Properties

Label 1110.2.ba.b.619.16
Level $1110$
Weight $2$
Character 1110.619
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 619.16
Character \(\chi\) \(=\) 1110.619
Dual form 1110.2.ba.b.529.16

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.64331 + 1.51642i) q^{5} -1.00000i q^{6} +(0.916644 - 0.529225i) q^{7} -1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.64331 + 1.51642i) q^{5} -1.00000i q^{6} +(0.916644 - 0.529225i) q^{7} -1.00000 q^{8} +(0.500000 - 0.866025i) q^{9} +(2.13491 - 0.664945i) q^{10} -0.825600 q^{11} +(-0.866025 - 0.500000i) q^{12} +(-1.81865 - 3.14999i) q^{13} -1.05845i q^{14} +(2.18136 + 0.491597i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.742138 - 1.28542i) q^{17} +(-0.500000 - 0.866025i) q^{18} +(4.75785 - 2.74695i) q^{19} +(0.491597 - 2.18136i) q^{20} +(0.529225 - 0.916644i) q^{21} +(-0.412800 + 0.714991i) q^{22} +2.23982 q^{23} +(-0.866025 + 0.500000i) q^{24} +(0.400968 + 4.98390i) q^{25} -3.63729 q^{26} -1.00000i q^{27} +(-0.916644 - 0.529225i) q^{28} -2.02537i q^{29} +(1.51642 - 1.64331i) q^{30} -6.27676i q^{31} +(0.500000 + 0.866025i) q^{32} +(-0.714991 + 0.412800i) q^{33} +(-0.742138 - 1.28542i) q^{34} +(2.30886 + 0.520331i) q^{35} -1.00000 q^{36} +(5.95462 - 1.24197i) q^{37} -5.49389i q^{38} +(-3.14999 - 1.81865i) q^{39} +(-1.64331 - 1.51642i) q^{40} +(-1.42858 - 2.47438i) q^{41} +(-0.529225 - 0.916644i) q^{42} +10.6694 q^{43} +(0.412800 + 0.714991i) q^{44} +(2.13491 - 0.664945i) q^{45} +(1.11991 - 1.93975i) q^{46} +11.7632i q^{47} +1.00000i q^{48} +(-2.93984 + 5.09196i) q^{49} +(4.51666 + 2.14470i) q^{50} -1.48428i q^{51} +(-1.81865 + 3.14999i) q^{52} +(8.00978 + 4.62445i) q^{53} +(-0.866025 - 0.500000i) q^{54} +(-1.35672 - 1.25195i) q^{55} +(-0.916644 + 0.529225i) q^{56} +(2.74695 - 4.75785i) q^{57} +(-1.75402 - 1.01268i) q^{58} +(-6.33426 - 3.65709i) q^{59} +(-0.664945 - 2.13491i) q^{60} +(-5.60990 + 3.23888i) q^{61} +(-5.43583 - 3.13838i) q^{62} -1.05845i q^{63} +1.00000 q^{64} +(1.78808 - 7.93425i) q^{65} +0.825600i q^{66} +(-11.2463 + 6.49307i) q^{67} -1.48428 q^{68} +(1.93975 - 1.11991i) q^{69} +(1.60505 - 1.73937i) q^{70} +(-0.701131 - 1.21439i) q^{71} +(-0.500000 + 0.866025i) q^{72} -8.82512i q^{73} +(1.90173 - 5.77784i) q^{74} +(2.83920 + 4.11570i) q^{75} +(-4.75785 - 2.74695i) q^{76} +(-0.756782 + 0.436928i) q^{77} +(-3.14999 + 1.81865i) q^{78} +(-3.10453 + 1.79240i) q^{79} +(-2.13491 + 0.664945i) q^{80} +(-0.500000 - 0.866025i) q^{81} -2.85716 q^{82} +(13.4101 + 7.74230i) q^{83} -1.05845 q^{84} +(3.16880 - 0.986962i) q^{85} +(5.33471 - 9.23999i) q^{86} +(-1.01268 - 1.75402i) q^{87} +0.825600 q^{88} +(-2.86558 - 1.65444i) q^{89} +(0.491597 - 2.18136i) q^{90} +(-3.33410 - 1.92495i) q^{91} +(-1.11991 - 1.93975i) q^{92} +(-3.13838 - 5.43583i) q^{93} +(10.1872 + 5.88160i) q^{94} +(11.9842 + 2.70078i) q^{95} +(0.866025 + 0.500000i) q^{96} -5.18358 q^{97} +(2.93984 + 5.09196i) q^{98} +(-0.412800 + 0.714991i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.64331 + 1.51642i 0.734913 + 0.678162i
\(6\) 1.00000i 0.408248i
\(7\) 0.916644 0.529225i 0.346459 0.200028i −0.316666 0.948537i \(-0.602563\pi\)
0.663125 + 0.748509i \(0.269230\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 2.13491 0.664945i 0.675118 0.210274i
\(11\) −0.825600 −0.248928 −0.124464 0.992224i \(-0.539721\pi\)
−0.124464 + 0.992224i \(0.539721\pi\)
\(12\) −0.866025 0.500000i −0.250000 0.144338i
\(13\) −1.81865 3.14999i −0.504402 0.873649i −0.999987 0.00509014i \(-0.998380\pi\)
0.495585 0.868559i \(-0.334954\pi\)
\(14\) 1.05845i 0.282883i
\(15\) 2.18136 + 0.491597i 0.563225 + 0.126930i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.742138 1.28542i 0.179995 0.311760i −0.761884 0.647714i \(-0.775725\pi\)
0.941879 + 0.335954i \(0.109059\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) 4.75785 2.74695i 1.09153 0.630193i 0.157543 0.987512i \(-0.449643\pi\)
0.933982 + 0.357319i \(0.116309\pi\)
\(20\) 0.491597 2.18136i 0.109924 0.487767i
\(21\) 0.529225 0.916644i 0.115486 0.200028i
\(22\) −0.412800 + 0.714991i −0.0880093 + 0.152437i
\(23\) 2.23982 0.467036 0.233518 0.972353i \(-0.424976\pi\)
0.233518 + 0.972353i \(0.424976\pi\)
\(24\) −0.866025 + 0.500000i −0.176777 + 0.102062i
\(25\) 0.400968 + 4.98390i 0.0801936 + 0.996779i
\(26\) −3.63729 −0.713332
\(27\) 1.00000i 0.192450i
\(28\) −0.916644 0.529225i −0.173229 0.100014i
\(29\) 2.02537i 0.376101i −0.982159 0.188050i \(-0.939783\pi\)
0.982159 0.188050i \(-0.0602168\pi\)
\(30\) 1.51642 1.64331i 0.276858 0.300027i
\(31\) 6.27676i 1.12734i −0.826000 0.563669i \(-0.809389\pi\)
0.826000 0.563669i \(-0.190611\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) −0.714991 + 0.412800i −0.124464 + 0.0718593i
\(34\) −0.742138 1.28542i −0.127276 0.220448i
\(35\) 2.30886 + 0.520331i 0.390269 + 0.0879519i
\(36\) −1.00000 −0.166667
\(37\) 5.95462 1.24197i 0.978934 0.204179i
\(38\) 5.49389i 0.891227i
\(39\) −3.14999 1.81865i −0.504402 0.291216i
\(40\) −1.64331 1.51642i −0.259831 0.239766i
\(41\) −1.42858 2.47438i −0.223107 0.386433i 0.732643 0.680613i \(-0.238287\pi\)
−0.955750 + 0.294181i \(0.904953\pi\)
\(42\) −0.529225 0.916644i −0.0816612 0.141441i
\(43\) 10.6694 1.62707 0.813536 0.581515i \(-0.197540\pi\)
0.813536 + 0.581515i \(0.197540\pi\)
\(44\) 0.412800 + 0.714991i 0.0622319 + 0.107789i
\(45\) 2.13491 0.664945i 0.318254 0.0991241i
\(46\) 1.11991 1.93975i 0.165122 0.286000i
\(47\) 11.7632i 1.71584i 0.513783 + 0.857920i \(0.328244\pi\)
−0.513783 + 0.857920i \(0.671756\pi\)
\(48\) 1.00000i 0.144338i
\(49\) −2.93984 + 5.09196i −0.419977 + 0.727422i
\(50\) 4.51666 + 2.14470i 0.638753 + 0.303306i
\(51\) 1.48428i 0.207840i
\(52\) −1.81865 + 3.14999i −0.252201 + 0.436825i
