0.919580 + 0.392903i \(0.871471\pi\)
\(548\) 8.27050 4.77498i 0.353298 0.203977i
\(549\) 4.75935 0.203124
\(550\) −15.0913 17.1706i −0.643496 0.732155i
\(551\) 0.475224 + 0.823112i 0.0202452 + 0.0350658i
\(552\) −4.74511 + 2.73959i −0.201965 + 0.116605i
\(553\) −4.09340 2.36333i −0.174069 0.100499i
\(554\) 8.80577 0.374121
\(555\) 2.99082 + 13.2686i 0.126953 + 0.563219i
\(556\) −2.61795 −0.111026
\(557\) −6.04437 3.48972i −0.256108 0.147864i 0.366450 0.930438i \(-0.380573\pi\)
−0.622558 + 0.782574i \(0.713906\pi\)
\(558\) 2.37012 1.36839i 0.100335 0.0579285i
\(559\) −9.68066 16.7674i −0.409448 0.709185i
\(560\) 0.683091 + 0.112396i 0.0288659 + 0.00474961i
\(561\) 15.1314 0.638849
\(562\) −2.77653 + 1.60303i −0.117121 + 0.0676197i
\(563\) 41.0519i 1.73013i 0.501660 + 0.865065i \(0.332723\pi\)
−0.501660 + 0.865065i \(0.667277\pi\)
\(564\) −1.88759 + 3.26940i −0.0794819 + 0.137667i
\(565\) 3.48251 4.24817i 0.146510 0.178722i
\(566\) −20.3469 −0.855243
\(567\) 0.268117 + 0.154798i 0.0112599 + 0.00650089i
\(568\) 11.5529 6.67007i 0.484749 0.279870i
\(569\) 2.75954 0.115686 0.0578429 0.998326i \(-0.481578\pi\)
0.0578429 + 0.998326i \(0.481578\pi\)
\(570\) 2.88040 1.08590i 0.120647 0.0454833i
\(571\) −11.4590 + 19.8475i −0.479544 + 0.830594i −0.999725 0.0234621i \(-0.992531\pi\)
0.520181 + 0.854056i \(0.325864\pi\)
\(572\) −15.1853 8.76726i −0.634931 0.366577i
\(573\) −2.96276 + 1.71055i −0.123771 + 0.0714592i
\(574\) −0.0543206 0.0940861i −0.00226730 0.00392708i
\(575\) 8.77784 25.9516i 0.366061 1.08226i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 9.23858 + 5.33389i 0.384607 + 0.222053i 0.679821 0.733378i \(-0.262058\pi\)
−0.295214 + 0.955431i \(0.595391\pi\)
\(578\) 6.04658i 0.251505i
\(579\) −9.64268 16.7016i −0.400736 0.694096i
\(580\) 1.44455 0.544588i 0.0599816 0.0226128i
\(581\) −0.951675 −0.0394821
\(582\) 0.990093i 0.0410407i
\(583\) −54.2330 31.3114i −2.24610 1.29679i
\(584\) 13.3833 0.553806
\(585\) −8.46200 1.39234i −0.349861 0.0575663i
\(586\) −18.5469 −0.766165
\(587\) −21.0853 + 12.1736i −0.870284 + 0.502459i −0.867443 0.497537i \(-0.834238\pi\)
−0.00284149 + 0.999996i \(0.500904\pi\)
\(588\) −5.97917 + 3.45208i −0.246577 + 0.142361i
\(589\) −1.88380 3.26283i −0.0776205 0.134443i
\(590\) 9.10912 + 24.1624i 0.375016 + 0.994749i
\(591\) −8.88669 −0.365550
\(592\) −3.74105 + 4.79631i −0.153756 + 0.197127i
\(593\) 21.9586i 0.901733i −0.892591 0.450867i \(-0.851115\pi\)
0.892591 0.450867i \(-0.148885\pi\)
