Properties

Label 1110.2.ba.b.529.9
Level $1110$
Weight $2$
Character 1110.529
Analytic conductor $8.863$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1110 = 2 \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1110.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.86339462436\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.9
Character \(\chi\) \(=\) 1110.529
Dual form 1110.2.ba.b.619.9

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.23506 - 0.0669680i) q^{5} -1.00000i q^{6} +(3.29356 + 1.90154i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(2.23506 - 0.0669680i) q^{5} -1.00000i q^{6} +(3.29356 + 1.90154i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{9} +(1.17553 + 1.90214i) q^{10} -3.84960 q^{11} +(0.866025 - 0.500000i) q^{12} +(-1.22502 + 2.12180i) q^{13} +3.80308i q^{14} +(-1.96911 - 1.05954i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.42715 + 5.93600i) q^{17} +(-0.500000 + 0.866025i) q^{18} +(-0.996184 - 0.575147i) q^{19} +(-1.05954 + 1.96911i) q^{20} +(-1.90154 - 3.29356i) q^{21} +(-1.92480 - 3.33385i) q^{22} -0.0656760 q^{23} +(0.866025 + 0.500000i) q^{24} +(4.99103 - 0.299356i) q^{25} -2.45005 q^{26} -1.00000i q^{27} +(-3.29356 + 1.90154i) q^{28} +2.70511i q^{29} +(-0.0669680 - 2.23506i) q^{30} -8.12994i q^{31} +(0.500000 - 0.866025i) q^{32} +(3.33385 + 1.92480i) q^{33} +(-3.42715 + 5.93600i) q^{34} +(7.48867 + 4.02950i) q^{35} -1.00000 q^{36} +(-4.13579 + 4.46040i) q^{37} -1.15029i q^{38} +(2.12180 - 1.22502i) q^{39} +(-2.23506 + 0.0669680i) q^{40} +(0.239768 - 0.415291i) q^{41} +(1.90154 - 3.29356i) q^{42} +10.0403 q^{43} +(1.92480 - 3.33385i) q^{44} +(1.17553 + 1.90214i) q^{45} +(-0.0328380 - 0.0568771i) q^{46} +1.94212i q^{47} +1.00000i q^{48} +(3.73171 + 6.46351i) q^{49} +(2.75477 + 4.17268i) q^{50} -6.85430i q^{51} +(-1.22502 - 2.12180i) q^{52} +(-4.83010 + 2.78866i) q^{53} +(0.866025 - 0.500000i) q^{54} +(-8.60410 + 0.257800i) q^{55} +(-3.29356 - 1.90154i) q^{56} +(0.575147 + 0.996184i) q^{57} +(-2.34269 + 1.35255i) q^{58} +(1.87894 - 1.08481i) q^{59} +(1.90214 - 1.17553i) q^{60} +(-4.07230 - 2.35114i) q^{61} +(7.04073 - 4.06497i) q^{62} +3.80308i q^{63} +1.00000 q^{64} +(-2.59591 + 4.82440i) q^{65} +3.84960i q^{66} +(6.70598 + 3.87170i) q^{67} -6.85430 q^{68} +(0.0568771 + 0.0328380i) q^{69} +(0.254685 + 8.50013i) q^{70} +(-3.72085 + 6.44470i) q^{71} +(-0.500000 - 0.866025i) q^{72} +6.82160i q^{73} +(-5.93072 - 1.35150i) q^{74} +(-4.47204 - 2.23627i) q^{75} +(0.996184 - 0.575147i) q^{76} +(-12.6789 - 7.32017i) q^{77} +(2.12180 + 1.22502i) q^{78} +(2.57370 + 1.48593i) q^{79} +(-1.17553 - 1.90214i) q^{80} +(-0.500000 + 0.866025i) q^{81} +0.479537 q^{82} +(-4.83322 + 2.79046i) q^{83} +3.80308 q^{84} +(8.05742 + 13.0378i) q^{85} +(5.02016 + 8.69516i) q^{86} +(1.35255 - 2.34269i) q^{87} +3.84960 q^{88} +(6.89417 - 3.98035i) q^{89} +(-1.05954 + 1.96911i) q^{90} +(-8.06938 + 4.65886i) q^{91} +(0.0328380 - 0.0568771i) q^{92} +(-4.06497 + 7.04073i) q^{93} +(-1.68192 + 0.971059i) q^{94} +(-2.26505 - 1.21878i) q^{95} +(-0.866025 + 0.500000i) q^{96} +2.90742 q^{97} +(-3.73171 + 6.46351i) q^{98} +(-1.92480 - 3.33385i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + O(q^{10}) \) \( 36q + 18q^{2} - 18q^{4} + 4q^{5} - 36q^{8} + 18q^{9} + 2q^{10} + 4q^{11} + 14q^{13} + 2q^{15} - 18q^{16} - 18q^{18} + 6q^{19} - 2q^{20} + 2q^{22} + 20q^{23} - 2q^{25} + 28q^{26} - 2q^{30} + 18q^{32} + 6q^{33} - 20q^{35} - 36q^{36} - 20q^{37} + 6q^{39} - 4q^{40} + 10q^{41} - 2q^{44} + 2q^{45} + 10q^{46} + 10q^{49} - 4q^{50} + 14q^{52} + 12q^{53} + 40q^{55} - 8q^{57} - 30q^{58} + 18q^{59} - 4q^{60} - 6q^{61} + 12q^{62} + 36q^{64} - 32q^{65} - 36q^{67} + 12q^{69} - 40q^{70} - 24q^{71} - 18q^{72} - 34q^{74} + 8q^{75} - 6q^{76} + 24q^{77} + 6q^{78} - 2q^{80} - 18q^{81} + 20q^{82} - 36q^{83} + 26q^{85} + 10q^{87} - 4q^{88} - 2q^{90} - 36q^{91} - 10q^{92} - 12q^{93} + 12q^{94} + 18q^{95} - 52q^{97} - 10q^{98} + 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1110\mathbb{Z}\right)^\times\).

\(n\) \(371\) \(631\) \(667\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.23506 0.0669680i 0.999551 0.0299490i
\(6\) 1.00000i 0.408248i
\(7\) 3.29356 + 1.90154i 1.24485 + 0.718715i 0.970078 0.242795i \(-0.0780641\pi\)
0.274773 + 0.961509i \(0.411397\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.17553 + 1.90214i 0.371735 + 0.601509i
\(11\) −3.84960 −1.16070 −0.580349 0.814368i \(-0.697084\pi\)
−0.580349 + 0.814368i \(0.697084\pi\)
\(12\) 0.866025 0.500000i 0.250000 0.144338i
\(13\) −1.22502 + 2.12180i −0.339760 + 0.588482i −0.984387 0.176015i \(-0.943679\pi\)
0.644627 + 0.764497i \(0.277013\pi\)
\(14\) 3.80308i 1.01642i
\(15\) −1.96911 1.05954i −0.508421 0.273571i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.42715 + 5.93600i 0.831206 + 1.43969i 0.897082 + 0.441863i \(0.145682\pi\)
−0.0658765 + 0.997828i \(0.520984\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) −0.996184 0.575147i −0.228540 0.131948i 0.381358 0.924427i \(-0.375456\pi\)
−0.609899 + 0.792480i \(0.708790\pi\)
\(20\) −1.05954 + 1.96911i −0.236920 + 0.440306i
\(21\) −1.90154 3.29356i −0.414950 0.718715i
\(22\) −1.92480 3.33385i −0.410369 0.710779i
\(23\) −0.0656760 −0.0136944 −0.00684720 0.999977i \(-0.502180\pi\)
−0.00684720 + 0.999977i \(0.502180\pi\)
\(24\) 0.866025 + 0.500000i 0.176777 + 0.102062i
\(25\) 4.99103 0.299356i 0.998206 0.0598712i
\(26\) −2.45005 −0.480493
\(27\) 1.00000i 0.192450i
\(28\) −3.29356 + 1.90154i −0.622425 + 0.359357i
\(29\) 2.70511i 0.502326i 0.967945 + 0.251163i \(0.0808131\pi\)
−0.967945 + 0.251163i \(0.919187\pi\)
\(30\) −0.0669680 2.23506i −0.0122266 0.408065i
\(31\) 8.12994i 1.46018i −0.683351 0.730090i \(-0.739478\pi\)
0.683351 0.730090i \(-0.260522\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 3.33385 + 1.92480i 0.580349 + 0.335065i