\(53\) 8.00978 + 4.62445i 1.10023 + 0.635217i 0.936281 0.351252i \(-0.114244\pi\)
0.163947 + 0.986469i \(0.447577\pi\)
\(54\) −0.866025 0.500000i −0.117851 0.0680414i
\(55\) −1.35672 1.25195i −0.182940 0.168813i
\(56\) −0.916644 + 0.529225i −0.122492 + 0.0707206i
\(57\) 2.74695 4.75785i 0.363842 0.630193i
\(58\) −1.75402 1.01268i −0.230314 0.132972i
\(59\) −6.33426 3.65709i −0.824651 0.476112i 0.0273670 0.999625i \(-0.491288\pi\)
−0.852018 + 0.523513i \(0.824621\pi\)
\(60\) −0.664945 2.13491i −0.0858440 0.275616i
\(61\) −5.60990 + 3.23888i −0.718274 + 0.414696i −0.814117 0.580701i \(-0.802779\pi\)
0.0958432 + 0.995396i \(0.469445\pi\)
\(62\) −5.43583 3.13838i −0.690351 0.398574i
\(63\) 1.05845i 0.133352i
\(64\) 1.00000 0.125000
\(65\) 1.78808 7.93425i 0.221784 0.984122i
\(66\) 0.825600i 0.101624i
\(67\) −11.2463 + 6.49307i −1.37396 + 0.793255i −0.991424 0.130686i \(-0.958282\pi\)
−0.382535 + 0.923941i \(0.624949\pi\)
\(68\) −1.48428 −0.179995
\(69\) 1.93975 1.11991i 0.233518 0.134822i
\(70\) 1.60505 1.73937i 0.191840 0.207894i
\(71\) −0.701131 1.21439i −0.0832089 0.144122i 0.821418 0.570327i \(-0.193184\pi\)
−0.904627 + 0.426205i \(0.859850\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) 8.82512i 1.03290i −0.856317 0.516451i \(-0.827253\pi\)
0.856317 0.516451i \(-0.172747\pi\)
\(74\) 1.90173 5.77784i 0.221072 0.671660i
\(75\) 2.83920 + 4.11570i 0.327842 + 0.475240i
\(76\) −4.75785 2.74695i −0.545763 0.315096i
\(77\) −0.756782 + 0.436928i −0.0862433 + 0.0497926i
\(78\) −3.14999 + 1.81865i −0.356666 + 0.205921i
\(79\) −3.10453 + 1.79240i −0.349287 + 0.201661i −0.664371 0.747403i \(-0.731300\pi\)
0.315084 + 0.949064i \(0.397967\pi\)
\(80\) −2.13491 + 0.664945i −0.238690 + 0.0743431i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −2.85716 −0.315521
\(83\) 13.4101 + 7.74230i 1.47195 + 0.849828i 0.999503 0.0315331i \(-0.0100390\pi\)
0.472443 + 0.881361i \(0.343372\pi\)
\(84\) −1.05845 −0.115486
\(85\) 3.16880 0.986962i 0.343705 0.107051i
\(86\) 5.33471 9.23999i 0.575257 0.996374i
\(87\) −1.01268 1.75402i −0.108571 0.188050i
\(88\) 0.825600 0.0880093
\(89\) −2.86558 1.65444i −0.303751 0.175371i 0.340376 0.940289i \(-0.389446\pi\)
−0.644127 + 0.764919i \(0.722779\pi\)
\(90\) 0.491597 2.18136i 0.0518189 0.229936i
\(91\) −3.33410 1.92495i −0.349509 0.201789i
\(92\) −1.11991 1.93975i −0.116759 0.202232i
\(93\) −3.13838 5.43583i −0.325435 0.563669i
\(94\) 10.1872 + 5.88160i 1.05073 + 0.606641i
\(95\) 11.9842 + 2.70078i 1.22955 + 0.277094i
\(96\) 0.866025 + 0.500000i 0.0883883 + 0.0510310i
\(97\) −5.18358 −0.526313 −0.263157 0.964753i \(-0.584764\pi\)
−0.263157 + 0.964753i \(0.584764\pi\)
\(98\) 2.93984 + 5.09196i 0.296969 + 0.514365i
\(99\) −0.412800 + 0.714991i −0.0414880 + 0.0718593i
\(100\) 4.11570 2.83920i 0.411570 0.283920i
\(101\) −10.5205 −1.04682 −0.523412 0.852080i \(-0.675341\pi\)
−0.523412 + 0.852080i \(0.675341\pi\)
\(102\) −1.28542 0.742138i −0.127276 0.0734826i
\(103\) −16.1758 −1.59385 −0.796923 0.604081i \(-0.793540\pi\)
−0.796923 + 0.604081i \(0.793540\pi\)
\(104\) 1.81865 + 3.14999i 0.178333 + 0.308882i
\(105\) 2.25970 0.703810i 0.220524 0.0686849i
\(106\) 8.00978 4.62445i 0.777979 0.449166i
\(107\) −12.2112 + 7.05015i −1.18050 + 0.681563i −0.956131 0.292940i \(-0.905366\pi\)
−0.224372 + 0.974504i \(0.572033\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) −4.54656 2.62496i −0.435481 0.251425i 0.266198 0.963918i \(-0.414233\pi\)
−0.701679 + 0.712493i \(0.747566\pi\)
\(110\) −1.76258 + 0.548978i −0.168056 + 0.0523430i
\(111\) 4.53587 4.05289i 0.430525 0.384683i
\(112\) 1.05845i 0.100014i
\(113\) 1.67721 2.90502i 0.157779 0.273281i −0.776288 0.630378i \(-0.782900\pi\)
0.934067 + 0.357097i \(0.116233\pi\)
\(114\) −2.74695 4.75785i −0.257275 0.445613i
\(115\) 3.68074 + 3.39651i 0.343231 + 0.316726i
\(116\) −1.75402 + 1.01268i −0.162856 + 0.0940252i
\(117\) −3.63729 −0.336268
\(118\) −6.33426 + 3.65709i −0.583116 + 0.336662i
\(119\) 1.57103i 0.144016i
\(120\) −2.18136 0.491597i −0.199130 0.0448765i
\(121\) −10.3184 −0.938035
\(122\) 6.47775i 0.586468i
\(123\) −2.47438 1.42858i −0.223107 0.128811i
\(124\) −5.43583 + 3.13838i −0.488152 + 0.281835i
\(125\) −6.89874 + 8.79815i −0.617042 + 0.786930i
\(126\) −0.916644 0.529225i −0.0816612 0.0471471i
\(127\) 5.43873 + 3.14005i 0.482609 + 0.278634i 0.721503 0.692411i \(-0.243452\pi\)
−0.238894 + 0.971046i \(0.576785\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 9.23999 5.33471i 0.813536 0.469695i
\(130\) −5.97722 5.51565i −0.524237 0.483754i
\(131\) 11.2829 + 6.51420i 0.985794 + 0.569148i 0.904014 0.427502i \(-0.140606\pi\)
0.0817796 + 0.996650i \(0.473940\pi\)
\(132\) 0.714991 + 0.412800i 0.0622319 + 0.0359296i
\(133\) 2.90750 5.03594i 0.252113 0.436672i
\(134\) 12.9861i 1.12183i
\(135\) 1.51642 1.64331i 0.130512 0.141434i
\(136\) −0.742138 + 1.28542i −0.0636378 + 0.110224i
\(137\) 7.15737i 0.611496i 0.952113 + 0.305748i \(0.0989064\pi\)
−0.952113 + 0.305748i \(0.901094\pi\)
\(138\) 2.23982i 0.190667i
\(139\) −5.76530 + 9.98579i −0.489006 + 0.846983i −0.999920 0.0126486i \(-0.995974\pi\)
0.510914 + 0.859632i \(0.329307\pi\)
\(140\) −0.703810 2.25970i −0.0594828 0.190979i
\(141\) 5.88160 + 10.1872i 0.495320 + 0.857920i
\(142\) −1.40226 −0.117675
\(143\) 1.50147 + 2.60063i 0.125560 + 0.217476i
\(144\) 0.500000 + 0.866025i 0.0416667 + 0.0721688i
\(145\) 3.07130 3.32831i 0.255057 0.276401i
\(146\) −7.64277 4.41256i −0.632520 0.365186i
\(147\) 5.87968i 0.484948i
\(148\) −4.05289 4.53587i −0.333145 0.372846i
\(149\) −3.03860 −0.248932 −0.124466 0.992224i \(-0.539722\pi\)
−0.124466 + 0.992224i \(0.539722\pi\)
\(150\) 4.98390 0.400968i 0.406933 0.0327389i