\(594\) 2.28599 3.95946i 0.0937954 0.162458i
\(595\) 0.371986 2.26076i 0.0152499 0.0926819i
\(596\) −3.21201 5.56336i −0.131569 0.227884i
\(597\) −10.8739 + 6.27808i −0.445041 + 0.256945i
\(598\) 21.0138i 0.859319i
\(599\) −22.2901 38.6075i −0.910747 1.57746i −0.813012 0.582247i \(-0.802173\pi\)
−0.0977352 0.995212i \(-0.531160\pi\)
\(600\) −0.980798 4.90286i −0.0400409 0.200158i
\(601\) 10.9231 18.9193i 0.445562 0.771736i −0.552529 0.833493i \(-0.686337\pi\)
0.998091 + 0.0617578i \(0.0196706\pi\)
\(602\) 1.56293i 0.0637004i
\(603\) 4.77106i 0.194293i
\(604\) 2.44034 4.22679i 0.0992961 0.171986i
\(605\) −3.59523 + 21.8501i −0.146167 + 0.888332i
\(606\) 13.4339 0.545713
\(607\) −21.2315 12.2580i −0.861762 0.497539i 0.00283994 0.999996i \(-0.499096\pi\)
−0.864602 + 0.502457i \(0.832429\pi\)
\(608\) 1.19222 + 0.688327i 0.0483508 + 0.0279153i
\(609\) 0.106873 0.185110i 0.00433071 0.00750102i
\(610\) −10.5010 1.72785i −0.425174 0.0699584i
\(611\) −7.23930 12.5388i −0.292871 0.507267i
\(612\) 2.86619 + 1.65480i 0.115859 + 0.0668912i
\(613\) 15.8847 + 9.17104i 0.641577 + 0.370415i 0.785222 0.619215i \(-0.212549\pi\)
−0.143645 + 0.989629i \(0.545882\pi\)
\(614\) 1.00136 1.73440i 0.0404116 0.0699949i
\(615\) −0.497457 + 0.606827i −0.0200594 + 0.0244696i
\(616\) −0.707733 1.22583i −0.0285154 0.0493901i
\(617\) 24.8079 + 14.3229i 0.998730 + 0.576617i 0.907872 0.419247i \(-0.137706\pi\)
0.0908575 + 0.995864i \(0.471039\pi\)
\(618\) 5.80947i 0.233691i
\(619\) −11.1758 −0.449193 −0.224596 0.974452i \(-0.572106\pi\)
−0.224596 + 0.974452i \(0.572106\pi\)
\(620\) −5.72621 + 2.15876i −0.229970 + 0.0866978i
\(621\) 5.47919 0.219872
\(622\) 21.9402 12.6672i 0.879722 0.507908i
\(623\) 3.39178i 0.135889i
\(624\) −1.91760 3.32139i −0.0767656 0.132962i
\(625\) 19.8670 + 15.1757i 0.794679 + 0.607030i
\(626\) 16.7435 + 29.0006i 0.669204 + 1.15910i
\(627\) −5.45080 3.14702i −0.217684 0.125680i
\(628\) 9.27599i 0.370152i
\(629\) 15.8738 + 12.3813i 0.632931 + 0.493677i
\(630\) −0.535376 0.438884i −0.0213299 0.0174855i
\(631\) −18.1519 + 31.4400i −0.722615 + 1.25161i 0.237333 + 0.971428i \(0.423727\pi\)
−0.959948 + 0.280178i \(0.909607\pi\)
\(632\) −13.2218 + 7.63359i −0.525934 + 0.303648i
\(633\) −16.9436 + 9.78239i −0.673447 + 0.388815i
\(634\) 15.5461 + 26.9267i 0.617416 + 1.06940i
\(635\) 1.93500 2.36042i 0.0767879 0.0936705i
\(636\) −6.84854 11.8620i −0.271562 0.470360i
\(637\) 26.4789i 1.04913i
\(638\) −2.73363 1.57826i −0.108225 0.0624839i
\(639\) −13.3401 −0.527728