\(34\) −3.42715 + 5.93600i −0.587751 + 1.01802i
\(35\) 7.48867 + 4.02950i 1.26582 + 0.681110i
\(36\) −1.00000 −0.166667
\(37\) −4.13579 + 4.46040i −0.679920 + 0.733286i
\(38\) 1.15029i 0.186602i
\(39\) 2.12180 1.22502i 0.339760 0.196161i
\(40\) −2.23506 + 0.0669680i −0.353395 + 0.0105886i
\(41\) 0.239768 0.415291i 0.0374455 0.0648575i −0.846695 0.532078i \(-0.821411\pi\)
0.884141 + 0.467221i \(0.154745\pi\)
\(42\) 1.90154 3.29356i 0.293414 0.508208i
\(43\) 10.0403 1.53113 0.765567 0.643357i \(-0.222459\pi\)
0.765567 + 0.643357i \(0.222459\pi\)
\(44\) 1.92480 3.33385i 0.290174 0.502597i
\(45\) 1.17553 + 1.90214i 0.175237 + 0.283554i
\(46\) −0.0328380 0.0568771i −0.00484170 0.00838607i
\(47\) 1.94212i 0.283287i 0.989918 + 0.141643i \(0.0452386\pi\)
−0.989918 + 0.141643i \(0.954761\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 3.73171 + 6.46351i 0.533101 + 0.923359i
\(50\) 2.75477 + 4.17268i 0.389583 + 0.590106i
\(51\) 6.85430i 0.959794i
\(52\) −1.22502 2.12180i −0.169880 0.294241i
\(53\) −4.83010 + 2.78866i −0.663465 + 0.383052i −0.793596 0.608445i \(-0.791794\pi\)
0.130131 + 0.991497i \(0.458460\pi\)
\(54\) 0.866025 0.500000i 0.117851 0.0680414i
\(55\) −8.60410 + 0.257800i −1.16018 + 0.0347618i
\(56\) −3.29356 1.90154i −0.440121 0.254104i
\(57\) 0.575147 + 0.996184i 0.0761801 + 0.131948i
\(58\) −2.34269 + 1.35255i −0.307611 + 0.177599i
\(59\) 1.87894 1.08481i 0.244617 0.141230i −0.372680 0.927960i \(-0.621561\pi\)
0.617297 + 0.786730i \(0.288228\pi\)
\(60\) 1.90214 1.17553i 0.245565 0.151760i
\(61\) −4.07230 2.35114i −0.521405 0.301033i 0.216105 0.976370i \(-0.430665\pi\)
−0.737509 + 0.675337i \(0.763998\pi\)
\(62\) 7.04073 4.06497i 0.894174 0.516252i
\(63\) 3.80308i 0.479143i
\(64\) 1.00000 0.125000
\(65\) −2.59591 + 4.82440i −0.321983 + 0.598393i
\(66\) 3.84960i 0.473853i
\(67\) 6.70598 + 3.87170i 0.819266 + 0.473003i 0.850163 0.526519i \(-0.176503\pi\)
−0.0308975 + 0.999523i \(0.509837\pi\)
\(68\) −6.85430 −0.831206
\(69\) 0.0568771 + 0.0328380i 0.00684720 + 0.00395323i
\(70\) 0.254685 + 8.50013i 0.0304407 + 1.01596i
\(71\) −3.72085 + 6.44470i −0.441583 + 0.764845i −0.997807 0.0661878i \(-0.978916\pi\)
0.556224 + 0.831032i \(0.312250\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 6.82160i 0.798408i 0.916862 + 0.399204i \(0.130713\pi\)
−0.916862 + 0.399204i \(0.869287\pi\)
\(74\) −5.93072 1.35150i −0.689432 0.157109i
\(75\) −4.47204 2.23627i −0.516386 0.258222i
\(76\) 0.996184 0.575147i 0.114270 0.0659739i
\(77\) −12.6789 7.32017i −1.44489 0.834210i
\(78\) 2.12180 + 1.22502i 0.240247 + 0.138706i
\(79\) 2.57370 + 1.48593i 0.289564 + 0.167180i 0.637745 0.770247i \(-0.279867\pi\)
−0.348181 + 0.937427i \(0.613201\pi\)
\(80\) −1.17553 1.90214i −0.131428 0.212666i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0.479537 0.0529560
\(83\) −4.83322 + 2.79046i −0.530515 + 0.306293i −0.741226 0.671255i \(-0.765755\pi\)
0.210711 + 0.977548i \(0.432422\pi\)
\(84\) 3.80308 0.414950
\(85\) 8.05742 + 13.0378i 0.873950 + 1.41415i
\(86\) 5.02016 + 8.69516i 0.541337 + 0.937624i
\(87\) 1.35255 2.34269i 0.145009 0.251163i
\(88\) 3.84960 0.410369
\(89\) 6.89417 3.98035i 0.730781 0.421916i −0.0879270 0.996127i \(-0.528024\pi\)
0.818708 + 0.574211i \(0.194691\pi\)
\(90\) −1.05954 + 1.96911i −0.111685 + 0.207562i
\(91\) −8.06938 + 4.65886i −0.845901 + 0.488381i
\(92\) 0.0328380 0.0568771i 0.00342360 0.00592985i
\(93\) −4.06497 + 7.04073i −0.421518 + 0.730090i
\(94\) −1.68192 + 0.971059i −0.173477 + 0.100157i
\(95\) −2.26505 1.21878i −0.232390 0.125044i
\(96\) −0.866025 + 0.500000i −0.0883883 + 0.0510310i
\(97\) 2.90742 0.295204 0.147602 0.989047i \(-0.452845\pi\)
0.147602 + 0.989047i \(0.452845\pi\)
\(98\) −3.73171 + 6.46351i −0.376960 + 0.652913i
\(99\) −1.92480 3.33385i −0.193450 0.335065i
\(100\) −2.23627 + 4.47204i −0.223627 + 0.447204i
\(101\) 2.83091 0.281686 0.140843 0.990032i \(-0.455019\pi\)
0.140843 + 0.990032i \(0.455019\pi\)
\(102\) 5.93600 3.42715i 0.587751 0.339338i
\(103\) 16.9217 1.66734 0.833672 0.552260i \(-0.186235\pi\)
0.833672 + 0.552260i \(0.186235\pi\)
\(104\) 1.22502 2.12180i 0.120123 0.208060i
\(105\) −4.47063 7.23399i −0.436289 0.705965i
\(106\) −4.83010 2.78866i −0.469141 0.270858i
\(107\) −7.61741 4.39791i −0.736403 0.425162i 0.0843572 0.996436i \(-0.473116\pi\)
−0.820760 + 0.571273i \(0.806450\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −9.23933 + 5.33433i −0.884968 + 0.510936i −0.872293 0.488983i \(-0.837368\pi\)
−0.0126746 + 0.999920i \(0.504035\pi\)
\(110\) −4.52531 7.32247i −0.431472 0.698170i
\(111\) 5.81190 1.79493i 0.551642 0.170367i
\(112\) 3.80308i 0.359357i
\(113\) −2.96968 5.14363i −0.279364 0.483872i 0.691863 0.722029i \(-0.256790\pi\)
−0.971227 + 0.238157i \(0.923457\pi\)
\(114\) −0.575147 + 0.996184i −0.0538675 + 0.0933012i
\(115\) −0.146790 + 0.00439819i −0.0136883 + 0.000410134i
\(116\) −2.34269 1.35255i −0.217514 0.125582i
\(117\) −2.45005 −0.226507
\(118\) 1.87894 + 1.08481i 0.172970 + 0.0998646i
\(119\) 26.0675i 2.38960i
\(120\) 1.96911 + 1.05954i 0.179754 + 0.0967220i
\(121\) 3.81941 0.347219
\(122\) 4.70229i 0.425725i
\(123\) −0.415291 + 0.239768i −0.0374455 + 0.0216192i
\(124\) 7.04073 + 4.06497i 0.632276 + 0.365045i
\(125\) 11.1352 1.00332i 0.995965 0.0897396i
\(126\) −3.29356 + 1.90154i −0.293414 + 0.169403i
\(127\) 15.2426 8.80034i 1.35257 0.780904i 0.363957 0.931416i \(-0.381426\pi\)
0.988608 + 0.150512i \(0.0480922\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −8.69516 5.02016i −0.765567 0.442000i
\(130\) −5.47601 + 0.164075i −0.480278 + 0.0143903i
\(131\) −13.6533 + 7.88276i −1.19290 + 0.688720i −0.958963 0.283532i \(-0.908494\pi\)
−0.233935 + 0.972252i \(0.575160\pi\)
\(132\) −3.33385 + 1.92480i −0.290174 + 0.167532i
\(133\) −2.18733 3.78857i −0.189666 0.328511i
\(134\) 7.74340i 0.668928i
\(135\) −0.0669680 2.23506i −0.00576369 0.192364i