\(151\) −4.20011 7.27481i −0.341800 0.592015i 0.642967 0.765894i \(-0.277703\pi\)
−0.984767 + 0.173879i \(0.944370\pi\)
\(152\) −4.75785 + 2.74695i −0.385913 + 0.222807i
\(153\) −0.742138 1.28542i −0.0599983 0.103920i
\(154\) 0.873856i 0.0704173i
\(155\) 9.51817 10.3147i 0.764518 0.828496i
\(156\) 3.63729i 0.291216i
\(157\) −12.7985 7.38920i −1.02143 0.589722i −0.106911 0.994269i \(-0.534096\pi\)
−0.914517 + 0.404546i \(0.867429\pi\)
\(158\) 3.58480i 0.285191i
\(159\) 9.24890 0.733485
\(160\) −0.491597 + 2.18136i −0.0388641 + 0.172452i
\(161\) 2.05312 1.18537i 0.161809 0.0934203i
\(162\) −1.00000 −0.0785674
\(163\) −1.76345 + 3.05439i −0.138124 + 0.239238i −0.926787 0.375588i \(-0.877441\pi\)
0.788662 + 0.614827i \(0.210774\pi\)
\(164\) −1.42858 + 2.47438i −0.111554 + 0.193216i
\(165\) −1.80093 0.405862i −0.140202 0.0315963i
\(166\) 13.4101 7.74230i 1.04082 0.600919i
\(167\) 10.7385 + 18.5996i 0.830969 + 1.43928i 0.897270 + 0.441482i \(0.145547\pi\)
−0.0663009 + 0.997800i \(0.521120\pi\)
\(168\) −0.529225 + 0.916644i −0.0408306 + 0.0707206i
\(169\) −0.114948 + 0.199096i −0.00884218 + 0.0153151i
\(170\) 0.729666 3.23774i 0.0559628 0.248323i
\(171\) 5.49389i 0.420128i
\(172\) −5.33471 9.23999i −0.406768 0.704543i
\(173\) 2.69931 + 1.55845i 0.205225 + 0.118487i 0.599090 0.800681i \(-0.295529\pi\)
−0.393865 + 0.919168i \(0.628862\pi\)
\(174\) −2.02537 −0.153543
\(175\) 3.00515 + 4.35626i 0.227168 + 0.329302i
\(176\) 0.412800 0.714991i 0.0311160 0.0538944i
\(177\) −7.31417 −0.549767
\(178\) −2.86558 + 1.65444i −0.214784 + 0.124006i
\(179\) 10.0254i 0.749333i −0.927160 0.374666i \(-0.877757\pi\)
0.927160 0.374666i \(-0.122243\pi\)
\(180\) −1.64331 1.51642i −0.122485 0.113027i
\(181\) 0.887705 + 1.53755i 0.0659826 + 0.114285i 0.897129 0.441768i \(-0.145648\pi\)
−0.831147 + 0.556053i \(0.812315\pi\)
\(182\) −3.33410 + 1.92495i −0.247140 + 0.142686i
\(183\) −3.23888 + 5.60990i −0.239425 + 0.414696i
\(184\) −2.23982 −0.165122
\(185\) 11.6687 + 6.98873i 0.857897 + 0.513822i
\(186\) −6.27676 −0.460234
\(187\) −0.612709 + 1.06124i −0.0448058 + 0.0776058i
\(188\) 10.1872 5.88160i 0.742981 0.428960i
\(189\) −0.529225 0.916644i −0.0384954 0.0666761i
\(190\) 8.33102 9.02819i 0.604396 0.654974i
\(191\) 19.2656i 1.39401i 0.717066 + 0.697006i \(0.245485\pi\)
−0.717066 + 0.697006i \(0.754515\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 18.5203 1.33312 0.666561 0.745451i \(-0.267766\pi\)
0.666561 + 0.745451i \(0.267766\pi\)
\(194\) −2.59179 + 4.48912i −0.186080 + 0.322300i
\(195\) −2.41860 7.76530i −0.173199 0.556085i
\(196\) 5.87968 0.419977
\(197\) 4.21694 + 2.43465i 0.300444 + 0.173462i 0.642642 0.766166i \(-0.277838\pi\)
−0.342198 + 0.939628i \(0.611171\pi\)
\(198\) 0.412800 + 0.714991i 0.0293364 + 0.0508122i
\(199\) 17.8813i 1.26757i 0.773509 + 0.633785i \(0.218500\pi\)
−0.773509 + 0.633785i \(0.781500\pi\)
\(200\) −0.400968 4.98390i −0.0283527 0.352415i
\(201\) −6.49307 + 11.2463i −0.457986 + 0.793255i
\(202\) −5.26023 + 9.11098i −0.370108 + 0.641046i
\(203\) −1.07187 1.85654i −0.0752308 0.130304i
\(204\) −1.28542 + 0.742138i −0.0899975 + 0.0519601i
\(205\) 1.40457 6.23251i 0.0980997 0.435297i
\(206\) −8.08789 + 14.0086i −0.563510 + 0.976028i
\(207\) 1.11991 1.93975i 0.0778393 0.134822i
\(208\) 3.63729 0.252201
\(209\) −3.92808 + 2.26788i −0.271711 + 0.156872i
\(210\) 0.520331 2.30886i 0.0359062 0.159326i
\(211\) −0.395745 −0.0272442 −0.0136221 0.999907i \(-0.504336\pi\)
−0.0136221 + 0.999907i \(0.504336\pi\)
\(212\) 9.24890i 0.635217i
\(213\) −1.21439 0.701131i −0.0832089 0.0480407i
\(214\) 14.1003i 0.963876i
\(215\) 17.5332 + 16.1793i 1.19576 + 1.10342i
\(216\) 1.00000i 0.0680414i
\(217\) −3.32182 5.75355i −0.225500 0.390577i
\(218\) −4.54656 + 2.62496i −0.307932 + 0.177785i
\(219\) −4.41256 7.64277i −0.298173 0.516451i
\(220\) −0.405862 + 1.80093i −0.0273632 + 0.121419i
\(221\) −5.39875 −0.363159
\(222\) −1.24197 5.95462i −0.0833557 0.399648i
\(223\) 25.5883i 1.71352i −0.515713 0.856761i \(-0.672473\pi\)
0.515713 0.856761i \(-0.327527\pi\)
\(224\) 0.916644 + 0.529225i 0.0612459 + 0.0353603i
\(225\) 4.51666 + 2.14470i 0.301111 + 0.142980i
\(226\) −1.67721 2.90502i −0.111567 0.193239i
\(227\) 11.6633 + 20.2013i 0.774117 + 1.34081i 0.935289 + 0.353884i \(0.115139\pi\)
−0.161172 + 0.986926i \(0.551527\pi\)
\(228\) −5.49389 −0.363842
\(229\) −11.6531 20.1837i −0.770055 1.33377i −0.937532 0.347899i \(-0.886895\pi\)
0.167477 0.985876i \(-0.446438\pi\)
\(230\) 4.78183 1.48936i 0.315304 0.0982055i
\(231\) −0.436928 + 0.756782i −0.0287478 + 0.0497926i
\(232\) 2.02537i 0.132972i
\(233\) 0.508726i 0.0333277i −0.999861 0.0166639i \(-0.994695\pi\)
0.999861 0.0166639i \(-0.00530452\pi\)
\(234\) −1.81865 + 3.14999i −0.118889 + 0.205921i
\(235\) −17.8379 + 19.3307i −1.16362 + 1.26099i
\(236\) 7.31417i 0.476112i
\(237\) −1.79240 + 3.10453i −0.116429 + 0.201661i
\(238\) −1.36055 0.785516i −0.0881916 0.0509174i
\(239\) 5.12135 + 2.95681i 0.331273 + 0.191260i 0.656406 0.754408i \(-0.272076\pi\)
−0.325133 + 0.945668i \(0.605409\pi\)
\(240\) −1.51642 + 1.64331i −0.0978842 + 0.106076i
\(241\) 1.48624 0.858078i 0.0957368 0.0552737i −0.451367 0.892338i \(-0.649064\pi\)
0.547104 + 0.837065i \(0.315730\pi\)
\(242\) −5.15919 + 8.93598i −0.331645 + 0.574427i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 5.60990 + 3.23888i 0.359137 + 0.207348i
\(245\) −12.5526 + 3.90966i −0.801957 + 0.249779i
\(246\) −2.47438 + 1.42858i −0.157761 + 0.0910831i
\(247\) −17.3057 9.99145i −1.10113 0.635740i
\(248\) 6.27676i 0.398574i
\(249\) 15.4846 0.981297
\(250\) 4.17005 + 10.3736i 0.263737 + 0.656081i
\(251\) 16.7132i 1.05493i 0.849576 + 0.527465i \(0.176858\pi\)
−0.849576 + 0.527465i \(0.823142\pi\)
\(252\) −0.916644 + 0.529225i −0.0577432 + 0.0333380i