\(640\) 1.41760 1.72928i 0.0560357 0.0683557i
\(641\) 20.8852 36.1742i 0.824916 1.42880i −0.0770677 0.997026i \(-0.524556\pi\)
0.901984 0.431770i \(-0.142111\pi\)
\(642\) −6.31907 + 3.64832i −0.249394 + 0.143988i
\(643\) 9.18122i 0.362072i 0.983476 + 0.181036i \(0.0579451\pi\)
−0.983476 + 0.181036i \(0.942055\pi\)
\(644\) 0.848165 1.46907i 0.0334224 0.0578893i
\(645\) −10.5627 + 3.98209i −0.415905 + 0.156795i
\(646\) 2.27808 3.94576i 0.0896300 0.155244i
\(647\) 2.25144 1.29987i 0.0885133 0.0511032i −0.455090 0.890445i \(-0.650393\pi\)
0.543603 + 0.839342i \(0.317060\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) 26.3989 45.7243i 1.03625 1.79484i
\(650\) 18.1651 + 6.14413i 0.712493 + 0.240993i
\(651\) −0.423647 + 0.733778i −0.0166040 + 0.0287590i
\(652\) 13.1014i 0.513091i
\(653\) 16.7712 9.68287i 0.656309 0.378920i −0.134560 0.990905i \(-0.542962\pi\)
0.790869 + 0.611985i \(0.209629\pi\)
\(654\) 6.46495 11.1976i 0.252799 0.437861i
\(655\) 19.8704 + 16.2891i 0.776400 + 0.636467i
\(656\) −0.350914 −0.0137009
\(657\) −11.5903 6.69167i −0.452181 0.261067i
\(658\) 1.16878i 0.0455637i
\(659\) 3.00412 + 5.20328i 0.117024 + 0.202691i 0.918587 0.395219i \(-0.129331\pi\)
−0.801563 + 0.597910i \(0.795998\pi\)
\(660\) −6.48126 + 7.90623i −0.252283 + 0.307750i
\(661\) 17.0665 + 29.5601i 0.663811 + 1.14975i 0.979606 + 0.200927i \(0.0643953\pi\)
−0.315796 + 0.948827i \(0.602271\pi\)
\(662\) −26.2913 + 15.1793i −1.02184 + 0.589959i
\(663\) −10.9924 + 6.34649i −0.426911 + 0.246477i
\(664\) −1.53697 + 2.66210i −0.0596458 + 0.103310i
\(665\) −0.604191 + 0.737028i −0.0234295 + 0.0285807i
\(666\) 5.63800 2.28320i 0.218468 0.0884723i
\(667\) 3.78286i 0.146473i
\(668\) 18.9448 + 10.9378i 0.732997 + 0.423196i
\(669\) 1.99663 + 3.45826i 0.0771941 + 0.133704i
\(670\) −1.73210 + 10.5269i −0.0669168 + 0.406689i
\(671\) 10.8798 + 18.8444i 0.420011 + 0.727481i
\(672\) 0.309595i 0.0119429i
\(673\) −5.77448 + 3.33389i −0.222590 + 0.128512i −0.607149 0.794588i \(-0.707687\pi\)
0.384559 + 0.923100i \(0.374353\pi\)
\(674\) 11.8454 0.456266
\(675\) −1.60203 + 4.73640i −0.0616623 + 0.182304i
\(676\) 1.70882 0.0657238
\(677\) 8.18243i 0.314476i −0.987561 0.157238i \(-0.949741\pi\)
0.987561 0.157238i \(-0.0502590\pi\)
\(678\) −2.12749 1.22831i −0.0817058 0.0471729i
\(679\) −0.153264 0.265461i −0.00588174 0.0101875i
\(680\) −5.72321 4.69170i −0.219475 0.179918i
\(681\) 13.6749 23.6856i 0.524022 0.907633i
\(682\) 10.8361 + 6.25625i 0.414937 + 0.239564i