\(136\) −3.42715 5.93600i −0.293876 0.509008i
\(137\) 17.0977i 1.46075i −0.683044 0.730377i \(-0.739344\pi\)
0.683044 0.730377i \(-0.260656\pi\)
\(138\) 0.0656760i 0.00559072i
\(139\) −8.88756 15.3937i −0.753833 1.30568i −0.945952 0.324306i \(-0.894869\pi\)
0.192119 0.981372i \(-0.438464\pi\)
\(140\) −7.23399 + 4.47063i −0.611384 + 0.377837i
\(141\) 0.971059 1.68192i 0.0817779 0.141643i
\(142\) −7.44169 −0.624493
\(143\) 4.71585 8.16808i 0.394359 0.683050i
\(144\) 0.500000 0.866025i 0.0416667 0.0721688i
\(145\) 0.181156 + 6.04610i 0.0150442 + 0.502101i
\(146\) −5.90768 + 3.41080i −0.488923 + 0.282280i
\(147\) 7.46342i 0.615572i
\(148\) −1.79493 5.81190i −0.147542 0.477736i
\(149\) 1.67946 0.137587 0.0687934 0.997631i \(-0.478085\pi\)
0.0687934 + 0.997631i \(0.478085\pi\)
\(150\) −0.299356 4.99103i −0.0244423 0.407516i
\(151\) 7.33222 12.6998i 0.596687 1.03349i −0.396619 0.917983i \(-0.629817\pi\)
0.993306 0.115510i \(-0.0368501\pi\)
\(152\) 0.996184 + 0.575147i 0.0808012 + 0.0466506i
\(153\) −3.42715 + 5.93600i −0.277069 + 0.479897i
\(154\) 14.6403i 1.17975i
\(155\) −0.544446 18.1709i −0.0437309 1.45952i
\(156\) 2.45005i 0.196161i
\(157\) 14.2552 8.23027i 1.13769 0.656847i 0.191834 0.981427i \(-0.438557\pi\)
0.945858 + 0.324581i \(0.105223\pi\)
\(158\) 2.97186i 0.236428i
\(159\) 5.57732 0.442310
\(160\) 1.05954 1.96911i 0.0837637 0.155672i
\(161\) −0.216308 0.124886i −0.0170475 0.00984237i
\(162\) −1.00000 −0.0785674
\(163\) −9.83152 17.0287i −0.770064 1.33379i −0.937527 0.347911i \(-0.886891\pi\)
0.167464 0.985878i \(-0.446442\pi\)
\(164\) 0.239768 + 0.415291i 0.0187228 + 0.0324288i
\(165\) 7.58027 + 4.07879i 0.590123 + 0.317533i
\(166\) −4.83322 2.79046i −0.375131 0.216582i
\(167\) 5.34341 9.25505i 0.413485 0.716177i −0.581783 0.813344i \(-0.697645\pi\)
0.995268 + 0.0971667i \(0.0309780\pi\)
\(168\) 1.90154 + 3.29356i 0.146707 + 0.254104i
\(169\) 3.49864 + 6.05982i 0.269126 + 0.466140i
\(170\) −7.26238 + 13.4969i −0.556999 + 1.03516i
\(171\) 1.15029i 0.0879652i
\(172\) −5.02016 + 8.69516i −0.382783 + 0.663000i
\(173\) 9.41553 5.43606i 0.715849 0.413296i −0.0973739 0.995248i \(-0.531044\pi\)
0.813223 + 0.581952i \(0.197711\pi\)
\(174\) 2.70511 0.205074
\(175\) 17.0075 + 8.50470i 1.28565 + 0.642895i
\(176\) 1.92480 + 3.33385i 0.145087 + 0.251298i
\(177\) −2.16961 −0.163078
\(178\) 6.89417 + 3.98035i 0.516740 + 0.298340i
\(179\) 8.35895i 0.624777i −0.949954 0.312388i \(-0.898871\pi\)
0.949954 0.312388i \(-0.101129\pi\)
\(180\) −2.23506 + 0.0669680i −0.166592 + 0.00499150i
\(181\) 9.39587 16.2741i 0.698389 1.20965i −0.270635 0.962682i \(-0.587234\pi\)
0.969025 0.246964i \(-0.0794329\pi\)
\(182\) −8.06938 4.65886i −0.598142 0.345338i
\(183\) 2.35114 + 4.07230i 0.173802 + 0.301033i
\(184\) 0.0656760 0.00484170
\(185\) −8.94506 + 10.2463i −0.657654 + 0.753320i
\(186\) −8.12994 −0.596116
\(187\) −13.1932 22.8512i −0.964779 1.67105i
\(188\) −1.68192 0.971059i −0.122667 0.0708217i
\(189\) 1.90154 3.29356i 0.138317 0.239572i
\(190\) −0.0770330 2.57098i −0.00558856 0.186519i
\(191\) 13.1251i 0.949699i 0.880067 + 0.474850i \(0.157498\pi\)
−0.880067 + 0.474850i \(0.842502\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 1.77545 0.127800 0.0639000 0.997956i \(-0.479646\pi\)
0.0639000 + 0.997956i \(0.479646\pi\)
\(194\) 1.45371 + 2.51790i 0.104370 + 0.180775i
\(195\) 4.66033 2.88010i 0.333733 0.206248i
\(196\) −7.46342 −0.533101
\(197\) −17.9982 + 10.3913i −1.28232 + 0.740347i −0.977272 0.211990i \(-0.932006\pi\)
−0.305047 + 0.952337i \(0.598672\pi\)
\(198\) 1.92480 3.33385i 0.136790 0.236926i
\(199\) 22.9945i 1.63003i −0.579437 0.815017i \(-0.696727\pi\)
0.579437 0.815017i \(-0.303273\pi\)
\(200\) −4.99103 + 0.299356i −0.352919 + 0.0211677i
\(201\) −3.87170 6.70598i −0.273089 0.473003i
\(202\) 1.41545 + 2.45164i 0.0995909 + 0.172496i
\(203\) −5.14388 + 8.90945i −0.361029 + 0.625321i
\(204\) 5.93600 + 3.42715i 0.415603 + 0.239948i
\(205\) 0.508087 0.944259i 0.0354863 0.0659499i
\(206\) 8.46084 + 14.6546i 0.589495 + 1.02104i
\(207\) −0.0328380 0.0568771i −0.00228240 0.00395323i
\(208\) 2.45005 0.169880
\(209\) 3.83491 + 2.21409i 0.265266 + 0.153152i
\(210\) 4.02950 7.48867i 0.278062 0.516767i
\(211\) 19.2357 1.32424 0.662120 0.749398i \(-0.269657\pi\)
0.662120 + 0.749398i \(0.269657\pi\)
\(212\) 5.57732i 0.383052i
\(213\) 6.44470 3.72085i 0.441583 0.254948i
\(214\) 8.79583i 0.601270i
\(215\) 22.4407 0.672380i 1.53045 0.0458559i
\(216\) 1.00000i 0.0680414i
\(217\) 15.4594 26.7765i 1.04945 1.81771i
\(218\) −9.23933 5.33433i −0.625767 0.361287i
\(219\) 3.41080 5.90768i 0.230480 0.399204i
\(220\) 4.07879 7.58027i 0.274992 0.511062i
\(221\) −16.7933 −1.12964
\(222\) 4.46040 + 4.13579i 0.299363 + 0.277576i
\(223\) 21.9748i 1.47154i −0.677230 0.735771i \(-0.736820\pi\)
0.677230 0.735771i \(-0.263180\pi\)
\(224\) 3.29356 1.90154i 0.220061 0.127052i
\(225\) 2.75477 + 4.17268i 0.183651 + 0.278179i
\(226\) 2.96968 5.14363i 0.197540 0.342149i
\(227\) −5.60894 + 9.71497i −0.372278 + 0.644805i −0.989916 0.141658i \(-0.954757\pi\)
0.617637 + 0.786463i \(0.288090\pi\)
\(228\) −1.15029 −0.0761801
\(229\) −8.04647 + 13.9369i −0.531726 + 0.920976i 0.467588 + 0.883946i \(0.345123\pi\)
−0.999314 + 0.0370298i \(0.988210\pi\)
\(230\) −0.0772040 0.124925i −0.00509068 0.00823731i
\(231\) 7.32017 + 12.6789i 0.481632 + 0.834210i
\(232\) 2.70511i 0.177599i
\(233\) 23.3335i 1.52863i 0.644843 + 0.764315i \(0.276923\pi\)
−0.644843 + 0.764315i \(0.723077\pi\)
\(234\) −1.22502 2.12180i −0.0800822 0.138706i
\(235\) 0.130060 + 4.34076i 0.00848416 + 0.283160i
\(236\) 2.16961i 0.141230i
\(237\) −1.48593 2.57370i −0.0965214 0.167180i
\(238\) −22.5751 + 13.0337i −1.46332 + 0.844851i
\(239\) −0.514328 + 0.296947i −0.0332691 + 0.0192079i −0.516542 0.856262i \(-0.672781\pi\)
0.483273 + 0.875470i \(0.339448\pi\)
\(240\) 0.0669680 + 2.23506i 0.00432277 + 0.144273i