\(253\) −1.84920 −0.116258
\(254\) 5.43873 3.14005i 0.341256 0.197024i
\(255\) 2.25078 2.43913i 0.140949 0.152744i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.47817 2.56026i 0.0922055 0.159705i −0.816233 0.577722i \(-0.803942\pi\)
0.908439 + 0.418018i \(0.137275\pi\)
\(258\) 10.6694i 0.664249i
\(259\) 4.80099 4.28978i 0.298319 0.266554i
\(260\) −7.76530 + 2.41860i −0.481583 + 0.149995i
\(261\) −1.75402 1.01268i −0.108571 0.0626835i
\(262\) 11.2829 6.51420i 0.697062 0.402449i
\(263\) 15.9056 9.18313i 0.980784 0.566256i 0.0782774 0.996932i \(-0.475058\pi\)
0.902507 + 0.430676i \(0.141725\pi\)
\(264\) 0.714991 0.412800i 0.0440046 0.0254061i
\(265\) 6.15001 + 19.7456i 0.377792 + 1.21296i
\(266\) −2.90750 5.03594i −0.178271 0.308774i
\(267\) −3.30888 −0.202500
\(268\) 11.2463 + 6.49307i 0.686979 + 0.396628i
\(269\) 23.1442 1.41113 0.705563 0.708648i \(-0.250694\pi\)
0.705563 + 0.708648i \(0.250694\pi\)
\(270\) −0.664945 2.13491i −0.0404672 0.129927i
\(271\) 8.12733 14.0769i 0.493700 0.855113i −0.506274 0.862373i \(-0.668977\pi\)
0.999974 + 0.00725939i \(0.00231076\pi\)
\(272\) 0.742138 + 1.28542i 0.0449987 + 0.0779401i
\(273\) −3.84989 −0.233006
\(274\) 6.19847 + 3.57869i 0.374463 + 0.216196i
\(275\) −0.331039 4.11471i −0.0199624 0.248126i
\(276\) −1.93975 1.11991i −0.116759 0.0674108i
\(277\) 2.33406 + 4.04271i 0.140240 + 0.242903i 0.927587 0.373607i \(-0.121879\pi\)
−0.787347 + 0.616510i \(0.788546\pi\)
\(278\) 5.76530 + 9.98579i 0.345779 + 0.598908i
\(279\) −5.43583 3.13838i −0.325435 0.187890i
\(280\) −2.30886 0.520331i −0.137981 0.0310957i
\(281\) 12.2372 + 7.06515i 0.730010 + 0.421471i 0.818426 0.574612i \(-0.194847\pi\)
−0.0884158 + 0.996084i \(0.528180\pi\)
\(282\) 11.7632 0.700489
\(283\) 5.01437 + 8.68515i 0.298073 + 0.516278i 0.975695 0.219132i \(-0.0703226\pi\)
−0.677622 + 0.735411i \(0.736989\pi\)
\(284\) −0.701131 + 1.21439i −0.0416045 + 0.0720611i
\(285\) 11.7290 3.65313i 0.694765 0.216393i
\(286\) 3.00295 0.177568
\(287\) −2.61900 1.51208i −0.154595 0.0892554i
\(288\) 1.00000 0.0589256
\(289\) 7.39846 + 12.8145i 0.435204 + 0.753795i
\(290\) −1.34676 4.32398i −0.0790842 0.253913i
\(291\) −4.48912 + 2.59179i −0.263157 + 0.151934i
\(292\) −7.64277 + 4.41256i −0.447260 + 0.258225i
\(293\) 0.821707 0.474413i 0.0480046 0.0277155i −0.475806 0.879550i \(-0.657843\pi\)
0.523810 + 0.851835i \(0.324510\pi\)
\(294\) 5.09196 + 2.93984i 0.296969 + 0.171455i
\(295\) −4.86352 15.6151i −0.283165 0.909147i
\(296\) −5.95462 + 1.24197i −0.346105 + 0.0721881i
\(297\) 0.825600i 0.0479062i
\(298\) −1.51930 + 2.63151i −0.0880107 + 0.152439i
\(299\) −4.07345 7.05542i −0.235574 0.408026i
\(300\) 2.14470 4.51666i 0.123824 0.260770i
\(301\) 9.78007 5.64652i 0.563714 0.325460i
\(302\) −8.40022 −0.483379
\(303\) −9.11098 + 5.26023i −0.523412 + 0.302192i
\(304\) 5.49389i 0.315096i
\(305\) −14.1303 3.18444i −0.809099 0.182341i
\(306\) −1.48428 −0.0848504
\(307\) 12.8973i 0.736088i 0.929808 + 0.368044i \(0.119972\pi\)
−0.929808 + 0.368044i \(0.880028\pi\)
\(308\) 0.756782 + 0.436928i 0.0431216 + 0.0248963i
\(309\) −14.0086 + 8.08789i −0.796923 + 0.460104i
\(310\) −4.17370 13.4003i −0.237050 0.761087i
\(311\) −22.1356 12.7800i −1.25520 0.724688i −0.283060 0.959102i \(-0.591349\pi\)
−0.972137 + 0.234414i \(0.924683\pi\)
\(312\) 3.14999 + 1.81865i 0.178333 + 0.102961i
\(313\) −2.35334 + 4.07611i −0.133019 + 0.230395i −0.924839 0.380359i \(-0.875800\pi\)
0.791820 + 0.610754i \(0.209134\pi\)
\(314\) −12.7985 + 7.38920i −0.722259 + 0.416997i
\(315\) 1.60505 1.73937i 0.0904343 0.0980022i
\(316\) 3.10453 + 1.79240i 0.174643 + 0.100830i
\(317\) −21.7227 12.5416i −1.22007 0.704407i −0.255137 0.966905i \(-0.582120\pi\)
−0.964933 + 0.262498i \(0.915454\pi\)
\(318\) 4.62445 8.00978i 0.259326 0.449166i
\(319\) 1.67214i 0.0936219i
\(320\) 1.64331 + 1.51642i 0.0918641 + 0.0847702i
\(321\) −7.05015 + 12.2112i −0.393501 + 0.681563i
\(322\) 2.37074i 0.132116i
\(323\) 8.15446i 0.453726i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 14.9700 10.3270i 0.830386 0.572838i
\(326\) 1.76345 + 3.05439i 0.0976686 + 0.169167i
\(327\) −5.24991 −0.290321
\(328\) 1.42858 + 2.47438i 0.0788803 + 0.136625i
\(329\) 6.22538 + 10.7827i 0.343216 + 0.594468i
\(330\) −1.25195 + 1.35672i −0.0689177 + 0.0746850i
\(331\) 7.92971 + 4.57822i 0.435856 + 0.251642i 0.701838 0.712336i \(-0.252363\pi\)
−0.265982 + 0.963978i \(0.585696\pi\)
\(332\) 15.4846i 0.849828i
\(333\) 1.90173 5.77784i 0.104214 0.316624i
\(334\) 21.4770 1.17517
\(335\) −28.3275 6.38395i −1.54770 0.348793i
\(336\) 0.529225 + 0.916644i 0.0288716 + 0.0500070i
\(337\) −8.94213 + 5.16274i −0.487109 + 0.281232i −0.723374 0.690456i \(-0.757410\pi\)
0.236266 + 0.971689i \(0.424076\pi\)
\(338\) 0.114948 + 0.199096i 0.00625236 + 0.0108294i
\(339\) 3.35443i 0.182188i
\(340\) −2.43913 2.25078i −0.132281 0.122066i
\(341\) 5.18209i 0.280626i
\(342\) −4.75785 2.74695i −0.257275 0.148538i
\(343\) 13.6325i 0.736086i
\(344\) −10.6694 −0.575257
\(345\) 4.88587 + 1.10109i 0.263046 + 0.0592808i
\(346\) 2.69931 1.55845i 0.145116 0.0837827i
\(347\) −25.3284 −1.35970 −0.679850 0.733351i \(-0.737955\pi\)
−0.679850 + 0.733351i \(0.737955\pi\)
\(348\) −1.01268 + 1.75402i −0.0542855 + 0.0940252i
\(349\) 11.2916 19.5576i 0.604426 1.04690i −0.387716 0.921779i \(-0.626736\pi\)
0.992142 0.125117i \(-0.0399308\pi\)
\(350\) 5.27520 0.424404i 0.281971 0.0226854i
\(351\) −3.14999 + 1.81865i −0.168134 + 0.0970722i
\(352\) −0.412800 0.714991i −0.0220023 0.0381091i
\(353\) 11.5240 19.9601i 0.613360 1.06237i −0.377310 0.926087i \(-0.623151\pi\)
0.990670 0.136283i \(-0.0435156\pi\)
\(354\) −3.65709 + 6.33426i −0.194372 + 0.336662i
\(355\) 0.689348 3.05884i 0.0365868 0.162346i