\(683\) 26.9900 + 15.5827i 1.03274 + 0.596254i 0.917769 0.397114i \(-0.129988\pi\)
0.114974 + 0.993369i \(0.463322\pi\)
\(684\) −0.688327 1.19222i −0.0263188 0.0455856i
\(685\) 21.0710 + 3.46704i 0.805082 + 0.132469i
\(686\) 2.15233 3.72795i 0.0821764 0.142334i
\(687\) 20.6075 + 11.8978i 0.786226 + 0.453928i
\(688\) −4.37197 2.52416i −0.166680 0.0962325i
\(689\) 52.5312 2.00128
\(690\) −12.0893 1.98918i −0.460231 0.0757267i
\(691\) −20.8249 + 36.0698i −0.792218 + 1.37216i 0.132373 + 0.991200i \(0.457740\pi\)
−0.924591 + 0.380962i \(0.875593\pi\)
\(692\) 4.23309i 0.160918i
\(693\) 1.41547i 0.0537691i
\(694\) 0.594567 1.02982i 0.0225694 0.0390914i
\(695\) −4.52716 3.71122i −0.171725 0.140774i
\(696\) −0.345202 0.597908i −0.0130849 0.0226636i
\(697\) 1.16138i 0.0439905i
\(698\) −6.43879 + 3.71744i −0.243712 + 0.140707i
\(699\) −12.8189 22.2029i −0.484854 0.839791i
\(700\) 1.02192 + 1.16272i 0.0386250 + 0.0439466i
\(701\) −24.5191 + 42.4683i −0.926073 + 1.60400i −0.136246 + 0.990675i \(0.543504\pi\)
−0.789827 + 0.613330i \(0.789830\pi\)
\(702\) 3.83521i 0.144751i
\(703\) −3.14318 7.76157i −0.118547 0.292733i
\(704\) −4.57198 −0.172313
\(705\) −7.89888 + 2.97785i −0.297489 + 0.112152i
\(706\) 7.04878 + 12.2088i 0.265284 + 0.459486i
\(707\) −3.60185 + 2.07953i −0.135462 + 0.0782088i
\(708\) 10.0010 5.77406i 0.375860 0.217003i
\(709\) −16.7309 −0.628343 −0.314171 0.949366i \(-0.601727\pi\)
−0.314171 + 0.949366i \(0.601727\pi\)
\(710\) 29.4337 + 4.84304i 1.10463 + 0.181756i
\(711\) 15.2672 0.572564
\(712\) 9.48775 + 5.47776i 0.355569 + 0.205288i
\(713\) 14.9953i 0.561579i
\(714\) −1.02464 −0.0383460
\(715\) −13.8312 36.6878i −0.517256 1.37205i
\(716\) −9.08787 15.7407i −0.339630 0.588256i
\(717\) 6.16796i 0.230347i
\(718\) 1.22650 + 0.708122i 0.0457727 + 0.0264269i
\(719\) −14.7645 + 25.5728i −0.550622 + 0.953705i 0.447608 + 0.894230i \(0.352276\pi\)
−0.998230 + 0.0594751i \(0.981057\pi\)
\(720\) −2.09232 + 0.788796i −0.0779761 + 0.0293967i
\(721\) 0.899292 + 1.55762i 0.0334914 + 0.0580088i
\(722\) 14.8132 8.55241i 0.551291 0.318288i
\(723\) 3.47521 + 2.00641i 0.129244 + 0.0746192i
\(724\) −3.63216 + 6.29109i −0.134988 + 0.233807i
\(725\) 3.27003 + 1.10605i 0.121446 + 0.0410777i
\(726\) 9.90305 0.367537
\(727\) −33.7503 + 19.4857i −1.25173 + 0.722685i −0.971452 0.237234i \(-0.923759\pi\)
−0.280275 + 0.959920i \(0.590426\pi\)
\(728\) 1.02829 + 0.593681i 0.0381108 + 0.0220033i
\(729\) −1.00000 −0.0370370
\(730\) 23.1435 + 18.9723i 0.856579 + 0.702195i