\(241\) 9.13422 + 5.27364i 0.588387 + 0.339705i 0.764459 0.644672i \(-0.223006\pi\)
−0.176073 + 0.984377i \(0.556339\pi\)
\(242\) 1.90971 + 3.30771i 0.122761 + 0.212627i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 4.07230 2.35114i 0.260702 0.150517i
\(245\) 8.77346 + 14.1965i 0.560516 + 0.906979i
\(246\) −0.415291 0.239768i −0.0264780 0.0152871i
\(247\) 2.44070 1.40914i 0.155298 0.0896612i
\(248\) 8.12994i 0.516252i
\(249\) 5.58092 0.353677
\(250\) 6.43651 + 9.14173i 0.407081 + 0.578174i
\(251\) 28.9037i 1.82439i −0.409761 0.912193i \(-0.634388\pi\)
0.409761 0.912193i \(-0.365612\pi\)
\(252\) −3.29356 1.90154i −0.207475 0.119786i
\(253\) 0.252826 0.0158951
\(254\) 15.2426 + 8.80034i 0.956408 + 0.552182i
\(255\) −0.459019 15.3198i −0.0287449 0.959363i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −4.71460 8.16592i −0.294089 0.509376i 0.680684 0.732577i \(-0.261683\pi\)
−0.974772 + 0.223201i \(0.928349\pi\)
\(258\) 10.0403i 0.625082i
\(259\) −22.1031 + 6.82625i −1.37342 + 0.424163i
\(260\) −2.88010 4.66033i −0.178616 0.289021i
\(261\) −2.34269 + 1.35255i −0.145009 + 0.0837211i
\(262\) −13.6533 7.88276i −0.843506 0.486998i
\(263\) −27.0317 15.6068i −1.66685 0.962355i −0.969321 0.245796i \(-0.920951\pi\)
−0.697527 0.716559i \(-0.745716\pi\)
\(264\) −3.33385 1.92480i −0.205184 0.118463i
\(265\) −10.6088 + 6.55629i −0.651695 + 0.402750i
\(266\) 2.18733 3.78857i 0.134114 0.232292i
\(267\) −7.96070 −0.487187
\(268\) −6.70598 + 3.87170i −0.409633 + 0.236502i
\(269\) −2.05025 −0.125006 −0.0625031 0.998045i \(-0.519908\pi\)
−0.0625031 + 0.998045i \(0.519908\pi\)
\(270\) 1.90214 1.17553i 0.115760 0.0715404i
\(271\) −3.28422 5.68843i −0.199502 0.345547i 0.748865 0.662722i \(-0.230599\pi\)
−0.948367 + 0.317175i \(0.897266\pi\)
\(272\) 3.42715 5.93600i 0.207801 0.359923i
\(273\) 9.31772 0.563934
\(274\) 14.8070 8.54885i 0.894526 0.516455i
\(275\) −19.2135 + 1.15240i −1.15862 + 0.0694923i
\(276\) −0.0568771 + 0.0328380i −0.00342360 + 0.00197662i
\(277\) −6.72455 + 11.6473i −0.404039 + 0.699816i −0.994209 0.107463i \(-0.965727\pi\)
0.590170 + 0.807279i \(0.299061\pi\)
\(278\) 8.88756 15.3937i 0.533041 0.923254i
\(279\) 7.04073 4.06497i 0.421518 0.243363i
\(280\) −7.48867 4.02950i −0.447534 0.240809i
\(281\) 22.2706 12.8579i 1.32855 0.767040i 0.343477 0.939161i \(-0.388395\pi\)
0.985076 + 0.172121i \(0.0550621\pi\)
\(282\) 1.94212 0.115651
\(283\) −9.20159 + 15.9376i −0.546978 + 0.947394i 0.451502 + 0.892270i \(0.350889\pi\)
−0.998480 + 0.0551234i \(0.982445\pi\)
\(284\) −3.72085 6.44470i −0.220792 0.382422i
\(285\) 1.35220 + 2.18802i 0.0800977 + 0.129607i
\(286\) 9.43169 0.557708
\(287\) 1.57938 0.911858i 0.0932281 0.0538253i
\(288\) 1.00000 0.0589256
\(289\) −14.9907 + 25.9647i −0.881807 + 1.52733i
\(290\) −5.14550 + 3.17993i −0.302154 + 0.186732i
\(291\) −2.51790 1.45371i −0.147602 0.0852180i
\(292\) −5.90768 3.41080i −0.345721 0.199602i
\(293\) 13.9533 + 8.05596i 0.815162 + 0.470634i 0.848745 0.528802i \(-0.177359\pi\)
−0.0335831 + 0.999436i \(0.510692\pi\)
\(294\) 6.46351 3.73171i 0.376960 0.217638i
\(295\) 4.12691 2.55044i 0.240278 0.148493i
\(296\) 4.13579 4.46040i 0.240388 0.259256i
\(297\) 3.84960i 0.223376i
\(298\) 0.839730 + 1.45446i 0.0486443 + 0.0842543i
\(299\) 0.0804546 0.139351i 0.00465281 0.00805891i
\(300\) 4.17268 2.75477i 0.240910 0.159046i
\(301\) 33.0684 + 19.0921i 1.90603 + 1.10045i
\(302\) 14.6644 0.843843
\(303\) −2.45164 1.41545i −0.140843 0.0813156i
\(304\) 1.15029i 0.0659739i
\(305\) −9.25931 4.98224i −0.530186 0.285283i
\(306\) −6.85430 −0.391834
\(307\) 25.0434i 1.42930i 0.699482 + 0.714650i \(0.253414\pi\)
−0.699482 + 0.714650i \(0.746586\pi\)
\(308\) 12.6789 7.32017i 0.722447 0.417105i
\(309\) −14.6546 8.46084i −0.833672 0.481321i
\(310\) 15.4643 9.55697i 0.878312 0.542800i
\(311\) −15.5003 + 8.94910i −0.878941 + 0.507457i −0.870309 0.492506i \(-0.836081\pi\)
−0.00863174 + 0.999963i \(0.502748\pi\)
\(312\) −2.12180 + 1.22502i −0.120123 + 0.0693532i
\(313\) −5.62602 9.74455i −0.318001 0.550795i 0.662070 0.749442i \(-0.269678\pi\)
−0.980071 + 0.198648i \(0.936345\pi\)
\(314\) 14.2552 + 8.23027i 0.804470 + 0.464461i
\(315\) 0.254685 + 8.50013i 0.0143499 + 0.478928i
\(316\) −2.57370 + 1.48593i −0.144782 + 0.0835900i
\(317\) 2.29777 1.32662i 0.129055 0.0745102i −0.434082 0.900873i \(-0.642927\pi\)
0.563138 + 0.826363i \(0.309594\pi\)
\(318\) 2.78866 + 4.83010i 0.156380 + 0.270858i
\(319\) 10.4136i 0.583049i
\(320\) 2.23506 0.0669680i 0.124944 0.00374363i
\(321\) 4.39791 + 7.61741i 0.245468 + 0.425162i
\(322\) 0.249771i 0.0139192i
\(323\) 7.88447i 0.438703i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −5.47895 + 10.9567i −0.303918 + 0.607768i
\(326\) 9.83152 17.0287i 0.544517 0.943132i
\(327\) 10.6687 0.589979
\(328\) −0.239768 + 0.415291i −0.0132390 + 0.0229306i
\(329\) −3.69301 + 6.39649i −0.203602 + 0.352650i
\(330\) 0.257800 + 8.60410i 0.0141914 + 0.473640i
\(331\) 15.6212 9.01889i 0.858618 0.495723i −0.00493151 0.999988i \(-0.501570\pi\)
0.863549 + 0.504265i \(0.168236\pi\)
\(332\) 5.58092i 0.306293i
\(333\) −5.93072 1.35150i −0.325001 0.0740618i
\(334\) 10.6868 0.584756
\(335\) 15.2476 + 8.20441i 0.833064 + 0.448255i
\(336\) −1.90154 + 3.29356i −0.103738 + 0.179679i
\(337\) −17.1397 9.89562i −0.933660 0.539049i −0.0456926 0.998956i \(-0.514549\pi\)
−0.887967 + 0.459907i \(0.847883\pi\)
\(338\) −3.49864 + 6.05982i −0.190301 + 0.329611i
\(339\) 5.93935i 0.322581i
\(340\) −15.3198 + 0.459019i −0.830833 + 0.0248938i
\(341\) 31.2970i 1.69483i
\(342\) 0.996184 0.575147i 0.0538675 0.0311004i
\(343\) 1.76242i 0.0951618i
\(344\) −10.0403 −0.541337
\(345\) 0.129323 + 0.0695862i 0.00696252 + 0.00374639i
\(346\) 9.41553 + 5.43606i 0.506182 + 0.292244i
\(347\) −5.12556 −0.275155 −0.137577 0.990491i \(-0.543932\pi\)
−0.137577 + 0.990491i \(0.543932\pi\)