\(356\) 3.30888i 0.175371i
\(357\) −0.785516 1.36055i −0.0415739 0.0720081i
\(358\) −8.68224 5.01269i −0.458871 0.264929i
\(359\) −15.2488 −0.804799 −0.402400 0.915464i \(-0.631824\pi\)
−0.402400 + 0.915464i \(0.631824\pi\)
\(360\) −2.13491 + 0.664945i −0.112520 + 0.0350457i
\(361\) 5.59142 9.68463i 0.294285 0.509717i
\(362\) 1.77541 0.0933135
\(363\) −8.93598 + 5.15919i −0.469017 + 0.270787i
\(364\) 3.84989i 0.201789i
\(365\) 13.3825 14.5024i 0.700474 0.759093i
\(366\) 3.23888 + 5.60990i 0.169299 + 0.293234i
\(367\) −5.59808 + 3.23205i −0.292217 + 0.168712i −0.638941 0.769255i \(-0.720627\pi\)
0.346724 + 0.937967i \(0.387294\pi\)
\(368\) −1.11991 + 1.93975i −0.0583795 + 0.101116i
\(369\) −2.85716 −0.148738
\(370\) 11.8867 6.61099i 0.617963 0.343689i
\(371\) 9.78949 0.508245
\(372\) −3.13838 + 5.43583i −0.162717 + 0.281835i
\(373\) −22.1461 + 12.7860i −1.14668 + 0.662036i −0.948076 0.318044i \(-0.896974\pi\)
−0.198604 + 0.980080i \(0.563641\pi\)
\(374\) 0.612709 + 1.06124i 0.0316824 + 0.0548756i
\(375\) −1.57541 + 11.0688i −0.0813540 + 0.571590i
\(376\) 11.7632i 0.606641i
\(377\) −6.37988 + 3.68342i −0.328580 + 0.189706i
\(378\) −1.05845 −0.0544408
\(379\) 0.395361 0.684786i 0.0203084 0.0351751i −0.855693 0.517484i \(-0.826869\pi\)
0.876001 + 0.482309i \(0.160202\pi\)
\(380\) −3.65313 11.7290i −0.187402 0.601684i
\(381\) 6.28010 0.321739
\(382\) 16.6845 + 9.63281i 0.853654 + 0.492857i
\(383\) 7.08892 + 12.2784i 0.362227 + 0.627396i 0.988327 0.152347i \(-0.0486831\pi\)
−0.626100 + 0.779743i \(0.715350\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −1.90619 0.429585i −0.0971487 0.0218937i
\(386\) 9.26016 16.0391i 0.471330 0.816367i
\(387\) 5.33471 9.23999i 0.271179 0.469695i
\(388\) 2.59179 + 4.48912i 0.131578 + 0.227900i
\(389\) 14.9727 8.64452i 0.759149 0.438295i −0.0698414 0.997558i \(-0.522249\pi\)
0.828990 + 0.559264i \(0.188916\pi\)
\(390\) −7.93425 1.78808i −0.401766 0.0905430i
\(391\) 1.66226 2.87912i 0.0840641 0.145603i
\(392\) 2.93984 5.09196i 0.148484 0.257183i
\(393\) 13.0284 0.657196
\(394\) 4.21694 2.43465i 0.212446 0.122656i
\(395\) −7.81974 1.76228i −0.393454 0.0886697i
\(396\) 0.825600 0.0414880
\(397\) 5.32580i 0.267294i 0.991029 + 0.133647i \(0.0426689\pi\)
−0.991029 + 0.133647i \(0.957331\pi\)
\(398\) 15.4856 + 8.94064i 0.776225 + 0.448154i
\(399\) 5.81501i 0.291115i
\(400\) −4.51666 2.14470i −0.225833 0.107235i
\(401\) 29.8380i 1.49004i 0.667043 + 0.745019i \(0.267560\pi\)
−0.667043 + 0.745019i \(0.732440\pi\)
\(402\) 6.49307 + 11.2463i 0.323845 + 0.560916i
\(403\) −19.7717 + 11.4152i −0.984899 + 0.568632i
\(404\) 5.26023 + 9.11098i 0.261706 + 0.453288i
\(405\) 0.491597 2.18136i 0.0244276 0.108393i
\(406\) −2.14375 −0.106392
\(407\) −4.91613 + 1.02537i −0.243684 + 0.0508258i
\(408\) 1.48428i 0.0734826i
\(409\) −6.17878 3.56732i −0.305521 0.176393i 0.339399 0.940642i \(-0.389776\pi\)
−0.644921 + 0.764250i \(0.723110\pi\)
\(410\) −4.69522 4.33265i −0.231880 0.213974i
\(411\) 3.57869 + 6.19847i 0.176524 + 0.305748i
\(412\) 8.08789 + 14.0086i 0.398462 + 0.690156i
\(413\) −7.74169 −0.380943
\(414\) −1.11991 1.93975i −0.0550407 0.0953333i
\(415\) 10.2964 + 33.0583i 0.505431 + 1.62277i
\(416\) 1.81865 3.14999i 0.0891665 0.154441i
\(417\) 11.5306i 0.564655i
\(418\) 4.53576i 0.221851i
\(419\) 3.74432 6.48535i 0.182922 0.316830i −0.759952 0.649979i \(-0.774778\pi\)
0.942874 + 0.333149i \(0.108111\pi\)
\(420\) −1.73937 1.60505i −0.0848724 0.0783184i
\(421\) 11.6772i 0.569114i −0.958659 0.284557i \(-0.908153\pi\)
0.958659 0.284557i \(-0.0918465\pi\)
\(422\) −0.197873 + 0.342726i −0.00963229 + 0.0166836i
\(423\) 10.1872 + 5.88160i 0.495320 + 0.285973i
\(424\) −8.00978 4.62445i −0.388989 0.224583i
\(425\) 6.70398 + 3.18333i 0.325191 + 0.154414i
\(426\) −1.21439 + 0.701131i −0.0588376 + 0.0339699i
\(427\) −3.42819 + 5.93779i −0.165902 + 0.287350i
\(428\) 12.2112 + 7.05015i 0.590251 + 0.340782i
\(429\) 2.60063 + 1.50147i 0.125560 + 0.0724919i
\(430\) 22.7783 7.09458i 1.09847 0.342131i
\(431\) −12.6642 + 7.31168i −0.610013 + 0.352191i −0.772971 0.634442i \(-0.781230\pi\)
0.162957 + 0.986633i \(0.447897\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) 39.9241i 1.91863i −0.282341 0.959314i \(-0.591111\pi\)
0.282341 0.959314i \(-0.408889\pi\)
\(434\) −6.64363 −0.318905
\(435\) 0.995663 4.41805i 0.0477384 0.211829i
\(436\) 5.24991i 0.251425i
\(437\) 10.6568 6.15268i 0.509782 0.294323i
\(438\) −8.82512 −0.421680
\(439\) 1.05841 0.611072i 0.0505151 0.0291649i −0.474530 0.880239i \(-0.657382\pi\)
0.525045 + 0.851075i \(0.324049\pi\)
\(440\) 1.35672 + 1.25195i 0.0646791 + 0.0596845i
\(441\) 2.93984 + 5.09196i 0.139992 + 0.242474i
\(442\) −2.69937 + 4.67545i −0.128396 + 0.222389i
\(443\) 7.35235i 0.349321i −0.984629 0.174660i \(-0.944117\pi\)
0.984629 0.174660i \(-0.0558828\pi\)
\(444\) −5.77784 1.90173i −0.274204 0.0902522i
\(445\) −2.20022 7.06418i −0.104301 0.334874i
\(446\) −22.1602 12.7942i −1.04931 0.605822i
\(447\) −2.63151 + 1.51930i −0.124466 + 0.0718605i
\(448\) 0.916644 0.529225i 0.0433074 0.0250035i
\(449\) 10.2005 5.88927i 0.481392 0.277932i −0.239604 0.970871i \(-0.577018\pi\)
0.720997 + 0.692939i \(0.243684\pi\)
\(450\) 4.11570 2.83920i 0.194016 0.133841i
\(451\) 1.17944 + 2.04285i 0.0555375 + 0.0961939i
\(452\) −3.35443 −0.157779
\(453\) −7.27481 4.20011i −0.341800 0.197338i
\(454\) 23.3265 1.09477
\(455\) −2.55996 8.21918i −0.120013 0.385321i
\(456\) −2.74695 + 4.75785i −0.128638 + 0.222807i
\(457\) −7.85584 13.6067i −0.367481 0.636496i 0.621690 0.783263i \(-0.286446\pi\)
−0.989171 + 0.146768i \(0.953113\pi\)
\(458\) −23.3061 −1.08902
\(459\) −1.28542 0.742138i −0.0599983 0.0346401i
\(460\) 1.10109 4.88587i 0.0513386 0.227805i