\(731\) −8.35393 + 14.4694i −0.308981 + 0.535171i
\(732\) 4.75935i 0.175911i
\(733\) 29.8567 17.2377i 1.10278 0.636691i 0.165831 0.986154i \(-0.446969\pi\)
0.936950 + 0.349463i \(0.113636\pi\)
\(734\) −18.8761 −0.696731
\(735\) −15.2333 2.50650i −0.561889 0.0924537i
\(736\) −2.73959 4.74511i −0.100983 0.174907i
\(737\) 18.8908 10.9066i 0.695852 0.401750i
\(738\) 0.303900 + 0.175457i 0.0111867 + 0.00645865i
\(739\) −9.23484 −0.339709 −0.169855 0.985469i \(-0.554330\pi\)
−0.169855 + 0.985469i \(0.554330\pi\)
\(740\) −13.2686 + 2.99082i −0.487762 + 0.109945i
\(741\) 5.27975 0.193957
\(742\) 3.67243 + 2.12028i 0.134819 + 0.0778378i
\(743\) −24.7745 + 14.3036i −0.908889 + 0.524747i −0.880073 0.474838i \(-0.842507\pi\)
−0.0288154 + 0.999585i \(0.509173\pi\)
\(744\) 1.36839 + 2.37012i 0.0501676 + 0.0868928i
\(745\) 2.33219 14.1739i 0.0854448 0.519293i
\(746\) 22.4593 0.822295
\(747\) 2.66210 1.53697i 0.0974013 0.0562346i
\(748\) 15.1314i 0.553260i
\(749\) 1.12950 1.95636i 0.0412711 0.0714837i
\(750\) 5.25424 9.86879i 0.191858 0.360357i
\(751\) 13.7813 0.502886 0.251443 0.967872i \(-0.419095\pi\)
0.251443 + 0.967872i \(0.419095\pi\)
\(752\) −3.26940 1.88759i −0.119223 0.0688333i
\(753\) 14.5033 8.37346i 0.528528 0.305146i
\(754\) 2.64785 0.0964288
\(755\) 10.2119 3.84986i 0.371651 0.140111i
\(756\) −0.154798 + 0.268117i −0.00562994 + 0.00975134i
\(757\) −11.6427 6.72193i −0.423162 0.244313i 0.273267 0.961938i \(-0.411896\pi\)
−0.696429 + 0.717625i \(0.745229\pi\)
\(758\) 30.3592 17.5279i 1.10270 0.636642i
\(759\) 12.5254 + 21.6946i 0.454642 + 0.787464i
\(760\) 1.08590 + 2.88040i 0.0393897 + 0.104483i
\(761\) 15.8359 27.4286i 0.574051 0.994286i −0.422093 0.906553i \(-0.638704\pi\)
0.996144 0.0877334i \(-0.0279624\pi\)
\(762\) −1.18210 0.682488i −0.0428231 0.0247239i
\(763\) 4.00303i 0.144920i
\(764\) −1.71055 2.96276i −0.0618855 0.107189i
\(765\) 2.61060 + 6.92473i 0.0943863 + 0.250364i
\(766\) −12.4279 −0.449038
\(767\) 44.2895i 1.59920i
\(768\) −0.866025 0.500000i −0.0312500 0.0180422i
\(769\) −8.70963 −0.314077 −0.157039 0.987592i \(-0.550195\pi\)
−0.157039 + 0.987592i \(0.550195\pi\)
\(770\) 0.513874 3.12308i 0.0185187 0.112548i
\(771\) 1.84799 0.0665538
\(772\) 16.7016 9.64268i 0.601104 0.347048i
\(773\) 2.32166 1.34041i 0.0835044 0.0482113i −0.457666 0.889124i \(-0.651315\pi\)
0.541171 + 0.840913i \(0.317981\pi\)
\(774\) 2.52416 + 4.37197i 0.0907289 + 0.157147i
\(775\) −12.9625 4.38441i −0.465626 0.157493i
\(776\) −0.990093 −0.0355423