\(348\) 1.35255 + 2.34269i 0.0725046 + 0.125582i
\(349\) 12.9643 + 22.4549i 0.693964 + 1.20198i 0.970529 + 0.240985i \(0.0774706\pi\)
−0.276565 + 0.960995i \(0.589196\pi\)
\(350\) 1.13847 + 18.9813i 0.0608540 + 1.01459i
\(351\) 2.12180 + 1.22502i 0.113253 + 0.0653869i
\(352\) −1.92480 + 3.33385i −0.102592 + 0.177695i
\(353\) −2.11906 3.67032i −0.112786 0.195352i 0.804106 0.594485i \(-0.202644\pi\)
−0.916893 + 0.399134i \(0.869311\pi\)
\(354\) −1.08481 1.87894i −0.0576568 0.0998646i
\(355\) −7.88475 + 14.6535i −0.418479 + 0.777727i
\(356\) 7.96070i 0.421916i
\(357\) 13.0337 22.5751i 0.689818 1.19480i
\(358\) 7.23906 4.17947i 0.382596 0.220892i
\(359\) −11.0273 −0.582000 −0.291000 0.956723i \(-0.593988\pi\)
−0.291000 + 0.956723i \(0.593988\pi\)
\(360\) −1.17553 1.90214i −0.0619558 0.100252i
\(361\) −8.83841 15.3086i −0.465180 0.805715i
\(362\) 18.7917 0.987672
\(363\) −3.30771 1.90971i −0.173610 0.100234i
\(364\) 9.31772i 0.488381i
\(365\) 0.456829 + 15.2467i 0.0239115 + 0.798050i
\(366\) −2.35114 + 4.07230i −0.122896 + 0.212863i
\(367\) 0.710723 + 0.410336i 0.0370994 + 0.0214194i 0.518435 0.855117i \(-0.326515\pi\)
−0.481336 + 0.876536i \(0.659848\pi\)
\(368\) 0.0328380 + 0.0568771i 0.00171180 + 0.00296492i
\(369\) 0.479537 0.0249637
\(370\) −13.3461 2.62352i −0.693828 0.136390i
\(371\) −21.2110 −1.10122
\(372\) −4.06497 7.04073i −0.210759 0.365045i
\(373\) 24.6060 + 14.2063i 1.27405 + 0.735572i 0.975747 0.218899i \(-0.0702466\pi\)
0.298301 + 0.954472i \(0.403580\pi\)
\(374\) 13.1932 22.8512i 0.682202 1.18161i
\(375\) −10.1451 4.69872i −0.523888 0.242641i
\(376\) 1.94212i 0.100157i
\(377\) −5.73971 3.31382i −0.295610 0.170670i
\(378\) 3.80308 0.195609
\(379\) 2.60445 + 4.51103i 0.133781 + 0.231716i 0.925131 0.379647i \(-0.123955\pi\)
−0.791350 + 0.611364i \(0.790621\pi\)
\(380\) 2.18802 1.35220i 0.112243 0.0693666i
\(381\) −17.6007 −0.901710
\(382\) −11.3667 + 6.56255i −0.581570 + 0.335769i
\(383\) 3.04474 5.27364i 0.155579 0.269470i −0.777691 0.628647i \(-0.783609\pi\)
0.933270 + 0.359177i \(0.116942\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −28.8284 15.5120i −1.46923 0.790563i
\(386\) 0.887727 + 1.53759i 0.0451841 + 0.0782612i
\(387\) 5.02016 + 8.69516i 0.255189 + 0.442000i
\(388\) −1.45371 + 2.51790i −0.0738009 + 0.127827i
\(389\) −24.6454 14.2290i −1.24957 0.721441i −0.278549 0.960422i \(-0.589853\pi\)
−0.971024 + 0.238981i \(0.923187\pi\)
\(390\) 4.82440 + 2.59591i 0.244293 + 0.131449i
\(391\) −0.225082 0.389853i −0.0113829 0.0197157i
\(392\) −3.73171 6.46351i −0.188480 0.326457i
\(393\) 15.7655 0.795265
\(394\) −17.9982 10.3913i −0.906737 0.523505i
\(395\) 5.85190 + 3.14879i 0.294441 + 0.158433i
\(396\) 3.84960 0.193450
\(397\) 34.7007i 1.74158i −0.491656 0.870790i \(-0.663608\pi\)
0.491656 0.870790i \(-0.336392\pi\)
\(398\) 19.9138 11.4972i 0.998188 0.576304i
\(399\) 4.37466i 0.219007i
\(400\) −2.75477 4.17268i −0.137738 0.208634i
\(401\) 1.30549i 0.0651933i 0.999469 + 0.0325967i \(0.0103777\pi\)
−0.999469 + 0.0325967i \(0.989622\pi\)
\(402\) 3.87170 6.70598i 0.193103 0.334464i
\(403\) 17.2501 + 9.95936i 0.859289 + 0.496111i
\(404\) −1.41545 + 2.45164i −0.0704214 + 0.121973i
\(405\) −1.05954 + 1.96911i −0.0526488 + 0.0978457i
\(406\) −10.2878 −0.510572
\(407\) 15.9211 17.1708i 0.789182 0.851123i
\(408\) 6.85430i 0.339338i
\(409\) 15.6275 9.02256i 0.772731 0.446137i −0.0611167 0.998131i \(-0.519466\pi\)
0.833848 + 0.551994i \(0.186133\pi\)
\(410\) 1.07180 0.0321136i 0.0529322 0.00158598i
\(411\) −8.54885 + 14.8070i −0.421684 + 0.730377i
\(412\) −8.46084 + 14.6546i −0.416836 + 0.721981i
\(413\) 8.25121 0.406016
\(414\) 0.0328380 0.0568771i 0.00161390 0.00279536i
\(415\) −10.6157 + 6.56053i −0.521104 + 0.322044i
\(416\) 1.22502 + 2.12180i 0.0600617 + 0.104030i
\(417\) 17.7751i 0.870452i
\(418\) 4.42817i 0.216589i
\(419\) −2.21154 3.83049i −0.108041 0.187132i 0.806936 0.590639i \(-0.201124\pi\)
−0.914976 + 0.403507i \(0.867791\pi\)
\(420\) 8.50013 0.254685i 0.414764 0.0124273i
\(421\) 36.6940i 1.78835i −0.447713 0.894177i \(-0.647761\pi\)
0.447713 0.894177i \(-0.352239\pi\)
\(422\) 9.61784 + 16.6586i 0.468189 + 0.810927i
\(423\) −1.68192 + 0.971059i −0.0817779 + 0.0472145i
\(424\) 4.83010 2.78866i 0.234570 0.135429i
\(425\) 18.8820 + 28.6008i 0.915911 + 1.38734i
\(426\) 6.44470 + 3.72085i 0.312247 + 0.180276i
\(427\) −8.94159 15.4873i −0.432714 0.749482i
\(428\) 7.61741 4.39791i 0.368201 0.212581i
\(429\) −8.16808 + 4.71585i −0.394359 + 0.227683i
\(430\) 11.8027 + 19.0981i 0.569175 + 0.920991i
\(431\) 7.11522 + 4.10797i 0.342728 + 0.197874i 0.661478 0.749965i \(-0.269930\pi\)
−0.318750 + 0.947839i \(0.603263\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 35.2652i 1.69474i 0.531005 + 0.847368i \(0.321814\pi\)
−0.531005 + 0.847368i \(0.678186\pi\)
\(434\) 30.9188 1.48415
\(435\) 2.86616 5.32665i 0.137422 0.255393i
\(436\) 10.6687i 0.510936i
\(437\) 0.0654254 + 0.0377734i 0.00312972 + 0.00180695i
\(438\) 6.82160 0.325949
\(439\) −0.786419 0.454039i −0.0375337 0.0216701i 0.481116 0.876657i \(-0.340232\pi\)
−0.518649 + 0.854987i \(0.673565\pi\)
\(440\) 8.60410 0.257800i 0.410185 0.0122901i
\(441\) −3.73171 + 6.46351i −0.177700 + 0.307786i
\(442\) −8.39667 14.5435i −0.399389 0.691762i
\(443\) 35.0014i 1.66297i −0.555548 0.831484i \(-0.687492\pi\)
0.555548 0.831484i \(-0.312508\pi\)
\(444\) −1.35150 + 5.93072i −0.0641394 + 0.281460i
\(445\) 15.1424 9.35803i 0.717817 0.443613i
\(446\) 19.0307 10.9874i 0.901132 0.520269i
\(447\) −1.45446 0.839730i −0.0687934 0.0397179i
\(448\) 3.29356 + 1.90154i 0.155606 + 0.0898393i
\(449\) 17.3266 + 10.0035i 0.817692 + 0.472095i 0.849620 0.527395i \(-0.176831\pi\)
−0.0319278 + 0.999490i \(0.510165\pi\)
\(450\) −2.23627 + 4.47204i −0.105419 + 0.210814i
\(451\) −0.923012 + 1.59870i −0.0434629 + 0.0752800i
\(452\) 5.93935 0.279364
\(453\) −12.6998 + 7.33222i −0.596687 + 0.344498i