\(461\) −21.3746 12.3407i −0.995517 0.574762i −0.0885978 0.996067i \(-0.528239\pi\)
−0.906919 + 0.421306i \(0.861572\pi\)
\(462\) 0.436928 + 0.756782i 0.0203277 + 0.0352087i
\(463\) 18.6610 + 32.3218i 0.867249 + 1.50212i 0.864796 + 0.502123i \(0.167448\pi\)
0.00245324 + 0.999997i \(0.499219\pi\)
\(464\) 1.75402 + 1.01268i 0.0814282 + 0.0470126i
\(465\) 3.08563 13.6919i 0.143093 0.634945i
\(466\) −0.440570 0.254363i −0.0204090 0.0117831i
\(467\) −9.17134 −0.424399 −0.212200 0.977226i \(-0.568063\pi\)
−0.212200 + 0.977226i \(0.568063\pi\)
\(468\) 1.81865 + 3.14999i 0.0840670 + 0.145608i
\(469\) −6.87259 + 11.9037i −0.317347 + 0.549661i
\(470\) 7.82188 + 25.1134i 0.360797 + 1.15840i
\(471\) −14.7784 −0.680953
\(472\) 6.33426 + 3.65709i 0.291558 + 0.168331i
\(473\) −8.80868 −0.405023
\(474\) 1.79240 + 3.10453i 0.0823276 + 0.142596i
\(475\) 15.5982 + 22.6112i 0.715696 + 1.03747i
\(476\) −1.36055 + 0.785516i −0.0623609 + 0.0360041i
\(477\) 8.00978 4.62445i 0.366743 0.211739i
\(478\) 5.12135 2.95681i 0.234245 0.135242i
\(479\) −3.81113 2.20036i −0.174135 0.100537i 0.410399 0.911906i \(-0.365389\pi\)
−0.584534 + 0.811369i \(0.698723\pi\)
\(480\) 0.664945 + 2.13491i 0.0303504 + 0.0974449i
\(481\) −14.7415 16.4983i −0.672157 0.752257i
\(482\) 1.71616i 0.0781688i
\(483\) 1.18537 2.05312i 0.0539362 0.0934203i
\(484\) 5.15919 + 8.93598i 0.234509 + 0.406181i
\(485\) −8.51826 7.86047i −0.386794 0.356926i
\(486\) −0.866025 + 0.500000i −0.0392837 + 0.0226805i
\(487\) −21.3719 −0.968451 −0.484226 0.874943i \(-0.660899\pi\)
−0.484226 + 0.874943i \(0.660899\pi\)
\(488\) 5.60990 3.23888i 0.253948 0.146617i
\(489\) 3.52691i 0.159492i
\(490\) −2.89043 + 12.8257i −0.130577 + 0.579406i
\(491\) 17.2381 0.777944 0.388972 0.921250i \(-0.372830\pi\)
0.388972 + 0.921250i \(0.372830\pi\)
\(492\) 2.85716i 0.128811i
\(493\) −2.60345 1.50310i −0.117253 0.0676963i
\(494\) −17.3057 + 9.99145i −0.778620 + 0.449536i
\(495\) −1.76258 + 0.548978i −0.0792222 + 0.0246747i
\(496\) 5.43583 + 3.13838i 0.244076 + 0.140917i
\(497\) −1.28538 0.742112i −0.0576570 0.0332883i
\(498\) 7.74230 13.4101i 0.346941 0.600919i
\(499\) 27.1360 15.6670i 1.21478 0.701351i 0.250979 0.967992i \(-0.419247\pi\)
0.963796 + 0.266642i \(0.0859140\pi\)
\(500\) 11.0688 + 1.57541i 0.495011 + 0.0704546i
\(501\) 18.5996 + 10.7385i 0.830969 + 0.479760i
\(502\) 14.4741 + 8.35662i 0.646011 + 0.372974i
\(503\) 7.38550 12.7921i 0.329303 0.570370i −0.653070 0.757297i \(-0.726519\pi\)
0.982374 + 0.186927i \(0.0598528\pi\)
\(504\) 1.05845i 0.0471471i
\(505\) −17.2884 15.9534i −0.769324 0.709916i
\(506\) −0.924600 + 1.60145i −0.0411035 + 0.0711933i
\(507\) 0.229897i 0.0102101i
\(508\) 6.28010i 0.278634i
\(509\) 10.6815 18.5009i 0.473449 0.820039i −0.526089 0.850430i \(-0.676342\pi\)
0.999538 + 0.0303912i \(0.00967531\pi\)
\(510\) −0.986962 3.16880i −0.0437034 0.140317i
\(511\) −4.67047 8.08949i −0.206609 0.357858i
\(512\) −1.00000 −0.0441942
\(513\) −2.74695 4.75785i −0.121281 0.210064i
\(514\) −1.47817 2.56026i −0.0651991 0.112928i
\(515\) −26.5819 24.5292i −1.17134 1.08089i
\(516\) −9.23999 5.33471i −0.406768 0.234848i
\(517\) 9.71171i 0.427120i
\(518\) −1.31456 6.30267i −0.0577586 0.276923i
\(519\) 3.11690 0.136817
\(520\) −1.78808 + 7.93425i −0.0784126 + 0.347940i
\(521\) 16.6844 + 28.8982i 0.730957 + 1.26606i 0.956474 + 0.291816i \(0.0942595\pi\)
−0.225517 + 0.974239i \(0.572407\pi\)
\(522\) −1.75402 + 1.01268i −0.0767713 + 0.0443239i
\(523\) 6.52639 + 11.3040i 0.285379 + 0.494291i 0.972701 0.232062i \(-0.0745472\pi\)
−0.687322 + 0.726353i \(0.741214\pi\)
\(524\) 13.0284i 0.569148i
\(525\) 4.78066 + 2.27006i 0.208645 + 0.0990734i
\(526\) 18.3663i 0.800807i
\(527\) −8.06828 4.65822i −0.351460 0.202915i
\(528\) 0.825600i 0.0359296i
\(529\) −17.9832 −0.781878
\(530\) 20.1752 + 4.54673i 0.876354 + 0.197497i
\(531\) −6.33426 + 3.65709i −0.274884 + 0.158704i
\(532\) −5.81501 −0.252113
\(533\) −5.19617 + 9.00003i −0.225071 + 0.389835i
\(534\) −1.65444 + 2.86558i −0.0715947 + 0.124006i
\(535\) −30.7578 6.93166i −1.32978 0.299682i
\(536\) 11.2463 6.49307i 0.485768 0.280458i
\(537\) −5.01269 8.68224i −0.216314 0.374666i
\(538\) 11.5721 20.0434i 0.498908 0.864134i
\(539\) 2.42713 4.20392i 0.104544 0.181076i
\(540\) −2.18136 0.491597i −0.0938708 0.0211550i
\(541\) 21.6228i 0.929635i −0.885406 0.464818i \(-0.846120\pi\)
0.885406 0.464818i \(-0.153880\pi\)
\(542\) −8.12733 14.0769i −0.349099 0.604657i
\(543\) 1.53755 + 0.887705i 0.0659826 + 0.0380951i
\(544\) 1.48428 0.0636378
\(545\) −3.49090 11.2081i −0.149534 0.480102i
\(546\) −1.92495 + 3.33410i −0.0823801 + 0.142686i
\(547\) 19.0025 0.812488 0.406244 0.913765i \(-0.366838\pi\)
0.406244 + 0.913765i \(0.366838\pi\)
\(548\) 6.19847 3.57869i 0.264785 0.152874i
\(549\) 6.47775i 0.276464i
\(550\) −3.72896 1.77066i −0.159003 0.0755014i
\(551\) −5.56357 9.63638i −0.237016 0.410524i
\(552\) −1.93975 + 1.11991i −0.0825610 + 0.0476666i
\(553\) −1.89716 + 3.28599i −0.0806757 + 0.139734i
\(554\) 4.66812 0.198329
\(555\) 13.5997 + 0.218086i 0.577276 + 0.00925722i
\(556\) 11.5306 0.489006
\(557\) −18.9136 + 32.7593i −0.801395 + 1.38806i 0.117304 + 0.993096i \(0.462575\pi\)
−0.918698 + 0.394960i \(0.870758\pi\)
\(558\) −5.43583 + 3.13838i −0.230117 + 0.132858i
\(559\) −19.4039 33.6086i −0.820698 1.42149i
\(560\) −1.60505 + 1.73937i −0.0678257 + 0.0735016i
\(561\) 1.22542i 0.0517372i
\(562\) 12.2372 7.06515i 0.516195 0.298025i
\(563\) −2.80373 −0.118163 −0.0590815 0.998253i \(-0.518817\pi\)
−0.0590815 + 0.998253i \(0.518817\pi\)
\(564\) 5.88160 10.1872i 0.247660 0.428960i
\(565\) 7.16141 2.23051i 0.301283 0.0938383i
\(566\) 10.0287 0.421539
\(567\) −0.916644 0.529225i −0.0384954 0.0222254i