\(454\) −11.2179 −0.526481
\(455\) −17.7236 + 10.9532i −0.830895 + 0.513496i
\(456\) −0.575147 0.996184i −0.0269337 0.0466506i
\(457\) 6.37769 11.0465i 0.298336 0.516733i −0.677420 0.735597i \(-0.736902\pi\)
0.975755 + 0.218864i \(0.0702352\pi\)
\(458\) −16.0929 −0.751974
\(459\) 5.93600 3.42715i 0.277069 0.159966i
\(460\) 0.0695862 0.129323i 0.00324447 0.00602972i
\(461\) 19.2166 11.0947i 0.895005 0.516731i 0.0194288 0.999811i \(-0.493815\pi\)
0.875576 + 0.483080i \(0.160482\pi\)
\(462\) −7.32017 + 12.6789i −0.340565 + 0.589876i
\(463\) −6.56761 + 11.3754i −0.305223 + 0.528661i −0.977311 0.211810i \(-0.932064\pi\)
0.672088 + 0.740471i \(0.265398\pi\)
\(464\) 2.34269 1.35255i 0.108757 0.0627908i
\(465\) −8.61397 + 16.0087i −0.399463 + 0.742386i
\(466\) −20.2074 + 11.6668i −0.936091 + 0.540453i
\(467\) −2.63986 −0.122158 −0.0610790 0.998133i \(-0.519454\pi\)
−0.0610790 + 0.998133i \(0.519454\pi\)
\(468\) 1.22502 2.12180i 0.0566267 0.0980803i
\(469\) 14.7244 + 25.5034i 0.679909 + 1.17764i
\(470\) −3.69418 + 2.28301i −0.170400 + 0.105308i
\(471\) −16.4605 −0.758461
\(472\) −1.87894 + 1.08481i −0.0864852 + 0.0499323i
\(473\) −38.6512 −1.77718
\(474\) 1.48593 2.57370i 0.0682509 0.118214i
\(475\) −5.14416 2.57236i −0.236030 0.118028i
\(476\) −22.5751 13.0337i −1.03473 0.597400i
\(477\) −4.83010 2.78866i −0.221155 0.127684i
\(478\) −0.514328 0.296947i −0.0235248 0.0135821i
\(479\) −9.66298 + 5.57892i −0.441513 + 0.254907i −0.704239 0.709963i \(-0.748712\pi\)
0.262726 + 0.964870i \(0.415378\pi\)
\(480\) −1.90214 + 1.17553i −0.0868204 + 0.0536553i
\(481\) −4.39765 14.2394i −0.200516 0.649262i
\(482\) 10.5473i 0.480416i
\(483\) 0.124886 + 0.216308i 0.00568249 + 0.00984237i
\(484\) −1.90971 + 3.30771i −0.0868048 + 0.150350i
\(485\) 6.49827 0.194704i 0.295071 0.00884106i
\(486\) 0.866025 + 0.500000i 0.0392837 + 0.0226805i
\(487\) 25.4527 1.15337 0.576686 0.816966i \(-0.304346\pi\)
0.576686 + 0.816966i \(0.304346\pi\)
\(488\) 4.07230 + 2.35114i 0.184344 + 0.106431i
\(489\) 19.6630i 0.889193i
\(490\) −7.90776 + 14.6963i −0.357236 + 0.663910i
\(491\) 16.1537 0.729007 0.364503 0.931202i \(-0.381239\pi\)
0.364503 + 0.931202i \(0.381239\pi\)
\(492\) 0.479537i 0.0216192i
\(493\) −16.0575 + 9.27082i −0.723195 + 0.417537i
\(494\) 2.44070 + 1.40914i 0.109812 + 0.0634001i
\(495\) −4.52531 7.32247i −0.203398 0.329121i
\(496\) −7.04073 + 4.06497i −0.316138 + 0.182522i
\(497\) −24.5097 + 14.1507i −1.09941 + 0.634745i
\(498\) 2.79046 + 4.83322i 0.125044 + 0.216582i
\(499\) −26.9210 15.5428i −1.20515 0.695793i −0.243453 0.969913i \(-0.578280\pi\)
−0.961696 + 0.274119i \(0.911614\pi\)
\(500\) −4.69872 + 10.1451i −0.210133 + 0.453701i
\(501\) −9.25505 + 5.34341i −0.413485 + 0.238726i
\(502\) 25.0313 14.4519i 1.11720 0.645018i
\(503\) −5.22198 9.04473i −0.232836 0.403284i 0.725805 0.687900i \(-0.241467\pi\)
−0.958642 + 0.284616i \(0.908134\pi\)
\(504\) 3.80308i 0.169403i
\(505\) 6.32726 0.189580i 0.281559 0.00843621i
\(506\) 0.126413 + 0.218954i 0.00561975 + 0.00973370i
\(507\) 6.99728i 0.310760i
\(508\) 17.6007i 0.780904i
\(509\) −7.95848 13.7845i −0.352753 0.610987i 0.633977 0.773352i \(-0.281421\pi\)
−0.986731 + 0.162365i \(0.948088\pi\)
\(510\) 13.0378 8.05742i 0.577325 0.356789i
\(511\) −12.9715 + 22.4674i −0.573827 + 0.993898i
\(512\) −1.00000 −0.0441942
\(513\) −0.575147 + 0.996184i −0.0253934 + 0.0439826i
\(514\) 4.71460 8.16592i 0.207952 0.360183i
\(515\) 37.8211 1.13321i 1.66660 0.0499353i
\(516\) 8.69516 5.02016i 0.382783 0.221000i
\(517\) 7.47637i 0.328810i
\(518\) −16.9633 15.7288i −0.745324 0.691082i
\(519\) −10.8721 −0.477233
\(520\) 2.59591 4.82440i 0.113838 0.211564i
\(521\) −14.8542 + 25.7282i −0.650774 + 1.12717i 0.332161 + 0.943223i \(0.392222\pi\)
−0.982935 + 0.183951i \(0.941111\pi\)
\(522\) −2.34269 1.35255i −0.102537 0.0591997i
\(523\) −18.5161 + 32.0708i −0.809651 + 1.40236i 0.103455 + 0.994634i \(0.467010\pi\)
−0.913106 + 0.407723i \(0.866323\pi\)
\(524\) 15.7655i 0.688720i
\(525\) −10.4766 15.8690i −0.457236 0.692582i
\(526\) 31.2136i 1.36098i
\(527\) 48.2593 27.8625i 2.10221 1.21371i
\(528\) 3.84960i 0.167532i
\(529\) −22.9957 −0.999812
\(530\) −10.9823 5.90937i −0.477042 0.256687i
\(531\) 1.87894 + 1.08481i 0.0815391 + 0.0470766i
\(532\) 4.37466 0.189666
\(533\) 0.587443 + 1.01748i 0.0254450 + 0.0440720i
\(534\) −3.98035 6.89417i −0.172247 0.298340i
\(535\) −17.3199 9.31950i −0.748806 0.402917i
\(536\) −6.70598 3.87170i −0.289654 0.167232i
\(537\) −4.17947 + 7.23906i −0.180358 + 0.312388i
\(538\) −1.02513 1.77557i −0.0441963 0.0765503i
\(539\) −14.3656 24.8819i −0.618770 1.07174i
\(540\) 1.96911 + 1.05954i 0.0847369 + 0.0455952i
\(541\) 5.98204i 0.257188i −0.991697 0.128594i \(-0.958954\pi\)
0.991697 0.128594i \(-0.0410464\pi\)
\(542\) 3.28422 5.68843i 0.141069 0.244339i
\(543\) −16.2741 + 9.39587i −0.698389 + 0.403215i
\(544\) 6.85430 0.293876
\(545\) −20.2933 + 12.5413i −0.869269 + 0.537211i
\(546\) 4.65886 + 8.06938i 0.199381 + 0.345338i
\(547\) 7.81210 0.334021 0.167011 0.985955i \(-0.446589\pi\)
0.167011 + 0.985955i \(0.446589\pi\)
\(548\) 14.8070 + 8.54885i 0.632525 + 0.365189i
\(549\) 4.70229i 0.200689i
\(550\) −10.6047 16.0631i −0.452188 0.684935i
\(551\) 1.55584 2.69479i 0.0662809 0.114802i
\(552\) −0.0568771 0.0328380i −0.00242085 0.00139768i
\(553\) 5.65110 + 9.78800i 0.240309 + 0.416228i
\(554\) −13.4491 −0.571398
\(555\) 12.8698 4.40099i 0.546292 0.186812i
\(556\) 17.7751 0.753833
\(557\) −1.26410 2.18949i −0.0535618 0.0927717i 0.838001 0.545668i \(-0.183724\pi\)
−0.891563 + 0.452896i \(0.850391\pi\)
\(558\) 7.04073 + 4.06497i 0.298058 + 0.172084i
\(559\) −12.2996 + 21.3035i −0.520218 + 0.901044i
\(560\) −0.254685 8.50013i −0.0107624 0.359196i
\(561\) 26.3863i 1.11403i
\(562\) 22.2706 + 12.8579i 0.939428 + 0.542379i
\(563\) 6.95366 0.293062 0.146531 0.989206i \(-0.453189\pi\)
0.146531 + 0.989206i \(0.453189\pi\)
\(564\) 0.971059 + 1.68192i 0.0408889 + 0.0708217i
\(565\) −6.98188 11.2975i −0.293730 0.475288i
\(566\) −18.4032 −0.773544
\(567\) −3.29356 + 1.90154i −0.138317 + 0.0798572i
\(568\) 3.72085 6.44470i 0.156123 0.270413i
\(569\) 18.5866i 0.779192i −0.920986 0.389596i \(-0.872615\pi\)
0.920986 0.389596i \(-0.127385\pi\)
\(570\) −1.21878 + 2.26505i −0.0510490 + 0.0948727i
\(571\) 0.540231 + 0.935708i 0.0226080 + 0.0391582i 0.877108 0.480293i \(-0.159470\pi\)
−0.854500 + 0.519451i \(0.826136\pi\)
\(572\) 4.71585 + 8.16808i 0.197179 + 0.341525i
\(573\) 6.56255 11.3667i 0.274155 0.474850i
\(574\) 1.57938 + 0.911858i 0.0659222 + 0.0380602i
\(575\) −0.327791 + 0.0196605i −0.0136698 + 0.000819900i
\(576\) 0.500000 + 0.866025i 0.0208333 + 0.0360844i
\(577\) −13.4705 23.3317i −0.560786 0.971310i −0.997428 0.0716745i \(-0.977166\pi\)
0.436642 0.899635i \(-0.356168\pi\)
\(578\) −29.9814 −1.24706
\(579\) −1.53759 0.887727i −0.0639000 0.0368927i
\(580\) −5.32665 2.86616i −0.221177 0.119011i
\(581\) −21.2247 −0.880549
\(582\) 2.90742i 0.120516i
\(583\) 18.5939 10.7352i 0.770082 0.444607i
\(584\) 6.82160i 0.282280i
\(585\) −5.47601 + 0.164075i −0.226405 + 0.00678365i
\(586\) 16.1119i 0.665577i
\(587\) −7.31683 + 12.6731i −0.301998 + 0.523076i −0.976588 0.215116i \(-0.930987\pi\)
0.674590 + 0.738192i \(0.264320\pi\)
\(588\) 6.46351 + 3.73171i 0.266551 + 0.153893i
\(589\) −4.67591 + 8.09892i −0.192668 + 0.333710i
\(590\) 4.27220 + 2.29878i 0.175884 + 0.0946395i
\(591\) 20.7825 0.854880
\(592\) 5.93072 + 1.35150i 0.243751 + 0.0555463i
\(593\) 8.93492i 0.366913i 0.983028 + 0.183457i \(0.0587287\pi\)
−0.983028 + 0.183457i \(0.941271\pi\)
\(594\) −3.33385 + 1.92480i −0.136790 + 0.0789755i
\(595\) 1.74569 + 58.2625i 0.0715661 + 2.38853i
\(596\) −0.839730 + 1.45446i −0.0343967 + 0.0595768i
\(597\) −11.4972 + 19.9138i −0.470550 + 0.815017i
\(598\) 0.160909 0.00658007
\(599\) −20.5035 + 35.5132i −0.837752 + 1.45103i 0.0540178 + 0.998540i \(0.482797\pi\)
−0.891770 + 0.452489i \(0.850536\pi\)
\(600\) 4.47204 + 2.23627i 0.182570 + 0.0912952i
\(601\) −20.0982 34.8112i −0.819824 1.41998i −0.905812 0.423680i \(-0.860738\pi\)
0.0859879 0.996296i \(-0.472595\pi\)
\(602\) 38.1841i 1.55627i
\(603\) 7.74340i 0.315335i
\(604\) 7.33222 + 12.6998i 0.298344 + 0.516746i
\(605\) 8.53663 0.255778i 0.347064 0.0103989i
\(606\) 2.83091i 0.114998i
\(607\) 11.0397 + 19.1214i 0.448089 + 0.776114i 0.998262 0.0589376i \(-0.0187713\pi\)
−0.550172 + 0.835051i \(0.685438\pi\)
\(608\) −0.996184 + 0.575147i −0.0404006 + 0.0233253i
\(609\) 8.90945 5.14388i 0.361029 0.208440i
\(610\) −0.314903 10.5099i −0.0127500 0.425534i
\(611\) −4.12079 2.37914i −0.166709 0.0962496i
\(612\) −3.42715 5.93600i −0.138534 0.239948i
\(613\) −0.146782 + 0.0847445i −0.00592846 + 0.00342280i −0.502961 0.864309i \(-0.667756\pi\)
0.497033 + 0.867732i \(0.334423\pi\)
\(614\) −21.6882 + 12.5217i −0.875264 + 0.505334i
\(615\) −0.912145 + 0.563709i −0.0367812 + 0.0227309i
\(616\) 12.6789 + 7.32017i 0.510847 + 0.294938i
\(617\) 36.7353 21.2091i 1.47891 0.853848i 0.479192 0.877710i \(-0.340930\pi\)
0.999715 + 0.0238625i \(0.00759641\pi\)
\(618\) 16.9217i 0.680690i
\(619\) −36.2920 −1.45870 −0.729349 0.684142i \(-0.760177\pi\)
−0.729349 + 0.684142i \(0.760177\pi\)
\(620\) 16.0087 + 8.61397i 0.642926 + 0.345945i
\(621\) 0.0656760i 0.00263549i
\(622\) −15.5003 8.94910i −0.621505 0.358826i
\(623\) 30.2752 1.21295
\(624\) −2.12180 1.22502i −0.0849400 0.0490402i
\(625\) 24.8208 2.98819i 0.992831 0.119528i
\(626\) 5.62602 9.74455i 0.224861 0.389471i
\(627\) −2.21409 3.83491i −0.0884221 0.153152i
\(628\) 16.4605i 0.656847i
\(629\) −40.6509 9.26359i −1.62086 0.369363i
\(630\) −7.23399 + 4.47063i −0.288209 + 0.178114i
\(631\) 1.44160 0.832307i 0.0573891 0.0331336i −0.471031 0.882117i \(-0.656118\pi\)
0.528420 + 0.848983i \(0.322785\pi\)
\(632\) −2.57370 1.48593i −0.102376 0.0591070i
\(633\) −16.6586 9.61784i −0.662120 0.382275i
\(634\) 2.29777 + 1.32662i 0.0912560 + 0.0526867i
\(635\) 33.4789 20.6901i 1.32857 0.821061i
\(636\) −2.78866 + 4.83010i −0.110577 + 0.191526i
\(637\) −18.2857 −0.724506
\(638\) 9.01843 5.20679i 0.357043 0.206139i
\(639\) −7.44169 −0.294389
\(640\) 1.17553 + 1.90214i 0.0464668 + 0.0751886i
\(641\) 6.48865 + 11.2387i 0.256286 + 0.443901i 0.965244 0.261350i \(-0.0841677\pi\)
−0.708958 + 0.705251i \(0.750834\pi\)
\(642\) −4.39791 + 7.61741i −0.173572 + 0.300635i
\(643\) 20.0143 0.789285 0.394643 0.918835i \(-0.370868\pi\)
0.394643 + 0.918835i \(0.370868\pi\)
\(644\) 0.216308 0.124886i 0.00852374 0.00492118i
\(645\) −19.7704 10.6381i −0.778461 0.418874i
\(646\) 6.82815 3.94223i 0.268650 0.155105i
\(647\) −25.0163 + 43.3294i −0.983491 + 1.70346i −0.335030 + 0.942207i \(0.608747\pi\)
−0.648460 + 0.761248i \(0.724587\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) −7.23317 + 4.17607i −0.283927 + 0.163925i
\(650\) −12.2283 + 0.733435i −0.479631 + 0.0287677i
\(651\) −26.7765 + 15.4594i −1.04945 + 0.605902i
\(652\) 19.6630 0.770064
\(653\) 3.28047 5.68194i 0.128375 0.222351i −0.794672 0.607039i \(-0.792357\pi\)
0.923047 + 0.384687i \(0.125691\pi\)
\(654\) 5.33433 + 9.23933i 0.208589 + 0.361287i
\(655\) −29.9882 + 18.5328i −1.17174 + 0.724137i
\(656\) −0.479537 −0.0187228
\(657\) −5.90768 + 3.41080i −0.230480 + 0.133068i
\(658\) −7.38603 −0.287937
\(659\) 23.8790 41.3596i 0.930193 1.61114i 0.147203 0.989106i \(-0.452973\pi\)
0.782989 0.622035i \(-0.213694\pi\)
\(660\) −7.32247 + 4.52531i −0.285027 + 0.176148i
\(661\) 31.6257 + 18.2591i 1.23010 + 0.710197i 0.967050 0.254586i \(-0.0819391\pi\)
0.263047 + 0.964783i \(0.415272\pi\)
\(662\) 15.6212 + 9.01889i 0.607134 + 0.350529i
\(663\) 14.5435 + 8.39667i 0.564821 + 0.326100i
\(664\) 4.83322 2.79046i 0.187565 0.108291i
\(665\) −5.14254 8.32122i −0.199419 0.322683i
\(666\) −1.79493 5.81190i −0.0695520 0.225207i