\(568\) 0.701131 + 1.21439i 0.0294188 + 0.0509549i
\(569\) 39.6236i 1.66111i −0.556937 0.830555i \(-0.688024\pi\)
0.556937 0.830555i \(-0.311976\pi\)
\(570\) 2.70078 11.9842i 0.113123 0.501961i
\(571\) −3.77916 + 6.54570i −0.158153 + 0.273929i −0.934203 0.356743i \(-0.883887\pi\)
0.776050 + 0.630672i \(0.217221\pi\)
\(572\) 1.50147 2.60063i 0.0627798 0.108738i
\(573\) 9.63281 + 16.6845i 0.402416 + 0.697006i
\(574\) −2.61900 + 1.51208i −0.109315 + 0.0631131i
\(575\) 0.898098 + 11.1631i 0.0374533 + 0.465532i
\(576\) 0.500000 0.866025i 0.0208333 0.0360844i
\(577\) 14.7782 25.5966i 0.615224 1.06560i −0.375121 0.926976i \(-0.622399\pi\)
0.990345 0.138624i \(-0.0442680\pi\)
\(578\) 14.7969 0.615471
\(579\) 16.0391 9.26016i 0.666561 0.384839i
\(580\) −4.41805 0.995663i −0.183450 0.0413427i
\(581\) 16.3897 0.679958
\(582\) 5.18358i 0.214867i
\(583\) −6.61288 3.81795i −0.273877 0.158123i
\(584\) 8.82512i 0.365186i
\(585\) −5.97722 5.51565i −0.247128 0.228044i
\(586\) 0.948825i 0.0391956i
\(587\) −16.1870 28.0366i −0.668108 1.15720i −0.978433 0.206566i \(-0.933771\pi\)
0.310325 0.950631i \(-0.399562\pi\)
\(588\) 5.09196 2.93984i 0.209989 0.121237i
\(589\) −17.2419 29.8639i −0.710441 1.23052i
\(590\) −15.9549 3.59563i −0.656851 0.148030i
\(591\) 4.86930 0.200296
\(592\) −1.90173 + 5.77784i −0.0781607 + 0.237468i
\(593\) 8.03864i 0.330107i −0.986285 0.165054i \(-0.947220\pi\)
0.986285 0.165054i \(-0.0527797\pi\)
\(594\) 0.714991 + 0.412800i 0.0293364 + 0.0169374i
\(595\) 2.38234 2.58170i 0.0976663 0.105839i
\(596\) 1.51930 + 2.63151i 0.0622330 + 0.107791i
\(597\) 8.94064 + 15.4856i 0.365916 + 0.633785i
\(598\) −8.14690 −0.333151
\(599\) −1.25133 2.16737i −0.0511279 0.0885562i 0.839329 0.543624i \(-0.182948\pi\)
−0.890457 + 0.455068i \(0.849615\pi\)
\(600\) −2.83920 4.11570i −0.115910 0.168023i
\(601\) 8.38293 14.5197i 0.341947 0.592269i −0.642847 0.765994i \(-0.722247\pi\)
0.984794 + 0.173725i \(0.0555804\pi\)
\(602\) 11.2930i 0.460270i
\(603\) 12.9861i 0.528837i
\(604\) −4.20011 + 7.27481i −0.170900 + 0.296008i
\(605\) −16.9564 15.6470i −0.689374 0.636139i
\(606\) 10.5205i 0.427364i
\(607\) 5.24017 9.07623i 0.212692 0.368393i −0.739864 0.672756i \(-0.765110\pi\)
0.952556 + 0.304363i \(0.0984436\pi\)
\(608\) 4.75785 + 2.74695i 0.192956 + 0.111403i
\(609\) −1.85654 1.07187i −0.0752308 0.0434345i
\(610\) −9.82296 + 10.6450i −0.397720 + 0.431003i
\(611\) 37.0540 21.3931i 1.49904 0.865473i
\(612\) −0.742138 + 1.28542i −0.0299992 + 0.0519601i
\(613\) −5.61834 3.24375i −0.226923 0.131014i 0.382229 0.924068i \(-0.375157\pi\)
−0.609152 + 0.793054i \(0.708490\pi\)
\(614\) 11.1694 + 6.44866i 0.450760 + 0.260247i
\(615\) −1.89986 6.09979i −0.0766096 0.245967i
\(616\) 0.756782 0.436928i 0.0304916 0.0176043i
\(617\) 20.5224 + 11.8486i 0.826200 + 0.477007i 0.852550 0.522646i \(-0.175055\pi\)
−0.0263501 + 0.999653i \(0.508388\pi\)
\(618\) 16.1758i 0.650685i
\(619\) −31.0146 −1.24658 −0.623291 0.781990i \(-0.714205\pi\)
−0.623291 + 0.781990i \(0.714205\pi\)
\(620\) −13.6919 3.08563i −0.549879 0.123922i
\(621\) 2.23982i 0.0898811i
\(622\) −22.1356 + 12.7800i −0.887558 + 0.512432i
\(623\) −3.50229 −0.140316
\(624\) 3.14999 1.81865i 0.126100 0.0728041i
\(625\) −24.6784 + 3.99676i −0.987138 + 0.159871i
\(626\) 2.35334 + 4.07611i 0.0940585 + 0.162914i
\(627\) −2.26788 + 3.92808i −0.0905703 + 0.156872i
\(628\) 14.7784i 0.589722i
\(629\) 2.82270 8.57591i 0.112548 0.341944i
\(630\) −0.703810 2.25970i −0.0280405 0.0900285i
\(631\) 9.21344 + 5.31938i 0.366781 + 0.211761i 0.672051 0.740504i \(-0.265413\pi\)
−0.305270 + 0.952266i \(0.598747\pi\)
\(632\) 3.10453 1.79240i 0.123491 0.0712978i
\(633\) −0.342726 + 0.197873i −0.0136221 + 0.00786473i
\(634\) −21.7227 + 12.5416i −0.862719 + 0.498091i
\(635\) 4.17592 + 13.4075i 0.165716 + 0.532059i
\(636\) −4.62445 8.00978i −0.183371 0.317609i
\(637\) 21.3861 0.847349
\(638\) 1.44812 + 0.836071i 0.0573315 + 0.0331004i
\(639\) −1.40226 −0.0554726
\(640\) 2.13491 0.664945i 0.0843898 0.0262842i
\(641\) 4.38870 7.60145i 0.173343 0.300239i −0.766243 0.642550i \(-0.777876\pi\)
0.939587 + 0.342311i \(0.111210\pi\)
\(642\) 7.05015 + 12.2112i 0.278247 + 0.481938i
\(643\) −26.7207 −1.05376 −0.526882 0.849939i \(-0.676639\pi\)
−0.526882 + 0.849939i \(0.676639\pi\)
\(644\) −2.05312 1.18537i −0.0809044 0.0467102i
\(645\) 23.2739 + 5.24506i 0.916407 + 0.206524i
\(646\) −7.06197 4.07723i −0.277849 0.160416i
\(647\) 9.72305 + 16.8408i 0.382252 + 0.662081i 0.991384 0.130989i \(-0.0418151\pi\)
−0.609131 + 0.793069i \(0.708482\pi\)
\(648\) 0.500000 + 0.866025i 0.0196419 + 0.0340207i
\(649\) 5.22957 + 3.01929i 0.205278 + 0.118518i
\(650\) −1.45844 18.1279i −0.0572046 0.711034i
\(651\) −5.75355 3.32182i −0.225500 0.130192i
\(652\) 3.52691 0.138124
\(653\) −12.7773 22.1309i −0.500014 0.866049i −1.00000 1.60106e-5i \(-0.999995\pi\)
0.499986 0.866033i \(-0.333338\pi\)
\(654\) −2.62496 + 4.54656i −0.102644 + 0.177785i
\(655\) 8.66317 + 27.8145i 0.338498 + 1.08680i
\(656\) 2.85716 0.111554
\(657\) −7.64277 4.41256i −0.298173 0.172150i
\(658\) 12.4508 0.485381
\(659\) 1.11439 + 1.93019i 0.0434106 + 0.0751893i 0.886914 0.461934i \(-0.152844\pi\)
−0.843504 + 0.537123i \(0.819511\pi\)
\(660\) 0.548978 + 1.76258i 0.0213690 + 0.0686085i
\(661\) 10.9781 6.33818i 0.426997 0.246527i −0.271070 0.962560i \(-0.587377\pi\)
0.698066 + 0.716033i \(0.254044\pi\)
\(662\) 7.92971 4.57822i 0.308197 0.177938i
\(663\) −4.67545 + 2.69937i −0.181580 + 0.104835i
\(664\) −13.4101 7.74230i −0.520411 0.300460i
\(665\) 12.4145 3.86666i 0.481415 0.149943i
\(666\) −4.05289 4.53587i −0.157046 0.175761i
\(667\) 4.53646i 0.175653i
\(668\) 10.7385 18.5996i 0.415485 0.719641i
\(669\) −12.7942 22.1602i −0.494651 0.856761i