\(667\) 0.177661i 0.00687906i
\(668\) 5.34341 + 9.25505i 0.206743 + 0.358089i
\(669\) −10.9874 + 19.0307i −0.424798 + 0.735771i
\(670\) 0.518560 + 17.3070i 0.0200337 + 0.668628i
\(671\) 15.6767 + 9.05096i 0.605193 + 0.349408i
\(672\) −3.80308 −0.146707
\(673\) −3.39834 1.96203i −0.130996 0.0756307i 0.433070 0.901360i \(-0.357430\pi\)
−0.564066 + 0.825730i \(0.690764\pi\)
\(674\) 19.7912i 0.762330i
\(675\) −0.299356 4.99103i −0.0115222 0.192105i
\(676\) −6.99728 −0.269126
\(677\) 26.4675i 1.01723i 0.860994 + 0.508615i \(0.169842\pi\)
−0.860994 + 0.508615i \(0.830158\pi\)
\(678\) −5.14363 + 2.96968i −0.197540 + 0.114050i
\(679\) 9.57577 + 5.52857i 0.367484 + 0.212167i
\(680\) −8.05742 13.0378i −0.308988 0.499978i
\(681\) 9.71497 5.60894i 0.372278 0.214935i
\(682\) −27.1040 + 15.6485i −1.03787 + 0.599212i
\(683\) 6.60542 + 11.4409i 0.252749 + 0.437774i 0.964282 0.264879i \(-0.0853319\pi\)
−0.711533 + 0.702653i \(0.751999\pi\)
\(684\) 0.996184 + 0.575147i 0.0380901 + 0.0219913i
\(685\) −1.14500 38.2145i −0.0437482 1.46010i
\(686\) −1.52630 + 0.881211i −0.0582745 + 0.0336448i
\(687\) 13.9369 8.04647i 0.531726 0.306992i
\(688\) −5.02016 8.69516i −0.191392 0.331500i
\(689\) 13.6647i 0.520583i
\(690\) 0.00439819 + 0.146790i 0.000167436 + 0.00558821i
\(691\) 23.9934 + 41.5579i 0.912753 + 1.58094i 0.810158 + 0.586212i \(0.199381\pi\)
0.102596 + 0.994723i \(0.467285\pi\)
\(692\) 10.8721i 0.413296i
\(693\) 14.6403i 0.556140i
\(694\) −2.56278 4.43887i −0.0972818 0.168497i
\(695\) −20.8952 33.8108i −0.792599 1.28252i
\(696\) −1.35255 + 2.34269i −0.0512685 + 0.0887996i
\(697\) 3.28689 0.124500
\(698\) −12.9643 + 22.4549i −0.490707 + 0.849929i
\(699\) 11.6668 20.2074i 0.441278 0.764315i
\(700\) −15.8690 + 10.4766i −0.599793 + 0.395978i
\(701\) −13.4755 + 7.78011i −0.508964 + 0.293851i −0.732408 0.680866i \(-0.761603\pi\)
0.223444 + 0.974717i \(0.428270\pi\)
\(702\) 2.45005i 0.0924710i
\(703\) 6.68540 2.06469i 0.252145 0.0778714i
\(704\) −3.84960 −0.145087
\(705\) 2.05774 3.82424i 0.0774991 0.144029i
\(706\) 2.11906 3.67032i 0.0797520 0.138134i
\(707\) 9.32377 + 5.38308i 0.350656 + 0.202452i
\(708\) 1.08481 1.87894i 0.0407695 0.0706149i
\(709\) 0.120714i 0.00453352i −0.999997 0.00226676i \(-0.999278\pi\)
0.999997 0.00226676i \(-0.000721533\pi\)
\(710\) −16.6327 + 0.498356i −0.624213 + 0.0187030i
\(711\) 2.97186i 0.111453i
\(712\) −6.89417 + 3.98035i −0.258370 + 0.149170i
\(713\) 0.533942i 0.0199963i
\(714\) 26.0675 0.975550
\(715\) 9.99322 18.5720i 0.373725 0.694554i
\(716\) 7.23906 + 4.17947i 0.270536 + 0.156194i
\(717\) 0.593895 0.0221794
\(718\) −5.51366 9.54994i −0.205768 0.356401i
\(719\) 10.4447 + 18.0907i 0.389521 + 0.674671i 0.992385 0.123173i \(-0.0393072\pi\)
−0.602864 + 0.797844i \(0.705974\pi\)
\(720\) 1.05954 1.96911i 0.0394866 0.0733843i
\(721\) 55.7327 + 32.1773i 2.07559 + 1.19834i
\(722\) 8.83841 15.3086i 0.328932 0.569726i
\(723\) −5.27364 9.13422i −0.196129 0.339705i
\(724\) 9.39587 + 16.2741i 0.349195 + 0.604823i
\(725\) 0.809790 + 13.5013i 0.0300749 + 0.501425i
\(726\) 3.81941i 0.141752i
\(727\) −14.7316 + 25.5159i −0.546364 + 0.946331i 0.452155 + 0.891939i \(0.350655\pi\)
−0.998520 + 0.0543916i \(0.982678\pi\)
\(728\) 8.06938 4.65886i 0.299071 0.172669i
\(729\) −1.00000 −0.0370370
\(730\) −12.9756 + 8.01898i −0.480250 + 0.296796i
\(731\) 34.4097 + 59.5993i 1.27269 + 2.20436i
\(732\) −4.70229 −0.173802
\(733\) −17.4475 10.0733i −0.644438 0.372067i 0.141884 0.989883i \(-0.454684\pi\)
−0.786322 + 0.617817i \(0.788017\pi\)
\(734\) 0.820672i 0.0302915i
\(735\) −0.499811 16.6812i −0.0184358 0.615296i
\(736\) −0.0328380 + 0.0568771i −0.00121043 + 0.00209652i
\(737\) −25.8153 14.9045i −0.950920 0.549014i
\(738\) 0.239768 + 0.415291i 0.00882599 + 0.0152871i
\(739\) −5.60635 −0.206233 −0.103116 0.994669i \(-0.532881\pi\)
−0.103116 + 0.994669i \(0.532881\pi\)
\(740\) −4.40099 12.8698i −0.161784 0.473103i
\(741\) −2.81827 −0.103532
\(742\) −10.6055 18.3692i −0.389340 0.674356i
\(743\) 9.93130 + 5.73384i 0.364344 + 0.210354i 0.670985 0.741471i \(-0.265872\pi\)
−0.306641 + 0.951825i \(0.599205\pi\)
\(744\) 4.06497 7.04073i 0.149029 0.258126i
\(745\) 3.75370 0.112470i 0.137525 0.00412059i
\(746\) 28.4125i 1.04026i
\(747\) −4.83322 2.79046i −0.176838 0.102098i
\(748\) 26.3863 0.964779
\(749\) −16.7256 28.9696i −0.611141 1.05853i
\(750\) −1.00332 11.1352i −0.0366360 0.406601i
\(751\) 4.70945 0.171850 0.0859252 0.996302i \(-0.472615\pi\)
0.0859252 + 0.996302i \(0.472615\pi\)
\(752\) 1.68192 0.971059i 0.0613334 0.0354109i
\(753\) −14.4519 + 25.0313i −0.526655 + 0.912193i
\(754\) 6.62764i 0.241364i
\(755\) 15.5375 28.8758i 0.565468 1.05090i
\(756\) 1.90154 + 3.29356i 0.0691583 + 0.119786i
\(757\) 15.3612 + 26.6063i 0.558311 + 0.967022i 0.997638 + 0.0686950i \(0.0218835\pi\)
−0.439327 + 0.898327i \(0.644783\pi\)
\(758\) −2.60445 + 4.51103i −0.0945978 + 0.163848i
\(759\) −0.218954 0.126413i −0.00794753 0.00458851i
\(760\) 2.26505 + 1.21878i 0.0821621 + 0.0442098i
\(761\) −1.51563 2.62515i −0.0549415 0.0951615i 0.837247 0.546826i \(-0.184164\pi\)
−0.892188 + 0.451664i \(0.850831\pi\)
\(762\) −8.80034 15.2426i −0.318803 0.552182i
\(763\) −40.5738 −1.46887
\(764\) −11.3667 6.56255i −0.411232 0.237425i
\(765\) −7.26238 + 13.4969i −0.262572 + 0.487980i
\(766\) 6.08947 0.220022
\(767\) 5.31565i 0.191937i
\(768\) 0.866025 0.500000i 0.0312500 0.0180422i
\(769\) 32.6155i 1.17615i 0.808808 + 0.588073i \(0.200113\pi\)
−0.808808 + 0.588073i \(0.799887\pi\)
\(770\) −0.980434 32.7221i −0.0353324 1.17922i
\(771\) 9.42920i 0.339584i
\(772\) −0.887727 + 1.53759i −0.0319500 + 0.0553390i
\(773\) 0.947360 + 0.546959i 0.0340742 + 0.0196727i 0.516940 0.856021i \(-0.327071\pi\)
−0.482866 + 0.875694i \(0.660404\pi\)
\(774\) −5.02016 + 8.69516i −0.180446 + 0.312541i
\(775\) −2.43374 40.5768i −0.0874227 1.45756i
\(776\) −2.90742 −0.104370