\(670\) −19.6924 + 21.3403i −0.760784 + 0.824449i
\(671\) 4.63153 2.67402i 0.178798 0.103229i
\(672\) 1.05845 0.0408306
\(673\) 34.8308 20.1096i 1.34263 0.775168i 0.355438 0.934700i \(-0.384332\pi\)
0.987193 + 0.159532i \(0.0509985\pi\)
\(674\) 10.3255i 0.397723i
\(675\) 4.98390 0.400968i 0.191830 0.0154333i
\(676\) 0.229897 0.00884218
\(677\) 29.7892i 1.14489i −0.819942 0.572446i \(-0.805995\pi\)
0.819942 0.572446i \(-0.194005\pi\)
\(678\) −2.90502 1.67721i −0.111567 0.0644130i
\(679\) −4.75150 + 2.74328i −0.182346 + 0.105277i
\(680\) −3.16880 + 0.986962i −0.121518 + 0.0378483i
\(681\) 20.2013 + 11.6633i 0.774117 + 0.446937i
\(682\) 4.48782 + 2.59105i 0.171848 + 0.0992163i
\(683\) 10.7369 18.5968i 0.410835 0.711587i −0.584146 0.811649i \(-0.698571\pi\)
0.994981 + 0.100061i \(0.0319038\pi\)
\(684\) −4.75785 + 2.74695i −0.181921 + 0.105032i
\(685\) −10.8536 + 11.7618i −0.414693 + 0.449396i
\(686\) 11.8061 + 6.81625i 0.450759 + 0.260246i
\(687\) −20.1837 11.6531i −0.770055 0.444592i
\(688\) −5.33471 + 9.23999i −0.203384 + 0.352271i
\(689\) 33.6410i 1.28162i
\(690\) 3.39651 3.68074i 0.129303 0.140123i
\(691\) 7.87430 13.6387i 0.299553 0.518840i −0.676481 0.736460i \(-0.736496\pi\)
0.976034 + 0.217620i \(0.0698293\pi\)
\(692\) 3.11690i 0.118487i
\(693\) 0.873856i 0.0331950i
\(694\) −12.6642 + 21.9350i −0.480727 + 0.832643i
\(695\) −24.6168 + 7.66721i −0.933768 + 0.290834i
\(696\) 1.01268 + 1.75402i 0.0383856 + 0.0664859i
\(697\) −4.24082 −0.160633
\(698\) −11.2916 19.5576i −0.427394 0.740268i
\(699\) −0.254363 0.440570i −0.00962089 0.0166639i
\(700\) 2.27006 4.78066i 0.0858001 0.180692i
\(701\) −32.3179 18.6588i −1.22063 0.704732i −0.255579 0.966788i \(-0.582266\pi\)
−0.965053 + 0.262056i \(0.915600\pi\)
\(702\) 3.63729i 0.137281i
\(703\) 24.9196 22.2661i 0.939859 0.839783i
\(704\) −0.825600 −0.0311160
\(705\) −5.78276 + 25.6598i −0.217791 + 0.966404i
\(706\) −11.5240 19.9601i −0.433711 0.751209i
\(707\) −9.64351 + 5.56768i −0.362682 + 0.209394i
\(708\) 3.65709 + 6.33426i 0.137442 + 0.238056i
\(709\) 27.0809i 1.01705i 0.861048 + 0.508523i \(0.169808\pi\)
−0.861048 + 0.508523i \(0.830192\pi\)
\(710\) −2.30436 2.12641i −0.0864810 0.0798028i
\(711\) 3.58480i 0.134440i
\(712\) 2.86558 + 1.65444i 0.107392 + 0.0620028i
\(713\) 14.0588i 0.526508i
\(714\) −1.57103 −0.0587944
\(715\) −1.47624 + 6.55051i −0.0552083 + 0.244975i
\(716\) −8.68224 + 5.01269i −0.324471 + 0.187333i
\(717\) 5.91363 0.220849
\(718\) −7.62438 + 13.2058i −0.284539 + 0.492837i
\(719\) −0.353769 + 0.612746i −0.0131934 + 0.0228516i −0.872547 0.488531i \(-0.837533\pi\)
0.859353 + 0.511382i \(0.170866\pi\)
\(720\) −0.491597 + 2.18136i −0.0183207 + 0.0812945i
\(721\) −14.8274 + 8.56062i −0.552202 + 0.318814i
\(722\) −5.59142 9.68463i −0.208091 0.360425i
\(723\) 0.858078 1.48624i 0.0319123 0.0552737i
\(724\) 0.887705 1.53755i 0.0329913 0.0571426i
\(725\) 10.0942 0.812106i 0.374890 0.0301609i
\(726\) 10.3184i 0.382951i
\(727\) 25.3278 + 43.8690i 0.939356 + 1.62701i 0.766676 + 0.642034i \(0.221909\pi\)
0.172680 + 0.984978i \(0.444757\pi\)
\(728\) 3.33410 + 1.92495i 0.123570 + 0.0713432i
\(729\) −1.00000 −0.0370370
\(730\) −5.86821 18.8408i −0.217192 0.697331i
\(731\) 7.91819 13.7147i 0.292865 0.507257i
\(732\) 6.47775 0.239425
\(733\) −29.3112 + 16.9228i −1.08263 + 0.625058i −0.931605 0.363471i \(-0.881592\pi\)
−0.151027 + 0.988530i \(0.548258\pi\)
\(734\) 6.46411i 0.238595i
\(735\) −8.91604 + 9.66217i −0.328873 + 0.356395i
\(736\) 1.11991 + 1.93975i 0.0412805 + 0.0715000i
\(737\) 9.28497 5.36068i 0.342016 0.197463i
\(738\) −1.42858 + 2.47438i −0.0525868 + 0.0910831i
\(739\) −13.7161 −0.504555 −0.252277 0.967655i \(-0.581180\pi\)
−0.252277 + 0.967655i \(0.581180\pi\)
\(740\) 0.218086 13.5997i 0.00801698 0.499936i
\(741\) −19.9829 −0.734090
\(742\) 4.89475 8.47795i 0.179692 0.311235i
\(743\) −13.8765 + 8.01159i −0.509079 + 0.293917i −0.732455 0.680816i \(-0.761625\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(744\) 3.13838 + 5.43583i 0.115059 + 0.199287i
\(745\) −4.99338 4.60778i −0.182943 0.168816i
\(746\) 25.5721i 0.936260i
\(747\) 13.4101 7.74230i 0.490649 0.283276i
\(748\) 1.22542 0.0448058
\(749\) −7.46223 + 12.9250i −0.272664 + 0.472268i
\(750\) 8.79815 + 6.89874i 0.321263 + 0.251906i
\(751\) 33.4440 1.22039 0.610195 0.792251i \(-0.291091\pi\)
0.610195 + 0.792251i \(0.291091\pi\)
\(752\) −10.1872 5.88160i −0.371490 0.214480i
\(753\) 8.35662 + 14.4741i 0.304532 + 0.527465i
\(754\) 7.36685i 0.268285i
\(755\) 4.12952 18.3239i 0.150289 0.666875i
\(756\) −0.529225 + 0.916644i −0.0192477 + 0.0333380i
\(757\) −25.2767 + 43.7805i −0.918697 + 1.59123i −0.117301 + 0.993096i \(0.537424\pi\)
−0.801396 + 0.598134i \(0.795909\pi\)
\(758\) −0.395361 0.684786i −0.0143602 0.0248726i
\(759\) −1.60145 + 0.924600i −0.0581291 + 0.0335608i
\(760\) −11.9842 2.70078i −0.434711 0.0979676i
\(761\) −19.6784 + 34.0840i −0.713341 + 1.23554i 0.250255 + 0.968180i \(0.419485\pi\)
−0.963596 + 0.267362i \(0.913848\pi\)
\(762\) 3.14005 5.43873i 0.113752 0.197024i
\(763\) −5.55677 −0.201169
\(764\) 16.6845 9.63281i 0.603625 0.348503i
\(765\) 0.729666 3.23774i 0.0263811 0.117061i
\(766\) 14.1778 0.512267
\(767\) 26.6038i 0.960607i
\(768\) −0.866025 0.500000i −0.0312500 0.0180422i
\(769\) 4.77703i 0.172264i −0.996284 0.0861320i \(-0.972549\pi\)
0.996284 0.0861320i \(-0.0274507\pi\)
\(770\) −1.32513 + 1.43602i −0.0477543 + 0.0517506i
\(771\) 2.95633i 0.106470i
\(772\) −9.26016 16.0391i −0.333280 0.577259i
\(773\) −11.8192 + 6.82383i −0.425108 + 0.245436i −0.697260 0.716818i \(-0.745598\pi\)
0.272153 + 0.962254i \(0.412264\pi\)
\(774\) −5.33471 9.23999i −0.191752 0.332125i
\(775\) 31.2827 2.51678i 1.12371 0.0904053i
\(776\) 5.18358